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typically done while building the enterprise data stores, for exam-
ple in the ETL (Extract, Transform, Load) jobs; (ii) the enterprise
data stores are mainly relational and neglect specific connections
because they are not easily navigable without a graph-based tech-
nology; (iii) edges between entities in different data stores are
ignored because enterprise databases follow a siloed approach;
(iv) edges are considered less trustworthy (lower data quality)
than the entities they connect, and so are skipped.

Contribution. In this paper, we focus on the industrial context of
the ownership graph of Banca d’Italia and provide the following
contributions:

• We provide a compact but formal characterization of the prob-
lems of company control, asset eligibility and detection of per-
sonal connections over ownership graphs. We argue that the
three problems belong to a much broader class, which we name
knowledge graph augmentation, (KG augmentation). By KG aug-
mentation, we wish to characterize a special case of link predic-
tion [29], the key problem of predicting hidden links in network
structures, where the emphasis is on the need for a careful com-
bination of the extensional data (existing nodes and edges) and
the available domain knowledge.

• We present Vada-Link, a framework for the solution of KG aug-
mentation problems, leveraging state-of-the-art methodologies
for logic-based reasoning [14, 24], which provide a very good bal-
ance between computational complexity of the reasoning task,
being PTIME in data complexity, and expressive power, thanks
to logic-based Knowledge Representation and Reasoning (KRR)
languages such as Vadalog [14]. In fact, Vadalog captures full
Datalog [18, 27] and is able to express SPARQL queries under
set semantics and the entailment regime for OWL 2 QL [24].

• From the structured enterprise data stores, we build a Prop-
erty Graph [3] (PG) –a graph with labelled nodes and edges–
and model KG augmentation problems as reasoning tasks on a
Knowledge Graphs (KG), based on such PG. In particular, here a
KG is a data model combining an extensional component, that
is, the data from the enterprise data stores, with a formal repre-
sentation of the domain of interest, the intensional component,
expressed in some KRR language. KGs typically represent do-
mains that are well suited for being modeled as property graphs
complemented with rules that express domain knowledge.

• We argue that our approach is general and can be used to
augment KGs with new links that can be deterministically or
heuristically deduced from a combination of extensional data
and domain knowledge. In particular, we motivate that our ap-
proach is schema independent, as it is not coupled to a specific
graph structure (i.e., specific types for nodes, edges and their
properties), but relies on meta-level concepts describing graph
constructs. At the same time, our solution is problem aware, as
specific reasoning steps adopt polymorphic behaviour, depend-
ing on the specific problem. Moreover, our approach is data
model independent, in the sense that the extensional component
can be based on diverse data sources.

• With our KG-based approach, we build a company knowledge
graph, where the PG of the ownership graph represents the
extensional component of the KG and the hidden links, object
of the above problems, are obtained by combining a logic-based
intensional definition of their specification, i.e., the intensional
component of the KG, with the extensional component. Our so-
lution provides an approach to KG augmentation that shows at
the same time high accuracy and efficiency, achieved by multi-
level clustering of the search space, with techniques inspired by

record linkage experience [20]. In particular, in the KG inten-
sional component, we combine highly selective feature-based
clustering with neighborhood-preserving embeddings: the for-
mer technique avoids quadratic blow-up of the search space,
while the latter enhances accuracy by recognizing graph-based
similarities of the entities.

• We exploit the framework to build our company knowledge
graph. We motivate that our solution has very favourable prop-
erties: it is scalable, since it uses a tractable logic fragment,
Vadalog [14] and reduces the search space via multi-level
clustering; it is understandable, IT-independent and modifi-
able thanks to the adoption of a fully declarative approach;
Vada-Link decisions are explainable and unambiguous, as the
semantics of Vadalog is based on that of Datalog, well known
in the database community [2].

• We provide extensive experimental evaluation of Vada-Link.

KG augmentation. In Vada-Link, we structure our link predic-
tion tasks into two of subgoals. First, a clustering task, where we
aim at grouping the nodes into candidate clusters in order to limit
the search space of connected nodes. This allows to overcome
the need to compare a quadratic number of nodes, which would
make the approach infeasible. Clustering is performed with a
combination deterministic rule-based choices and embedding
techniques, e.g., node2vec [26], which allows to exploit not only
the textual or numeric features of edges, but also their structural
properties, such as: specific shared neighbours (along with their
properties, etc.), topological role nodes and so on.

Clearly, clustering requires a preliminary feature engineering
phase, needed to individuate the most informative features, which
is however out of the scope of this paper. The second subgoal is
a multi-class classification problem, where we aim at assigning
each pair of nodes a link class, if any.
Related work. Different research areas and data management
problems can be seen as related to Vada-Link. Link prediction
is the problem of discovering links between nodes in network
structures: it is relevant in social network analysis [29] and a va-
riety of approaches have been recently proposed, e.g. [39]. In this
work, we refer to a different setting, which we called Knowledge
Graph augmentation: it is the problem of inferring connections
that are necessarily present on the basis of a combination of
extensional knowledge and domain experience. In this sense,
we borrow techniques that are common in link prediction, e.g.
node2vec [26] for clustering purposes, but we do not use them
to make linking decisions, which are taken only via logic-based
reasoning. In the context of KGs, there have been some propos-
als for link prediction approaches [28, 32]. However, unlike our
approach, the emphasis is still on guessing new connections that
cannot be deduced from existing data.

In this paper, for our goals, we borrow from the vast experi-
ence of the database community in record linkage [20], which
is a different yet closely related problem. It consists in deciding
whether two records without a common database identifier ac-
tually refer to the same real-world entity. Here, the problem is
different as we are deciding whether two different real-world
entities have some relationship and, if so, its type. Nevertheless,
we inherit ideas for search space reduction, namely blocking and
feature-based probabilistic record linkage, adapting them in the
context of knowledge graphs. In doing so, we also rely in our
experience in formulating and solving data science and data in-
tegration problems in a declarative context and in Vadalog in
particular [11]. Finally, the general theoretical setting, including



the definition of basic data models (e.g., property graphs), is also
shared with the graph querying community [15].

