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ABSTRACT
Aggregate window computations lie at the core of online analyt-
ics in both academic and industrial applications. To efficiently
compute sliding windows, the state-of-the-art algorithms utilize
incremental processing that avoids the recomputation of window
results from scratch. In this paper, we propose a novel algorithm,
called SlideSide, that extends TwoStacks for multiple concur-
rent aggregate queries over the same data stream. Our approach
uses different yet similar processing schemes for invertible and
non-invertible functions and exhibits up to 2× better through-
put compared to the state-of-the-art incremental techniques in a
multi-query environment.

1 INTRODUCTION
An ever-growing amount of data needs to be analyzed in real-
time. Applications ranging from credit card fraud detection to
clickstream analytics are not supported by “classic” relational
systems and algorithms. Consequently, streaming applications
have become increasingly important. One of the key operators in
stream processing is window aggregation [1], i.e., the calculation
of running aggregates over the continuous data stream.

Since data streams are conceptually infinite, they are parti-
tioned into finite subsets of elements, called windows. A window
has a definition, which maps each input tuple to a window in-
stance. Upon aggregation, each window instance yields a result.
Windows can be distinguished by whether their instances are dis-
joint (“tumbling windows”) or not (“sliding windows”). Tumbling
(a.k.a. fixed) windows slice up the input stream into segments
with a fixed size temporal length (static window size). Sliding
(a.k.a. hopping) windows generalize tumbling windows by speci-
fying a slide parameter in addition to the size that specifies the
distance between the start of two windows.

While tumbling windows are amenable to classic “relational”
queries implementation techniques, the performance of sliding
windows is more challenging to compute efficiently. Incremental
algorithms introduce inherent control dependencies in the CPU
instruction stream, as intermediate results from previous win-
dow instances have to be used to compute efficiently the next
result. This is amplified in the case of multiple-queries applying
computations over the same data stream, which has not been
explored comprehensively. An example of the latter scenario is a
live-visualization dashboard that plots line charts of aggregates
on time-series data at different zoom levels [9].

Our contributions are the following:
• We study the performance of the best-performing incremental
algorithms, as reported in recent literature [4, 6]. We determine
sections of the problem space in which different approaches
perform best (focusing specifically on multi-query processing).
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Figure 1: The TwoStacks algorithm

• We propose a novel approach for incremental processing in
multi-queries scenarios, called SlideSide. Our solution extends
the logic of TwoStacks [4] based on the insight that the algo-
rithm maintains a running preffix-/suffix-scan over the in-
put stream. SlideSide optimizes its performance for associative
aggregation functions and can serve as a drop-in replacement
for the aggregation operator in a streaming system.

• Finally, we demonstrate that SlideSide is competitive with
highly optimized single-query algorithms, while it yields up
to 2× better throughput and comparable latency in the multi-
query scenario.
The remainder of the paper is organized as follows: in Sec-

tion 2 we survey the state-of-the-art in incremental window
computation. Section 3 introduces our novel incremental algo-
rithm. The paper finishes with evaluation results (Section 4), and
conclusions (Section 5).

2 BACKGROUND
In this section, we provide background on the underlying con-
cepts of incremental processing. We also review current ap-
proaches and provide in Table 1 a summary of their complexities.
Algebraic Properties. In this work, we focus on associative
algebraic aggregations [3] and consider the following properties:
• Invertibility: (x ⊕ y) ⊖ y = x , ∀ x ,y. This property can be
exploited by introducing the following function: inverse(a:
Agg, b: Agg): Agg , which removes the oldest partial aggregate
from the window result with an incremental operation.

