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ABSTRACT

CPU has been identified as the energy bottleneck for database
systems and existing approaches only allow database systems
to trade the performance for energy. However, our work show
that cutting down the energy cost of database systems with-
out losing the CPU performance is feasible. We first develop a
measurement methodology to accurately evaluate the energy
cost of different CPU micro-operations. Then three popular data-
base systems with different setups and data sizes are used as
benchmarks to explore the energy distribution on CPU micro-
operations. Our experimental results show that L1 data cache
(L1D cache) consumes 39%-67% of total CPU energy and it is def-
initely the energy bottleneck of database systems. This finding
inspires us a novel idea on building energy-efficient database
systems with customized CPU architecture that features low L1D
cache energy cost. A proof-of-concept system is developed to
evaluate this idea and the experimental results show that our
solution can not only achieve 60% of peak energy saving but also
gain further performance improvement.

1 INTRODUCTION

As the infrastructure of the data center, database system has been
limited by the energy wall. The energy cost of powering the
database server is not only rapidly approaching the machine ac-
quisition cost[24], but the energy wall also limits the scalability of
database server. CPU[13, 19, 25], main memory[23] and disk[24]
may become the energy bottleneck due to different computer
architectures and database types. In this paper, we focus on the
energy profiling of typical relational database systems on the
x86_64 architecture with local disk, and many evidences have
confirmed that CPU consumes more power than other major
components in our scenario[13, 19, 25].

According to whether the workload is running or not, the CPU
energy cost may be classified into Busy-CPU energy cost and Idle-
CPU energy cost. The Idle-CPU energy cost has been reported to
reduce from 50% to 18%[19]. Undoubtedly, the Busy-CPU energy
cost as the dominant part attracts a lot of research work. For
example, both academia and industry have expended a great deal
of effort in energy-oriented query optimization[21, 28, 29] and
the external energy knobs based approaches[13, 19, 21, 23]. The
basic idea is building the cost model based on the Busy-CPU
energy cost to choose the energy-optimized query plan or set
the appropriate CPU voltage and frequency according to the
database load status. These methods consider CPU as a black box
and the energy cost is reduced by trading the performance, such
as a 43%-80% performance loss[21, 28].

Actually, there are many different micro-operations inside the
CPU and they expect different energy costs. Existing black-box
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optimization methods cannot take advantage of micro energy
cost characteristics of database workloads so they often lead to
significant performance loss to meet the energy saving demand.
Energy-efficient database systems expect that the CPU archi-
tecture can significantly cut down the Busy-CPU energy cost. To
achieve this object, an in-depth breakdown of Busy-CPU energy
cost is indispensable. It cannot only help us identify the energy
bottleneck on CPU, but it is also the basic work to design a novel
customized CPU architecture for energy-efficient database ma-
chine. Breakdown analysis of Busy-CPU energy cost will help
to answer some important questions such as what is the micro-
scopic distribution of Busy-CPU energy cost and how different
database implementations and settings affect this distribution.
In this paper, we design micro-benchmarks to breakdown
the Busy-CPU energy cost of typical read query workloads, and
enable the energy-efficient database system on the customized
CPU architecture. Unless otherwise specified, the query will refer
to read query. It is very difficult to achieve an accurate breakdown
of energy cost on a real database system. The micro-operations
which can be monitored are so many e.g., about 514 events inside
our CPU that we cannot evaluate the energy cost for every micro-
operation. To isolate the energy cost of an individual micro-
operation, we need to overcome many mutual related factors,
such as the compiler optimization and architectural features. In
addition, to enable energy-efficient database systems, we have
investigated many CPU architectures and updated the kernels of
both operator system and database system to make them support
the customized CPU architecture well. Finally, we present a clear
energy cost distribution pattern of database systems and give a
proof-of-concept system to cut down the energy cost without
losing the performance. The major contributions are as follows.

e A micro analysis based accurate energy breakdown method
is proposed for the Busy-CPU energy cost with typical
query workloads.

e The energy bottleneck L1D cache is identified based on
extensive experiments on three typical database systems.

e The L1D energy-efficient CPU architecture design is pro-
posed and the experimental results show that 60% of peak
energy saving can be achieved with further performance
improvement.