Overview. The remainder of the paper is organized as follows.
In Section 2 we describe our industrial setting of the company
ownership graph at Banca d’Italia. In Section 3, we introduce the
background of Vadalog-based KGs, graph embeddings as well
as the foundations of our approach. In Section 4 we present the
details of Vada-Link. In Section 5 we illustrate the architecture
of the system, while Section 6 shows experimental evaluation.
We draw our conclusions in Section 7.

2 INDUSTRIAL SETTING:
AUGMENTING OWNERSHIP GRAPHS

A central bank needs data about companies to pursue a number
of core institutional goals. In particular, the Bank of Italy owns
the database of Italian companies, provided by the Italian Cham-
bers of Commerce. Although the database is extremely rich and
comprehensive, we shall see that many of the problems of inter-
est that cannot easily be solved using traditional query languages
can be concisely formulated as reasoning tasks on knowledge
graphs. We show how to build such a company knowledge graph,
in particular to identify hidden links between the involved enti-
ties in various scenarios. Such problems can be easily represented
as a KG augmentation problem: given an input graph, we seek
new edges that improve the connectivity of the graph to gain the
ability to find new and undiscovered patterns. Let us start with a
high-level description of the database.

The Italian Company Database. The database provided by
the Italian Chambers of Commerce contains several features for
each company such as legal name, address, incorporation date,
legal form, shareholders and so on. A shareholder can be either a
person or company. For persons, we find the associated personal
data, such as first name, surname, date and place of birth, sex,
home address, and so on. Detailed shareholding structure is also
available: for each shareholder the database contains the actual
share as well as the type of legal right associated to each share
(ownership, bare ownership and so on).

The database at our disposal contains data from 2005 to 2018. If
we see the database as a graph, where companies and persons are
nodes and shareholding is represented by edges, on average, for
each year the graph has 4.059M nodes and 3.960M edges. There
are 4.058M Strongly Connected Components (SCC), composed
on average of one node, and more than 600K Weakly Connected
Components (WCC), composed on average of 6 nodes, resulting
in an high level of fragmentation. Interestingly, the largest SCC
has only 15 nodes, while the largest WCC has more than one
million nodes. The average in- and out-degree of each node is
≈ 1 and that the average clustering coefficient is ≈ 0.0084, very
low when compared to the number of nodes and edges. Further-
more, it is interesting to observe that the maximum in-degree of
a node is more than 5K and the maximum out-degree is more
than 28K nodes. We also observe a high number of self-loops,
almost 3K , i.e., companies that own shares of themselves, which
could be referred to the buy-back phenomenon [4]. The resulting
graph shows a scale-free network structure, as most real-world
networks [7, 22, 34]: the degree distribution follows a power-law
and there are several nodes in the network that act as hubs.

Use Cases. Let us introduce three relevant problems in the con-
text of this database considering Figure 2.

Figure 2: ItalianCompanyGraph. Red-dashed edges repre-
sent personal connections, green-dashed edges represent
control links, magenta-dashed edges are close-links.

(1) Does P2 control C7? More generally, we want to under-
stand if a company or a person exerts control, through the
majority of voting rights, on another company, i.e., the
Company Control problem.

(2) Are companies C6 and C8 closely related? More generally,
wewant to understandwhether there exists a link between
two companies based on high overlap of shares, i.e., the
close link problem.

(3) Are there personal/family links between the persons in
the company graph? More generally, we wish to detect
personal connections and label them, on the basis of the
kind of relationship.

Solving the third problem allows us to see the first two under a
new light: are there a groups of people (e.g., of the same family) in
control of a certain company? Are two companies closely related
because of the personal ties between their shareholders?

Towards a formalization of the above problems, we propose a
graph-based representation of the company database, for which
we need some preliminary notions.

Definition 2.1. A (regular) Property Graph (PG) is a tuple of
the form G = (N ,E, ρ, λ,σ ), where:

• N is a finite set of nodes;
• E (disjoint from N ) is a finite set of edges;
• incidence function ρ : E → Nn is a total function that
associates each edge in E with an n-tuple of nodes from
N –we will consider n = 2 from hereinafter;

• the labelling function λ : (N ∪ E) → L is a partial function
that associates nodes/edges with a label from a set L;

• σ : (N ∪ E) × P → V is a partial function that associates
nodes/edges with properties from P to a value from a set
V for each property.

The provided company database can be represented in terms of
a property graph, as follows.

Definition 2.2. A Company Graph is a property graph G =
(N ,E, ρ, λ,σ ), such that:

• N contains companies and persons;
• E are shareholding edges, from companies to companies
or persons to companies;

• the labeling set L is defined as {C, P , S}, where C stands
for a Company node and P stands for a Person node; S
represents a Shareholding edge;





Relational Foundations. Let C, N, and V be disjoint countably
infinite sets of constants, (labeled) nulls and (regular) variables,
respectively. A (relational) schema S is a finite set of relation
symbols (or predicates) with associated arity. A term is either
a constant or variable. An atom over S is an expression of the
form R(v̄), where R ∈ S is of arity n > 0 and v̄ is an n-tuple of
terms. A database instance (or simply database) over S associates
to each relation symbol in S a relation of the respective arity over
the domain of constants and nulls. The members of relations are
called tuples. By some abuse of notations, we sometimes use the
terms tuple and fact interchangeably.
Relational Representation for PGs. We map constructs of
PGs into relational terms as follows. L-labelled nodes n ∈ N (with
Ln ∈ L) are represented by facts L(ĉx , c1

f , c2
f , . . . , cn

f ) of predicate
L, where for each property (feature) fi ∈ P, we have a constant
term ci

f of L of value σ (n, fi ). Note that here we assume a total
ordering of property names, so we can map them into positional
atom terms and no ambiguity arises (a non-positional perspective
could be easily adopted as well). We also assume every node has
an identifier x , whose value ĉx = σ (n,x) identifies its facts.