• Commutativity: x ⊕ y = y ⊕ x , ∀ x ,y

Partial Aggregates are smaller units of computation that com-
pose the aggregate functions. Partial aggregation allow us to
buffer and apply inexpensive aggregation and trivially parallelize
the computation (e.g., using SIMD instructions [8]), when there
are no data dependencies. This idea is applied in the form of
window slicing [9] over a stream of data, where a slice is defined
as the largest sequence of tuples that offer no sharing potential.
Incremental Aggregation Techniques. After the computa-
tion of partial results, the final aggregation step has to be applied
to generate the query results. For that, streaming systems utilize
the incremental aggregation techniques we describe next and
summarize in Table 1.
Subtract-on-Evict (SoE) [4] is the best-performing approach in
the case of invertible functions, i.e., AGGsum. With SoE, the result
of the previous window instance is re-used to compute the next
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Algorithm
Time Space

Single Query Multi-
Queries Single-

Query Multi-Queries
Amort Worst Amort Worst

SoE [4] Inv 2 2 q q n qn
Non-Inv n n qn qn n qn

FlatFAT [7] loд(n) loд(n) qloд(n) qloд(n) 2n 2n
TwoStacks [4] 3 n q qn 2n 2qn

Slick
Deque [6]

Inv 2 2 2q 2q n q+n
Non-Inv <2 n q qn 2 to 2n 2 to 2n

Slide
Side

Inv 3 n q q 3n 3n
Non-Inv 3 n q qn 2n 2n

Table 1: Algorithmic Complexities

(partial aggregates: n, queries: q)

in constant time, by removing the expired elements and merging
in the new data. However, SoE cannot efficiently compute non-
invertible functions (e.g., AGGmin), as the whole window needs
to be rescanned in the worst-case scenario.
TwoStacks [4] can be used for non-invertible functions. Figure 1
illustrates an example of the TwoStacks algorithm, which main-
tains a back and a front stack to store the input values and the
aggregates required to produce the window results. When a new
input value v arrives, its aggregate is computed based on the
value of the back stack’s top element and it is pushed onto the
back stack. For every pop operation, the top from the front stack
is removed and a result is produced by aggregating its value with
the top of the back stack. Whenever the front stack is empty, the
algorithm flips the back onto the front stack, reversing the order
of the values and recalculating the aggregates. However, as this
happens infrequently, it exhibits O(1) amortized complexity.
Multi-Query Algorithms. The previous algorithms are not de-
signed to efficiently share intermediate results between multiple
window definitions over the same stream, in contrary to ap-
proaches such as FlatFAT [7] and SlickDeque [6]. FlatFAT uses
a pointer-less binary tree structure to store the partials, which
results in O(loдn) complexity for a single query. SlickDeque pro-
poses a different solution for invertible and non-invertible func-
tions. For invertible functions, SlickDeque generalises SoE to an-
swer multiple queries, by maintaining multiple instances of the
original algorithm with partials that share the same memory
space. In the case of non-invertible functions, instead of using
a queue implemented by two stacks, SlickDeque uses a deque
structure for insertions/removals of aggregates and answering
queries withO(1) amortized complexity. The time and space com-
plexities of the non-invertible functions (see Table 1) depend on
the input, with the worst-case scenario being a stream that is
ordered in the opposite way of the aggregate operator order (i.e.,
if AGGmax the input is ordered descendingly).

3 SLIDESIDE
Let us now, describe SlideSide, our novel algorithm for acceler-
ating incremental aggregation in a multi-query environment. It
aggressively reuses intermediate results with data structures that
have a sequential memory layout. Fundamentally, SlideSide is an
extension of the TwoStacks algorithm. However, it uses different
processing schemes for invertible and non-invertible functions.

Regarding the algebraic properties of the aggregate functions,
SlideSide has the same requirements as the state-of-the-art al-
gorithms described in Section 2 (associative aggregate functions).
SlideSide can be applied to FIFO windows (in-order data).