The rest of the paper is organized as follows. Section 2 presents
our evaluation approach and the energy cost of micro-operations.
Section 3 profiles the energy cost of database systems along with a
detailed analysis. Section 4 presents our proof-of-concept system
design, optimization approach and evaluation results. Section 5
analyzes the energy cost preference of some typical scenarios.
Section 6 describes the related work. Section 7 summaries our
work and presents directions for future work.

2 MICRO ANALYSIS METHOD FOR
BUSY-CPU ENERGY

In this section, we will present our methodology on how to break
down the Busy-CPU energy cost into the energy cost of different
micro-operations for queries in relational database systems.
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Figure 1: Example of energy cost along the workload run-
ning.

2.1 Key Idea

Depending on whether the CPU is on operational states or idle
states, we name the total energy cost as Busy-CPU energy cost
and Idle-CPU energy cost, shown in Figure 1. When fixing the
CPU frequency and voltage, we further divide Busy-CPU energy
cost into the Active energy cost and the Background energy cost,
defined as

Busy-CPU energy = Active energy + Background energy.

When running a workload, the Active energy is the real cost
used for the calculation and data movement and the Background
energy is the fixed cost to activate the hardware. Obviously, the
Active energy cost can reveal the power usage of a workload so
that it is our profiling target.

We first formalize the Active energy cost as the sum of the en-
ergy cost of micro-operations. Next, we mainly solve three issues.
(1) We have to identify which micro-operations to be profiled. The
query workloads are typically data-intensive. This motivates us to
pay an attention to the data movement related micro-operations,
such as the cache load. When we know the executed counts of
these micro-operations and the energy cost driving them once, we
can actually evaluate their energy cost. (2) How to quantify the
energy cost of an individual micro-operation. We construct many
micro-benchmarks, each of which shows a simple performance
behavior issued by the specific micro-operations. Then, we also
build energy models to map the energy cost of micro-benchmarks
into the energy cost of an individual micro-operation. (3) How
to verify the accuracy of the energy cost of an individual micro-
operation. We have to construct the other micro-benchmarks
which have the clear and complex performance behaviors. We
can identify the difference between the estimated energy cost
and the measurement value to take the verification. We will give
a detailed introduction focusing on the above three issues.

2.2 Problem Formalization

We denote the analyzed micro-operation set as MS and then
formalize the Active energy cost Egctive for the workload w as

Eactive(w) = Egrper(w)+ Z Em(w), (1)
meMS

where Ep,(w) = Np(w) X AE,, is the energy cost of the micro-
operation m. AE,, is the energy cost driving the micro-operation
m once and Ny, is the count executing the micro-operation m and
Eother is the unisolated energy cost, including the calculation,
L1I cache and TLB, etc. According to Eq. (1), we have to solve the
AE,; and Ny,. Noting that our energy breakdown model is based
on the stable voltage and CPU frequency. The dynamic voltage
and frequency scaling (DVFS) will cause fluctuations on AE,,
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Figure 2: Example of data movement on the modern CPU
architecture. The CPU core in the white box is busy and it

in the gray box is stall.

so we disable DVFS during the testing. However, we can also
evaluate the impact of different voltages and CPU frequencies.
To solve Eq. (1), we must construct the set MS and evaluate the
AE,;, of every micro-operation in MS.

2.3 Energy Breakdown Representation

Generally speaking, the query workload is usually data-intensive,
so that we tend to choose data movement related micro-operations
to characterize the energy cost. For the modern CPU architec-
ture, the data is frequently moved between main memory and
registers. In order to cross the memory wall, the CPU (e.g., Intel
i7-4790 in our experiment) contains a three-level cache memory
sub-system, shown in Figure 2. The closer the cache memory is
to the CPU core, the smaller, faster and more energy-efficient it
will be. We describe three ways of data movement that have the
great impact on query workloads.