We map each Le -labelled edge e ∈ E, into facts of predicate
Le : Le (ĉ1

x , . . . , ĉk
x , f1, . . . , fm ), where for each argument i of the

incidence function ρ, there is a constant term ĉi
x of Le with value

σ (n,x), where n = ρ(e)[i] and x is n identifier, and for each
feature fi ∈ P of e there is a constant ci

f of Le with value σ (e, fi ).
Observe that node and edge labels operate at schema level

and map into predicate names. Properties and identifiers are
at instance level and define term values for facts representing
nodes and edges. With this premises given, in our setting the
extensional component of a KG is therefore a database instance
representing the PG by means of the mapping described above.

Example 3.1. The extensional component of a KG based on
the PG in Figure 1 has the following relational representation.
Company(C), Company(D), Company(E), Company(F ),

Company(G), Company(H ), Company(I ), Company(L),

Person(P1), Person(P2), Own(P1,C, 0.8), Own(C,D, 0.75),

Own(D,E, 0.4), Own(D, F , 0.2), Own(E, F , 0.4), Own(P1,E, 0.2),

Own(P2,G, 0.6), Own(G,H , 0.6), Own(H ,L, 0.4), Own(H , I , 0.1),

Own(P2, I , 0.5), Own(F ,L, 0.2).

Inference Rules. We describe the intensional components of
KGs with logical inference rules in the Vadalog language. At the
core of Vadalog, there is Warded Datalog± [12, 14] a language
part of the Datalog± family [17]. Datalog± languages consists of
existential rules, which generalize Datalog rules with existential
quantification in rule heads, so that a rule is a first-order sentence
of the form: ∀x̄∀ȳ(φ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄)), where φ (the body)
andψ (the head) are conjunctions of atoms with constants and
variables. For brevity, we write this existential rule as φ(x̄ , ȳ) →

∃z̄ψ (x̄ , z̄) and replace ∧ with comma to denote conjunction of
atoms. The semantics of such rule is intuitively as follows: for
each fact φ(t̄ , t̄ ′) that occurs in an instance I , then there exists
a tuple t̄ ′′ of constants and nulls such that the factsψ (t̄ , t̄ ′′) are
also in I . More formally, the semantics of a set of existential
rules Σ over a database D, denoted Σ(D), is defined via the well-
known chase procedure [2]: new facts are added to D by the chase
(possibly involving null values to satisfy existentially quantified
variables) until Σ(D) satisfies all the existential rules of Σ.

Example 3.2. The following rules define intensional edges
linking persons with companies they are influential on (e.g., in

the sense of control on company decisions). By Rule (1) a person x
affects a company c she owns; her spouse also affects the company
by Rule (2). Rules (3) and (4) generate Spouse edges, having a
validity interval from t1 to t2, from Married edges.
(1) Person(x), Own(x , c,v) → In�uence(x , c).
(2) Own(x , c,v), Spouse(x ,y, t1, t2) → In�uence(y, c).
(3) Married(x ,y) → ∃t1, t2 Spouse(x ,y, t1, t2).

(4) Spouse(x ,y, t1, t2) → Spouse(y,x , t1, t2).

4 THE VADA-LINK FRAMEWORK
In this section we focus on Vada-Link and describe in detail our
technique for KG augmentation.

Algorithm 1 Basic KG augmentation algorithm.
Input: G = (N ,E, ρ, λ,σ ), C: link classes
Output: U = (N ,E ′, ρ ′, λ′,σ )

1: U ← G
2: changed ← true
3: while changed do
4: changed ← false
5: K ← GraphEmbedClust(U )

6: for K ∈ K do ▷ First level
7: B ← GenerateBlocks(K)

8: for B(NB ,EB , ρB , λB ,σB ) ∈ B do ▷ Second level
9: for p1,p2 ∈ NB , c ∈ C do
10: if Candidate(p1,p2, c) and e < EB then
11: add e to EB
12: set ρB (e) = (p1,p2)

13: set λB (e,TYPE) = C .
14: changed ← true
15: return U

Algorithm 1 presents a high-level overview of the approach. We
take as input a property graph G and return a property graphU ,
which is obtained by adding the predicted edges. In our industrial
case introduced in Section 2, the property graph is a company
graph and the predicted links can be a control relationship, a
close link relationship, or a family link.

The overall approach consists in a double level of clustering
(which we will also call blocking) of the graph: after the first
grouping, possible links between nodes are searched only within
a single cluster in order to limit the number of needed compar-
isons. We start from a clustering K (line 5) performed by the
function GraphEmbedClust. We compute a node embedding of
the whole graph U : nodes are mapped into multi-dimensional
vectors, whose distance reflects the similarity of the nodes, eval-
uated on the basis of both their features and role in the graph
topology. Then each cluster K is in turn partitioned into a more
specific clustering B (line 7) by the function GenerateBlocks. The
search for nodes to be linked is then performed within each clus-
ter B and for each type c ∈ C of links by Candidate (line 10). If
an edge is to be created for the considered nodes, it is labeled
with the proper type (lines 11-13). Once all clusters B in B have
been used to enrich U with new edges, first-level clustering via
graph embedding is recursively applied (line 5). The algorithm
proceeds until no changes occur. Finally,U is returned.
The Knowledge Graph. We implemented the core KG augmen-
tation logic of Vada-Link described in Algorithm 1 with a Vada-
log KG, whereG is the ground extensional component and the



intensional component is defined by three set of rules, encoding
the prediction logic for the edges to be added to G to obtain U .
The first set of rules (Algorithm 2) is the input mapping: they
take as input the relational representation of one specific PG, as
defined in Section 3 (for example that of the company graph) and
transform it into higher-level concepts: generic nodes, generic
edges and types and properties for those nodes and edges. The
second set of rules (Algorithm 3) is the actual link prediction logic:
it contains the core reasoning process giving rise to new edges; it
operates on generic nodes and edges. Finally, the third set of rules
(Algorithm 4) is the output mapping: it transforms the high-level
generic links that have been created by the link prediction logic
into their relational representation in the PG.

Let us now analyse the details of the three sets of rules.

Algorithm 2 Input mapping for the company PG.
(1) Company(name, addr, inc. date, leg. form, . . .),

z = #skc (name) →

Node(z, name, addr, inc. date, leg. form), NodeType(z, Comp).