3.1 Invertible Aggregates
The simpler case are invertible combiners, such as AGGsum. The
natural approach of evaluating multiple simultaneous windows
would be to run multiple loop-fused instances of SoE. However,

Algorithm 1: SlideSide (Inv) Pseudocode
Input: A set of aggregate queries Q, a combiner operation ⊕, an inverse operation ⊖

Output: The results of the window queries in Q

1 windowSize = Q.getMaxWindowSize()
2 backStack [windowSize+1] = {neutralVal} // used for prefix-scan
3 frontStack [windowSize+1] = {neutralVal} // used for suffix-scan
4 elements [windowSize] = {neutralVal} // used for input stream
5 curPos = 0
6 foreach val: stream do
7 insert(backStack, frontStack, elements, curPos, windowSize, val)
8 emitResults(backStack, frontStack, curPos, windowSize, Q)

Algorithm 2: Algorithm for insert(...)
1 // compute the suffix-scan
2 if (curPos==0) then
3 for i=0,1,. . . , windowSize do
4 frontStack[i+1] = frontStack[i] ⊕ partials[windowSize-i-1]

5 elements[curPos] = val
6 backStack[curPos+1] = elements[curPos] ⊕ backStack[curPos]
7 curPos = (curPos+1) % windowSize // wrap around the circular buffer

we found that the TwoStacks algorithm can be extended to sup-
port this case as well, yielding a more cache efficient approach.
Somewhat surprisingly, this can be implemented using only two
stacks (illustrated in Figure 2). Like the single query case, the
elements of the back and front stacks share the same memory
space and their aggregates are kept separately. Next, we will
explain the algorithm and provide an example with two queries.

During the initialization phase of Algorithm 1, the back stack
(blue row), the front stack (green row) and a circular buffer of
elements (light-blue row) are allocated with size equal to the
largest window from a given set of queries, Q , and initialized
with the neutral element of the aggregate function (lines 1-4).
For every input value val from the stream, we call the insert
function and then compute the results for every query in Q with
emitResults in line 6-8.

Upon the arrival of a new element, using the insert function
(Algorithm 2), its val is stored in the next available slot in the
circular buffer, defined by the curPos variable in line 5. The back
stack is used for maintaining the prefix-scan of the input with
every insert (line 6). If we reach the end of the elements buffer,
we wrap around to the beginning and compute a suffix-scan

over the input (lines 2-4) before applying the new insertion. Note
that, as in TwoStacks, the computation of the suffix-scan occurs
infrequently and the algorithm has O(1) amortized complexity.

Algorithm 3: Algorithm for emitResults(...)
1 foreach query q : Q do
2 curWindowSize = q.getSize();
3 hasWrapped = false;
4 endPtr = curPos;
5 if (endPtr == 0) then
6 endPtr = windowSize

7 startPtr = endPtr - curWindowSize;
8 if (startPtr < 0) then
9 hasWrapped = true // the window wraps around the circular buffer;

10 startPtr + = windowSize;

11 if (!hasWrapped && startPtr == 0) then
12 res = backStack[endPtr] // use the result from prefix-scan;

13 else if (hasWrapped) then
14 res = backStack[endPtr] ⊕ frontStack[windowSize - startPtr];

15 else
16 res = backStack[endPtr] ⊖ backStack[startPtr];

17 forward answer res to query q;

After the insertion, the emitResults function (Algorithm 3)
is called for computing the results for each query with the set
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Figure 2: SlideSide (Inv)

Q . Based on the values of curPos and the window size of each
query, this algorithm first computes the start and end pointers
(lines 2-10) that are used for “bookkeeping”. Next, we distinguish
three different cases based on the value of these pointers: a)
if the start pointer is 0, the result is already computed by the
prefix-scan and returned in line 12; b) if the start pointer is
greater than 0 and the end pointer does not wrap around the
beginning of the elements buffer, the result value is computed by
applying the inverse aggregate function on the values from the
back stack in the positions of start and end pointers (line 16); c) if
the end pointer haswrapped, the result is computed by combining
backStack[endPtr] and frontStack[winSize-startPtr] in line 14.