Regular data fetching. If the data is not in registers, the load
instruction will fetch the data of the cache line size (e.g., 64 Bytes)
and the CPU core could stall to wait for the data return. Noting
that if instructions are uncorrelated with each other, speculation
and out-of-order execution can disable the pipeline bubble. In
addition, data fetching follows a step-by-step replication strategy.
The CPU will first fetch data from L1D cache. If L1D cache hits
(L1D hit), the data will be loaded into the register, like Core 6 in
Figure 2. Otherwise, the CPU will go to the next level cache to
search for data, called as L1D cache miss (L1D miss). Specifically,
when L1D cache misses, L2 cache starts to search for data. There
are also two cases: hit and miss. If L2 cache hits, the data will be
copied to L1D cache first, and then copied to the register, like
Core 4 in Figure 2. Similarly, L3 hit and DRAM hit are like Core
2 and Core 0 in Figure 2. Although the step-by-step replication
strategy can provide the good data locality, the data movement
leads to much energy cost.

Data prefetching. In order to improve the CPU performance,
the data prefetching technique is used to predict the data usage
under the background and fetch it without the pipeline bub-
ble, like Core 5 in Figure 2. So, the data prefetching will also
cause the data movement behavior. Four prefetching techniques
are provided in Intel i7-4790(3]. Two are implemented through
L1D hardware prefetcher to replicate the data into L1D cache in
advance. Unfortunately, they cannot support the performance
counter in Intel i7-4790. The two other types of prefetches that
can be generated by the L2 hardware prefetcher — prefetches into



the L2 cache (L2 prefetching) or prefetches into the L3 cache (L3
prefetching). Their behaviors can be monitored by the perfor-
mance counter. In our paper, the data prefetching only means
the L2 hardware prefetcher.

Write-back. Although the query is the read-only workload,
lots of temporary data, e.g., local variables, have to be created
and updated. The store operation always updates the data into
L1D cache within 1 cycle. Because the local variables do not
need to be eventually persisted so that they are rarely written
to the lower level memory due to the write-back strategy. For
example, L1D cache store hit rate is 99.86% in our experiment.
So, we also evaluate the store operation which writes the data
into L1D cache.

Based on the above analysis, we define the micro-operation
set MS as

MS = {L1D, Reg2L1D, L2, L3, mem, pf, stall}

for the query workload. Vm € {L1D, L2, L3, mem} is that a load
operation reads the data from m to the next higher level memory.
For example, m = L2 means to load the data from L2 cache to L1D
cache. Reg2L1D means that the store operation writes the data
from the register to L1D cache. We combine two different types
of prefetches generated by the L2 hardware prefetcher together
as a micro-operation pf meaning to prefetch data. The micro-
operation stall is the stall event due to memory access. Recalling
the Eq. (1), we next evaluate Ny, and AE,,.

The energy breakdown of update/write queries is a totally
different problem from the read queries. We need to know how
to write the data into main memory. It may involve more micro-
operations about writing. We do not discuss it in depth in this

paper.

2.4 Micro-Operation Counting

The modern processors have built-in performance monitor unit
(PMU) to record the performance related events. We can use
Linux Perf[5] or ocperf[6] to get them from PMU to evaluate
the micro-operation count Np,. For Vm € {L1D, L2, L3, pf}, it is
worth noting that Ny, is the sum of both the hit count and the miss
count due to the step-by-step replication strategy. N, involves
the L2 prefetching count N sz and the L3 prefetching count N II;JE
Especially, Nyem is the miss count of L3 cache. Ngegar1p is the
hit count when writing the data into L1D cache. Ng;,j; is the
stall cycle count due to the data load.

2.5 Energy Evaluation of Micro-Operation

To quantify AE,,, we design a set of micro-benchmarks which can
achieve the specific performance behavior, such as only accessing
L1D cache, etc. Finally, we can use the Active energy cost of micro-
benchmarks to evaluate the AE,, of different micro-operations.