(2) Person(name, birth, addr, . . .),

z = #skp (name) →

Node(z, name, birth, addr, . . .), NodeType(z, Person).

(3) Own(x ,y, amount, right, . . .), right = pers.share →

∃z Link(z, #skp (x), #skc (y), amount, right, . . .),

EdgeType(z, Shareholding).
(4) Own(x ,y, amount, right, . . .), right = comp.share →

∃z Link(z, #skc (x), #skc (y), amount, right, . . .),

EdgeType(z, Shareholding).

The ground extensional component is modeled by means of three
atoms: Company, Person and Own. Company and Person hold the
basic features for companies and persons, respectively –the fea-
ture names are self explanatory– and are identified by name; Own
connects a person/company with name x to a company with
name y, when x is a shareholder of y and contains the respective
features, such as amount and type (right) of share. Clearly, here
we are assuming that name is a valid unique identifier for the
sake of simplicity, while in practice fiscal code or other more
appropriate codes are used. Rule (1) upgrades companies into
generic Nodes of NodeType “Company” (quotes are omitted in
the rules for readability). Similarly, Rule (2) upgrades persons.
For simplicity of presentation and without loss of generality, here
we assume that atoms are variadic (denoting extra terms with
“. . . ”) so as to support an arbitrary number of features; coher-
ence is guaranteed by the adoption of a positional perspective
in our relational representation of PGs and by nodes and edges
being typed. Clearly, we could replace variadic nodes and edges
with Feature(x , f ,v) atoms, explicitly representing a feature f
of value v for node x .

Both Rules (1) and (2) use functions denoted by #sk, namely
Skolem functors, to generate node identifiers. Skolem functors
are often used in variants of Datalog with OID invention, where
identifiers need to be generated [5, 16] with specific properties:
(i) determinism: repeated applications of the same functor on the
same argument yield the same OID –this will be useful to gener-
ate edges; (ii) injectivity: there are no distinct domain elements
yielding the same OID –for instance, no different companies will
be assigned the same OID; (iii) disjoint range: different Skolem
functors cannot produce the same OID –in case a company and a
person have the same name, #skc and #skp will produce different
OIDs. Vadalog supports Skolem functors in this form.

Rule (3) and Rule (4) upgrade ownership into generic Links
with an EdgeType depending on the type of ownership:
pers.share for persons holding companies, comp.share, in the
case of a company owning a company. We adopt existential
quantification to generate OIDs for Links and Skolem functors
to obtain the OIDs of the Nodes associated to names x and y.

Observe that the application order of the rules is irrelevant:
thanks to determinism of Skolem functors, Links can be gener-
ated even before the respective Nodes for companies and persons.

Algorithm 3 Vadalog KG augmentation logic.
(1) Node(x , f x

1 , . . . , f x
n ), Link(e,v,w, f e

1 , . . . , f e
m ),

NodeType(x , tn ), EdgeType(e, te ),

b1 = #GraphEmbedClust(f x
1 , . . . , f x

n , f e
1 , . . . , f e

m , tn , te , ⟨e⟩),
b2 = #GenerateBlocks(f x

1 , . . . , f x
n , tn ) → Block(b1,b2,x)

(2) Node(x , f x
1 , . . . , f x

n ), Node(y, f
y
1 , . . . , f

y
n ),

NodeType(x , tn ), NodeType(y, tn ),x , y,

Block(b1,b2,x), Block(b1,b2,y), LinkClass(t),
Candidate(x ,y, t) → ∃z Link(z,x ,y, . . .), EdgeType(z, t).

Algorithm 3 represents the core prediction logic of Vada-Link.
For every node x , Rule (1) considers all the edges e of the graph
and positions x into a two-level nested clustering structure rep-
resented by the atom Block, where b1 and b2 are the clustering
levels. The first clustering is established by applying the function
#GraphEmbedClust, which wraps a function call to a specific
clustering algorithm based on node embedding (details in Sec-
tion 4.1). It takes as input the features of x , all the edges e of the
graph along with their features, the respective types tn and te and
returns the identifier b1 of the first-level cluster. The second-level
clustering is determined by applying the function #Generate-
Blocks, whose resulting cluster identifier b2 only depends on the
node properties and type.

Some discussion of the use of functions in our solution is
needed. #GenerateBlocks is a fact-level function (details in Sec-
tion 4.2) and its semantics is quite straightforward: for a specific
binding of the function arguments that is part of its domain, a
value for b1 is produced. The function is in some sense polymor-
phic: depending on the type tn of the involved nodes, a specific
semantics is applied to decide the target cluster on the basis of
the node features. For example, if the node represents a person,
a specific algorithm may rely on last names or addresses; in case
of companies, the industrial sector may be relevant, and so on.

#GraphEmbedClust is a monotonic aggregation function. Ag-
gregation functions are adopted in various settings making use
of logical formalism and the need for a careful definition arises
in all of them, especially in the presence of model based seman-
tics [31]. Among the various types of aggregation that Vada-
log features [13], in our solutionwe adopt themonotonic one [37],
which respects monotonicity w.r.t. to set containment. Intuitively,
aggregation is provided in the form stateful fact-level functions,
which memorize the current aggregate value; subsequent invo-
cations of a function then yield updated values for the aggregate
so as that the “final value” is the actually desired aggregate value.
Thanks to monotonicity, such final value can be easily identified
as the minimum/maximum value. In order to decide the first-level
clustering for node x , the function #GraphEmbedClust takes as
input the node features, an edge e with its features, and the node
and edge types tn and te ; for a given node x , whenever the func-
tion is activated for a new edge e (notation ⟨e⟩ denotes that e
is such an aggregation contributor), a more accurate clustering



is possible and a new, greater value for b1 is returned. In fact,
#GraphEmbedClust wraps the invocation of a node2vec primi-
tive (some details in Section 4.1), whose precision depends on
the portion of the graph that is available to it.