In Figure 2, we present an example of SlideSide for two win-
dows of size 3 (Q1) and 4 (Q2) and slide 1. The red boxes represent
the result for the queries on each phase. The white boxes hold the
values of the start and end pointers we discussed above. At our
initial phase t0, the values 3, 4 and 2 have been already inserted
in the elements buffer (from left to right) and their prefix-scan is
computed in the back stack above (3, 7, 9). In the next phase t1, we
have an insertion in the last slot of the elements buffer, which trig-
gers the computation of the prefix-scan again for backStack[4]
by combining the values 9 (previous result) and 8.

After the insertion, the algorithm is ready to emit results for
both queries. For Q2, the result contains all the elements and
the window starts from position 0 (case a) from above). Thus
the result is already computed by the prefix-scan and can be
obtained by accessing the value of backStack[3] which is 17. For
Q1, the result contains only the latest three elements and the
window points at positions 1 and 3 (case c)). Thus, the result
is computed by applying the inverse aggregate function on the
elements from the back stack placed at that positions (17-3=14).

When we reach the end of the elements buffer (t2), we wrap
around to the beginning and we compute a suffix-scan over the
input using the front stack. In phase t3, we have the first eviction,
where the latest input value 5 replaces value 3 and backStack[1]

becomes equal to 5. Now, both query windows have wrapped
(case b)). This operation is going to return the suffix-scan of the
remaining elements after evictions using the front stack and the
current running aggregate from the back stack, which results in
15 and 19 respectively for queries Q1 and Q2.

3.2 Non-Invertible Aggregates
Processing multiple non-invertible functions can be performed
with the Algorithm 1, but the suffix-scans have to be triggered
more frequently. The algorithm is omitted to conserve space,
but the logic is similar. The intuition behind this approach is
that, while each of the queries maintains and operates on its
own pair of stacks, these can be overlayed and start at the same
memory address. In effect, the smallest stack is stored in the same
memory region as the bottom part of the next larger, and so forth.
To preserve correctness among the results, the computation of the
suffix-scan is triggered every time the query with the smallest
window size starts to evict.

In addition to the previous observations, we can apply op-
timizations proposed for single-query evaluation in Hammer-
Slide [8], such as maintaining only the top value of the back
stack. During the suffix-scan computation we can also stop
propagating the changes from the current position until the end
of the stack, if our computations do not alter the aggregate values,
which reduces greatly the overhead of multiple flip phases and
result in constant amortized complexity (see Table 1).

4 EVALUATION
In this section, we evaluate SlideSide for both invertible and
non-invertible functions to show the benefits of our incremen-
tal strategy. To evaluate the efficiency of different aggregation
algorithms, we run our experiments as a standalone prototype.
We compare SlideSide to SlickDeque (for non-invertible func-
tions we tradeoff performance with memory by using a fixed size
deque), TwoStacks (using optimizations from [8]), SoE and FlatFAT

when it’s applicable (e.g., SoE is evaluated only for invertible func-
tions). Each prototype maintains sliding windows with slide 1
by performing an eviction, an insertion and producing a result.
We start our evaluation with the case we focus on: multi-queries
and we demonstrate that SlideSide achieves higher performance.
After that, we study the performance in the single query case, in
which our solution exhibits only small performance loss.

4.1 Experimental setup and workloads
Hardware. All experiments are performed on a server with 2
Intel Xeon E5-2640 v3 2.60 GHz CPUs, a 20MB LLC cache and
64 GB of memory. We used Ubuntu 18.04 with 4.15.0-50-generic
Linux kernel and compiled all experiments with clang++ version
9.0.0 and optimization level -03.
Workload. Our workload emulates an anomaly detection sce-
nario using the energy consumption trace from a smart electricity
grid. This trace contains smart meter data from electrical devices
in households [5] (32 bytes tuple size). We use two queries to
perform analysis over the stream and detect outliers: SG1, an
aggregation that computes a sliding global AGGsum and SG2,
which computes a sliding global AGGmin over the meter load.