For every second-level cluster defined by a Block fact, Rule (2)
exhaustively considers all the pairs of nodes x and y and for
every possible LinkClass t (wrt our case many exist: Control,
CloseLink, ParentOf, PartnerOf, etc.); the Candidate predicate
(details in Section 4.3) is used decide whether a Link from x to
y must be produced or not. If the case, a new t-typed edge is
created. Observe that Rule (2) compares only the pairs of nodes
in the same sub-cluster (identified by b1 and b2).

Algorithm 4 Output mapping for the company PG.
(1) Link(z,x ,y), EdgeType(z, Control) → Control(x ,y).

(2) Link(z,x ,y), EdgeType(z, CloseLink) → CloseLink(x ,y).

(3) Link(z,x ,y), EdgeType(z, ParentOf) → ParentOf(x ,y).

(4) Link(z,x ,y), EdgeType(z, PartnerOf) → PartnerOf(x ,y).

Algorithm 4 is the output mapping, actually transforming the pre-
dicted edges back into the PG language. With reference to our in-
dustrial case, Rules (1) and (2) generate Control and CloseLink
links, respectively. Rules (3) and (4) exemplify possible family
links, and many more exist.

4.1 Clustering with Node Embeddings
Embeddings are mappings of real-world objects into high di-
mensional real-valued vectors that guarantee specific, e.g. geo-
metric, properties reflecting the semantic relationships between
the objects. Typically, embeddings are based on some similar-
ity or neighbourhood notion, like in word embeddings [6]. The
function #GraphEmbedClust in Rule (1) of Algorithm 3 imple-
ments a graph embedding, specifically a node embedding, that
is, mappings of graph nodes into vectors so that network node
neighbourhood is preserved. Specific algorithms learn node em-
beddings with different random walk strategies, resulting in the
optimization of different measures as a consequence. In the func-
tion we adopt node2vec [26], a particularly interesting embedding
which optimizes both network vicinity and network role of a
node. We map graph nodes into vectors with 128 dimensions, in
such a way that their distance preserves feature-based node sim-
ilarity as well as neighbourhood, e.g., the so-called “homophily”,
that is, nodes having the same friend nodes are considered similar.
We also apply a preliminary dimensionality reduction step based
on T-SNE (t-distributed stochastic neighbor embedding spectral
clustering) [35]. The #GraphEmbedClust is polymorphic in the
sense that depending on the types tn and te of involved nodes
and edges, it adopts different embedding strategies, which high-
light the topological peculiarity of the problem. For instance, it is
indeed common that persons having largely overlapping groups
of family members are in turn connected by a family relationship;
conversely, companies in hold of overlapping sets of shares of
other companies, tend to be part of the same group.

Clustering based on graph embeddings shows to be particu-
larly useful in the industrial cases at hand, since it includes in
the same clusters candidates that would be far in terms of their
descriptive features. This goes beyond the textual or numeric
features of companies and persons. Moreover, the interplay be-
tween different types of links is also interesting: for example,
it is our experience that people in hold of overlapping sets of
shares tend to be family members; vice versa, companies owned

by overlapping sets of people tend to be part of the same group.
The combination of quantitative features and structural graph
property is also noteworthy. People owning certain patterns of
shares of the same company tend to have family connections.

4.2 Generating Blocks
#GenerateBlocks in Rule (1) of Algorithm 3 reduces the search
space for link candidates by sub-clustering. In particular, the
function takes as input a vector of features of a node x (a person
or a company in our case), belonging to first-level cluster b1 and
returns the identifier b2 of a second-level cluster. Note that a care-
ful choice the features, feature engineering phase, is fundamental:
in Vada-Link, we modularize out this highly domain dependent
aspect into the specific implementations of #GenerateBlocks, so
that the overall solution is general and ad-hoc tuning is possible
whenever new business domains arise.

Vada-Link provides different pluggable implementations for
various domains. In most of the cases sub-clustering can be de-
termined on the basis of well-known hashing or partitioning
techniques. We support intuitive declarative specifications of
auxiliary functions in Vadalog as follows:

Hash(h, f1, . . . , fn ), Features(f1, . . . , fn ) → Ans(h).

Here, the Feature atom binds to the vector of features taken
as input by #GenerateBlocks; with a join with the Hash atom,
the functionally dependent hash value h is returned. The above
rule is clearly complemented by the set of facts defining the
underlying hash relation. Conventionally the Ans atom denotes
the function return value. Alternative implementations could be
based on Skolem functors as follows:

h = #Skh (f1, . . . , fn ), Features(f1, . . . , fn ) → Ans(h).

4.3 Generating Matching Candidates
The possible candidates to be linked are matched by the polymor-
phic Candidate predicate, which has different implementations,
depending on type of link to be predicted. Let us show how this
is applied in our cases.

Algorithm 5 Candidate predicate for company control.
(1) Node(x , f1, . . . , fn ), NodeType(x , Company) →

Candidate(x ,x , Control).
(2) Candidate(x , z, Control), Link(u, z,y,w)

EdgeType(u, Shareholding), msum(w, ⟨z⟩) > 0.5
→ Candidate(x ,y, Control).

The Vadalog rules in Algorithm 5 define candidate companies
to be linked by a control relationship, according to Definition 2.3.
Such relationship holds for a company on itself (Rule (1)); then,
whenever a company x controls a set of companies z that jointly
own more than 50% of a company y, then x controls y.

Algorithm 6 defines companies that are in close link relation-
ships (with threshold T ) according to Definition 2.6. Rule (1)
and (2) calculate accumulated ownership for companies x and
y, according to Definition 2.5. Rule (3) gives the base case for
close links: accumulated ownership greater than or equal to 20%
is a close link. Close links are symmetric, by Rule (4). Finally, if a
company z owns a significant share of both x and y, they are a
close link by Rule (5).



Algorithm 6 Candidate predicate for close links.
(1) Link(z,x ,y,w), EdgeType(z, Shareholding) →

AccOwn(x, y, w).

(2) Link(u,x , z,w1), EdgeType(u, Shareholding),

AccOwn(z,y,w2),v = msum(w1 ·w2, ⟨z⟩)

→ AccOwn(x ,y,v).

(3) AccOwn(x ,y,w),w ≥ T → Candidate(x ,y, CloseLink).