4.2 Multi-Query Evaluation
In the multi-query experiments, we generate queries of uniformly
random window sizes (within the range [1, 32768] of tuples),
while maintaining a constant window slide of 1 tuple for all of
them. In this setup, we created workloads that contain from 1 up
to 65 concurrent queries. TwoStacks and SoE can not be used to
evaluate multiple queries, so we replicate their data-structures
for every single window definition, as illustrated in Table 1.
Invertible Functions. For invertible functions, we are com-
puting query SG1 over different window definitions. Figure 3a
demonstrates that SoE is the fastest algorithm and outperforms
the multi-query solutions by up to 2.5× for a single query. How-
ever, as the number of queries increases, the overhead ofmaintain-
ing multiple data-structure replicates becomes noticeable. Thus,
we observe that the multi-query algorithms perform nearly 4×.
Comparing SlideSide with SlickDeque reveals a small perfor-
mance benefit that reaches up to 40% with the increase of query
concurrency. Our approach allows the compiler to generate more
efficient code, because of the simpler CPU instruction stream,
while providing more predictable memory access.
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Figure 3: Comparison of incremental techniques

Non-Invertible Functions. For the non-invertible functions
we are computing the AGGmin over the generated windows. In
Figure 3b, we observe that the multiple instances of TwoStacks
outperform both SlideSide and SlickDeque for the first two and
three workloads respectively. After that point, SlideSide is from
70% up to 2.2× faster compared to SlickDeque and more than
4× compared to the other two techniques. This illustrates that
even though SlideSide requires more memory compared to
SlickDeque, its CPU-cache-friendly data layout scales better with
the number of queries in comparison to the deque data structure.

4.3 Performance Overhead for Single-Query
In this section, we present the efficiency of SlideSide for single-
query workloads. We use queries SG1-2 to measure throughput
and latency of the aforementioned approaches.
Throughput. For this experiment, we use SG1 and SG2 over
windows with window sizes that vary between 1 and 1048576
tuples. Figure 3c illustrates the throughput penalty introduced
by our algorithm for invertible functions in a single query sce-
nario. SlideSide exhibits throughput nearly 3× worse than SoE

and TwoStacks. In Figure 3d, we observe that TwoStacks is the
best-performing non-invertible algorithm for different window
sizes (440 million tuples/sec). In contrary, SlideSide is 3× worse
but exhibits better performance than SlickDeque, because of its
underlying data structure with sequential memory layout.
Latency. To measure the latency of all the previous approaches,
we use a fixed window size of 32K tuple and window slide of 1.
In Figure 3e, we omit the latency of FlatFAT, as it consistently
is an order of magnitude higher than the other algorithms. We
show that SlideSide exhibits latency that is comparable to the
best-performing solutions for both invertible and non-invertible
functions (minimal overhead) and better compared to the other
multi-query solution, SlickDeque.

Overall, we observe that for single query evaluation SlideSide
ends up exhibiting nearly 3× worse performance in throughput
and similar latency compared to the best-performing approaches.
This is the result of the memory pressure from maintaining extra
dependencies (not needed by a single-query) along with a more
complex CPU instruction stream that hinders optimizations.

5 CONCLUSION
In this paper, we presented a novel algorithm for highly efficient
evaluation of multiple aggregate queries by maintaining a prefix-
and a suffix-scan over the input. Our algorithm can be used as
a drop-in replacement for any associative aggregation operator
in a commercial streaming system, such as Flink [2] (e.g., as
an aggregate store for Scotty[9]). SlideSide outperforms the
state-of-the-art algorithms in multi-query scenarios by up to
2× in throughput, while exhibiting better latency. However, our
study reveals that current window aggregation techniques do not
exhibit robust performance across different types of aggregation
functions and concurrency levels. Thus, a streaming engine will
either perform poorly for different points within this design space
or have to maintain multiple algorithms with a cost model.
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