(4) Candidate(y,x , CloseLink) → Candidate(x ,y, CloseLink).

(5) AccOwn(z,x ,w1), AccOwn(z,y,w2),w1 ≥ T ,w1 ≥ T ,

→ Candidate(x ,y, CloseLink).

Algorithm 7 Candidate predicate for PartnerOf.
Node(x , f x

1 . . . f x
n ), Node(y, f

y
1 . . . f

y
n ), NodeType(x, Person),

NodeType(y, Person), #LinkProbability(fx
1 . . . fx

n , fy
1 . . . fy

n ) >

T → Candidate(x, y, PartnerOf).

Algorithm 7 defines a pair of candidate persons that have a family
connection. In the example, the function #LinkProbability imple-
ments Equation 3 of Section 2. Here we consider the “PartnerOf”
relationship, but similar algorithms are valid for all personal
connection types.

We are now able to extend company control and close link
detection to support the presence of families. For the sake of
space, we omit here Vadalog rules generating “Family” nodes F
and “Family” links connecting persons to their family.

Algorithm 8 Candidate predicate for family control.
(1) Node(F , f F

1 , . . . , f F
n ), NodeType(F , Family),

Link(z,x , F ), EdgeType(z, Family), Link(v, x, y),

EdgeType(v, Control) → Candidate(F, y, Control).
(2) Candidate(F ,x , Control), Link(z, x, y, w),

EdgeType(z, Shareholding), msum(w, ⟨x⟩) > 0.5
→ Candidate(F ,y, Control).

(3) Link(u, i, F ), EdgeType(u, Family),

Link(z, i,y,w), EdgeType(z, Shareholding),

msum(w, ⟨i⟩) > 0.5 → Candidate(F ,y, Control).

Rules (1) Algorithm 8 implement condition (i) of Definition 2.8,
while Rules (2) and (3) implement condition (ii) by accounting
for the contribution on y of both the companies x controlled by
F and the direct ownership of members of F . Technically, the
two monotonic summations of Rules (2) and (3) contribute to the
same total, one for each ⟨F ,y⟩ pair.

Algorithm 9 Candidate predicate for family close link.
(1) Link(z, i, F ), EdgeType(z, Family),

Link(k, j, F ), EdgeType(k, Family), i , j,
AccOwn(i, x, v), v ≥ 0.2, AccOwn(j, y, w), w ≥ 0.2,

→ Candidate(x ,y, CloseLink).

Finally, Algorithm 9 extends Algorithm 6 and implements part (ii)
of Definition 2.9.

4.4 Discussion
We conclude the section with some informal arguments about
termination, correctness and properties of our approach. I.e.,
Algorithms 2, 3 and 4 terminate and, in particular, Algorithm 3
correctly adds the required edges as defined in Algorithm 1.

Termination. As we have touched on in Section 3, the semantics
of a set of existential rules Σ is given by the chase procedure,
where new facts are added to database D (the extensional com-
ponent), until Σ(D) satisfies all the rules. We argue that in our
case Σ(D) is always finite.

• Algorithms 2 and 4 are non-recursive, therefore each rule adds
a finite number of facts to Σ(D), because of the finiteness of the
extensional component.

• Algorithm 3 is recursive, as Links generated by Rule (2) appear
in the body of Rule (1) –edges recursively improve the embed-
dings. The number of Links that can be generated by Rule (2) is
finite and, in the worst case, it amounts to |N |2 ×C , where N are
the PG nodes andC is the number of possible link types. There-
fore, Rule (2) produces a finite number of facts in Σ(D), up to
renaming of link identifiers z. Technically, the Vadalog chase
procedure applies isomorphism check to prevent the generation
of redundant facts. Therefore, Rule (1) produces a finite number
of clusterings ⟨b1,b2⟩, since it can fire in the worst case for
every single edge in E plus all the ones introduced by Rule (2).
Therefore Algorithm 3 always terminates.

• Special care must be paid in the specific polymorphic imple-
mentations of the Candidate predicate. Observe that in our
settings, Algorithms presented in Section 4.3, in the worst case
enumerate all the graph paths, and so always terminate.

Correctness. Let us show that each element (e.g., a company or
a person) is correctly assigned to a single cluster and pairwise
comparison is correctly performed inside each of them and for
all possible link classes, as defined in Algorithm 1.

• The nested clustering is produced by the joint use of functions
#GraphEmbedClust and #GenerateBlocks within Rule (1) of Al-
gorithm 3. They are both applied to each node and the generated
identifiers, b1 and b2, appear as terms the head of Rule (1) as
well as the node x . As a consequence, because of set semantics,
every node x is assigned to a unique pair ⟨b1,b2⟩.

• In the body of Rule (2) of Algorithm 3, the two Node atoms
operate on all pairs of nodes ⟨x ,y⟩ such that x and y share the
clustering configuration ⟨b1,b2⟩. Therefore, no other elements
are involved in the comparison performed by the Candidate
predicate. Moreover, Rule (2) fires for each possible class t of
LinkClasses and so, eventually, all possible triples ⟨x ,y, t⟩,
with ⟨x , t⟩ in the same cluster are evaluated.

A broader consideration of the overall correctness and complete-
ness of the approach applied to the specific problems over com-
pany ownership graphs is necessary. All the implementations
of the Candidate predicate we presented in Section 4.3 are de-
terministic, in the sense that they apply a priori conditions that
encode the domain knowledge and produce a linking decision.
Clearly, Candidate may be implemented as a statistical model,
but still, this decision remains deterministic. The specific config-
uration of the clustering mechanism, i.e., the specific implemen-
tations of #GraphEmbedClust and #GenerateBlocks, determines
which pairs of nodes are considered by Candidate and, as we
will see in Section 6, this is the main key to achieving scalability.
Hence, if two nodes x and y are supposed to be connected by a
t-typed edge e and the recursive clustering mechanism always as-
signs them to different blocks, the final result will not be complete
and miss e . It is the responsibility of the data engineer to strike
an acceptable balance between completeness and granularity of
clustering from case to case.



Finally, observe that the correctness of the links predicted
by Vada-Link depends on the correctness/statistical robustness
of the single implementations of Candidate, which is problem
dependent and out of the scope of this paper.

Complexity. In the average case, clustering allows for linear
behaviour, as we experimentally show in Section 6. In the worst
case, i.e., all nodes are assigned to the same cluster, the approach
performs |N |2 ×C comparisons, where N are the nodes in the
extensional components andC the number of possible link types.
However, with highly dense graphs, complexity is dominated by
that of #GraphEmbedClust since node2vec has quadratic com-
plexity in the graph branching factor [33]. Also, the complexity
of the specific implementations of Candidate must be taken
into consideration from case to case, as it could be dominating,
for example with problems that require path enumeration. Full
complexity characterization of company graph problems is be-
yond the scope of this paper. However, we point out that the
complexity of Candidate can be controlled by a careful choice
of the sub-fragment of Vadalog language. In fact, if the task is
described in Warded Datalog±, the fragment at the core of the
Vadalog language, there is the formal guarantee of polynomial
complexity [12].

Properties of the approach. Our approach is schema and model
independent. It is schema independent in the sense that Vada-
Link is able to perform KG augmentation regardless of the spe-
cific input PGs. This independence is achieved by means of a
preliminary “promotion” of the relational representation of the
extensional component into a generic graph model (Algorithm 2),
with abstract constructs (nodes, edges, features, types). The link
prediction logic is then applied within the generic graph, with
specific polymorphic implementations of Candidate for each
problem, encoded in Vadalog in terms of these high-level con-
structs. In this sense, the approach is also problem aware. Finally,
the generated links are mapped again into the specific graph
schema with Algorithm 4.

The approach is model independent in the sense that the exten-
sional component can originate from heterogeneous data sources,
even based on different data models (relational, object oriented,
XML, NoSQL models), under the condition it can be imported
into the relational representation of PGs described in Section 3.

Finally, it is worth remarking that our prediction technique is
based on a kind of reinforcement principle because the positively
predicted edges in turn help new predictions. In fact, the first-
level clustering in Algorithm 3 is gradually improved with new
edges being considered from both the ground ones and those
generated by Rule (2).

5 THE ARCHITECTURE OF VADA-LINK
The development of enterprise applications using KGs is still
a largely unexplored area and design methodologies as well as
architectural patterns are gradually emerging. In [10], we pro-
posed a set of architectural principles for the design of KG-based
applications; in the following, we briefly motivate how those
principles are satisfied by Vada-Link architecture.

• Assign the immediately known, original information to the ground
extensional component of the KG. In fact, Algorithm 2 embod-
ies the construction of a property graph exactly holding the
information available in the company database. Besides the
simple mapping, we clearly perform data cleaning and quality
enhancement steps, whose details are omitted in this work.

• For the schema design of the extensional component, adopt well-
known conceptual modeling techniques. In Vada-Link, we pro-
vide a relational representation of the extensional data (Sec-
tion 3) that respects consolidated design and data normalization
practices: relevant entities, persons, ownerships and companies
in the case at hand, reflect into standalone relations, incorpo-
rating identifiers as well as the specific features as attributes.

• Use extensional rules to model sophisticated and reasoning inten-
sive business rules. We represent the logic needed to generate the
links in the form of declarative specifications. More concretely,
with respect to the company KG, we consider multiple kinds of
links (close links, company control, family relationships) and
for each of them propose a Vadalog program representing it.

• Keep business logic in the applications (do not let it drift into the
KG intensional component). We carefully separate the business
logic of the client applications, that is, the software components
using our KG for internal purposes (e.g., economic research,
anti-money laundering, etc.) from any logic needed to generate
the links. The Vadalog rules represent only the latter, whereas
the application business logic resides within the application
components. We choose not to implement each polymorphic
variant of generation of clusters and evaluation of matching
candidates (Sections 4.2 and 4.3) in a dedicated software mod-
ule. First, such module would be highly coupled to data and
hardly explainable or modifiable; more in general, the advan-
tages of declarative approaches in the KG realm are largely
acknowledged [30]. In our case, the adoption of logic-based
rules appears particularly effective under three perspectives.
Understandability: it is our experience that business users ap-
proach and appreciate human-readable rules instead of pure
code; modifiability: given by the combination of high abstrac-
tion level and compactness of code (20-30 lines ofVadalog rules
against 1K+ lines of Python code for the three cases at hand);
IT independence: avoiding the strong coupling to a specific pro-
gramming language.

Figure 3 shows the full functional architecture of Vada-Link. Its
goal is building a KG from an existing source database. To this
aim, data fetched from the RDBMS are enriched with features
and extensions from external sources, with common ETL jobs.

The enriched dataset is then used as input to build the ex-
tensional component of the KG, that is, the property graph.
Our graph-building pipeline takes as input an arbitrary database
schema and maps it into the relational representation for PGs
described in Section 3. The property graph is stored into a Neo4J
server. The set of Vadalog rules in Algorithms 2, 3 and 4 are
stored into a dedicated repository and executed by Vadalog.
Enterprise applications interact with the KG via a reasoning API.
Full details about Vadalog architecture are in [14].

6 EXPERIMENTS
In this section, we provide an experimental evaluation our ap-
proach to KG augmentation. The goal of the section is to high-
light the scalability and accuracy of the overall approach in Vada-
Link and not focussing on the specific Vadalog implementations
of the three problems. In fact, out of the three KG augmentation
problems we have presented, for the goal of this section we con-
centrate on the detection of family connections, which is at the
same time straightforward but helpful to stress the system. Spe-
cific performance tests on complex reasoning tasks, including
company control, can be found in [12, 14].



Figure 3: The functional architecture of Vada-Link.

We validate Vada-Link on both real-world and artificial data,
showing that it exhibits good scalability and accuracy.

Datasets. The real-world data we use in the following experi-
ments is the database of Italian companies of Banca d’Italia, as
described in Section 2. For the synthetic data, we developed a
graph generator. In particular, since company networks tend to
be scale-free networks (see Section 2), we built different artificial
graphs by adopting Barábasi algorithm [8] for the generation of
scale-free networks, varying the number of nodes and the graph
density. For each node, we randomly generated 6 features, out of
distributions respecting their statistical properties.

Software and hardware configuration. We ran the experi-
ments on a MacBook with 1.8 GHz Intel Core i5 and 4 GB 1600
MHz DDR3 memory. Vada-Link has been compiled with JDK
1.8.0_4 and clustering functions executed with Python 3.2.3.

6.1 Evaluating Scalability
We tested the scalability of Vada-Link in a number of settings,
varying both the graph topology (e.g., number of nodes, density)
and the data distribution, inducing different clustering structures.

Varying number of nodes. We investigate the impact of the
number of nodes on the performance of Vada-Link. For the real-
world case, we built 20 scenarios with subsets from the Italian
company graph presented in Section 2, with ≈ 1-100k nodes
representing persons. In order to stress the system even more
with synthetic data, we built 6 artificial graphs with≈ 1-10k nodes,
having the same scale-free topology as the real-world graphs, but
much higher density. We performed each experiment 10 times
and averaged the elapsed times.
Results. The results for real-world data are reported in Figure 4(a).
Vada-Link shows good scalability: execution time (blue line)
grows slightly more than linearly with the number of nodes and
remains under 20 seconds for 10k nodes. The trend is significantly
far from quadratic growth, which we would expect with the naive
approach consisting of exhaustive all-pairs comparison (red line).
Figure 4(b) shows the results for synthetic data. Although the
elapsed times are higher by one order of magnitude, which we
explain with the highly dense topology of the generated artificial
data, the trend is still linear and the approach effective.

Varying the number of clusters. We seek to observe the im-
pact of the number of clusters on the overall execution time. To
this end, we crafted a real-world-like experiment adopting the
company graph presented in Section 2 and artificially tweaking
the value of some features. As we have illustrated in Sections 4.1
and 4.2, our clustering technique is based on a recursive com-
bination of node2vec (first-level clustering) and feature based
blocking (second-level clustering); in particular, in Section 4.2
we have shown that the assignment to a second-level cluster is
decided on the basis of a deterministic mapping –via hashing
or Skolem functors– of a feature vector f1, . . . , fn into a cluster
identifier. In this experiment, we alter the value of k of such n
features in order to hijack the mapping into an increasing num-
ber of clusters of decreasing size and observe how this affects
elapsed time. We extract values for the vector f1, . . . , fk from a
discrete multivariate uniform distribution over the sample space
S1, . . . , Sk . To induce more (fewer) and smaller (bigger) clusters,
we restrict (expand) the cardinality of the domain of S1 × . . . ×Sk .
Specifically, we mapped f1, . . . , fn into ≈ 1-500 clusters.

Results. Figure 4(c) confirms that, as usual in clustering approaches,
effective application of Vada-Link calls for a careful feature engi-
neering phase: the selectivity of the features, i.e., the number of
distinct values in the domain, and the cardinality of their domain
affect the number and size of the clusters. For example, searching
for the “siblingOf” relationship among people of the same last
name and age range, would lead to clusters including thousands
of persons, since certain last names are notably more common
than others. Resorting to specific features, for example address
vicinity or geographic area, could highly reduce the search space.
Also, while the above considerations are somehow intrinsic and
common to any clustering approach, in Vada-Link, the adoption
of a hybrid node2vec/feature-based clustering combined within
a recursive self-improving approach make it easier to strike a
good balance between number of clusters (and hence elapsed
time) and recall, as we shall see in Section 6.2.

Varying the density. In this experiment we investigate the im-
pact of the density of the graph on the performance ofVada-Link.
To this end, we built 4 artificial scenarios, superdense, dense, nor-
mal, sparse, corresponding to graphs of increasing density, and
measured execution time for subset of these graphs of 1-1k nodes.





Results. Figure 4(e) shows how recall decreases with the number
of clusters: It is clearly maximum for the single cluster case; then,
the recall obtained for 20 clusters, 99.4%, is certainly acceptable
for our use cases and, in general reasonable for industrial settings
in ownership graphs. We then observe 98.6% for 50 clusters and
the approach becomes ineffective for more than 400 clusters, with
a recall steadily under 50%. A comparison with Figure 4(c) is inter-
esting and confirms that with more than 10 clusters, processing
time is under 10 seconds. This implies that for our case, an effec-
tive balance between efficiency and recall is between 10 and 20
clusters. More generally, Figure 4(e) shows a slow decrease of re-
call, which proves the robustness of Vada-Link. We explain that
with the recursive interaction between first- and second-level
clustering we have in Algorithm 3. Whenever in a second-level
cluster new links are predicted, they are used by the aggregate
function #GraphEmbedClust to improve the embedding and pro-
vide better first-level grouping and, as a consequence, increase the
likelihood that in the second-level clustering, #GenerateBlocks
considers new candidates. In other words, the recursive interplay
between the two clustering functions compensate for increases
in the number of clusters and contributes to a favourable balance
between scalability and recall.

7 CONCLUSION
Company ownership graphs confront us with several problems,
relevant in the financial realm. Discovering company control, rea-
soning on asset eligibility or finding out family connections are
three interesting examples we focus on in this paper, motivated
by the construction of the Enterprise Knowledge Graph of Banca
d’Italia. Many more such settings exist, all with the common goal
of enriching the company graph with new links. The need for
actionable solutions is felt by the the national central banks of
the European system, the national statistical offices and many
more financial authorities

In this paper, we proposed Vada-Link, a new approach for the
creation of valuable links in company graphs that leverages the
vast amount of domain knowledge typically present in financial
realm. On the basis of recent developments in the KG research
area, we model the input graph as the extensional component of
a logic-defined KG, where domain knowledge is encoded in Vada-
log and link prediction is operated as a reasoning task within the
KG. We discussed several favourable properties of our approach,
which is general and applies to different data models and schemas.
We also discussed the architecture of Vada-Link and provided
experimental evaluation, highlighting good performance. We be-
lieve that with Vada-Link we are shedding light on problems of
the financial realm that have specific scientific relevance per se
and a graph- and logic-based view on them can certainly con-
tribute to their full characterization.
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