2.5.1 Micro-Benchmark Design. Isolating memory access to
only follow a specific performance behavior is a challenging
task in modern processors. The design of the micro-benchmark
methodology is inspired by the recent work[22]. The out-of-
order execution, speculation execution and data prefetching have
worked well in hiding memory latencies but at the same time
make the energy cost benchmarking for an individual instruc-
tion difficult. In addition, the treading switching, DVFS and the
compiler optimization could affect the evaluation accuracy. In
order to accurately evaluate AE,,, we make a lot of effort on
it. First, our micro-benchmarks should minimize the effect of
CPU architectural optimization. Second, we must configure the
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Figure 3: CPU execution behaviors when list traversal and
array traversal only load data from L1D cache.

appropriate runtime environment to reduce the error, shown in
Section 2.5.3. Third, we must review the assembly code which is
generated by the compiler to disable some compiler flags who
will change the performance behavior. Our micro-benchmarks
follow two design frameworks to skip out of the architectural
optimization.

List traversal. We allocate a size of memory as an array Arr
of pointers. The size of each item is 64 Bytes (i.e., cache line size)
which can be processed by a load operation. We link every item
as the list. Then, we traverse the list many times. Through the
correct implementation, we can ensure that micro-benchmarks
only load data from the specific memory layer. In this way, the
energy cost of each micro-benchmark can be broken down into
the energy cost of the specific micro-operations and stall cycle.

The list structure can make sure the data items have the back-
and-forth dependency. Due to the access dependency, in the
premise of disabling the perfetching the CPU does not know the
address of the next data item until the previous item is finished.
An example is shown in Figure 3. We assume the data in L1D
cache and a L1D load requires 4 cycles from issue to return. Due
to the unknown address of next data item, the pipeline is forced
to break, leading to 1 load cycle and 3 stall cycles, i.e., L1D load
energy and stall energy. The link traversal can disable the out-
of-order execution and the pipeline to minimize the energy cost
measurement error incurred by CPU architectural optimization.

Array traversal. The energy cost of stall cycle cannot be sep-
arated by list traversal. So, we design the array traversal frame-
work. In it, the micro-benchmark allocates a size of memory as
an array Arr (also 64 Bytes per data item), and then sequentially
traverses it many times. Under some special conditions, CPU ar-
chitectural optimization can make micro-benchmarks only load
data from the specific memory layer without stall cycles.

As well known, the data item in array is completely indepen-
dent and supports random access because the CPU knows the
address of all data items before traversing. The load of next data
does not have to wait for the finish of the previous data item. As
shown in Figure 3, although a L1D load still requires 4 cycles,
3 stall cycles can be hidden due to the continuous pipeline. In
addition, the Dual-Issue technique of Intel i7-4790 can issue two
load instructions per cycle without stall.

2.5.2  Micro-Benchmark Set. For evaluating AE,, (Ym € MS),
we build a micro-benchmark set MBS including 6 micro-benchmarks
to show the specific performance behaviors as follows.

B_L1D_array. This micro-benchmark is used to evaluate AEy 1 p,
only accessing L1D cache without stall cycles. As shown in Al-
gorithm 1, it follows the array traversal framework and allocates
memory size smaller than or equal to the size of L1D cache. As
shown in Figure 4a, if Sppem = 32KB (i.e., L1D cache size in i7-
4790), the Arr size is 500 and the size of each item is 64 Bytes.
T is usually set into a huge value, such as 1 billion, to maintain
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a stable memory access pattern. A large T also applies to Algo-
rithm 2-4. For balancing the performance, it can also be reduced
moderately. So, all the data easily fit the L1D cache, so there will
not be any miss after initial set of loads. Noting that we unroll
the Arr and traverse it instead of loop traversal, it will avoid the
effects of loop control statements as much as possible. By this
programming optimization, 98.6% instructions are the desired
load instructions.

Algorithm 1B_L1D_array

Input: Sp;em: allocated memory size; T: loop times;

Smem 3 .
64 items;

. allocate Spem memory size as an array Arr with
. for iter i in range T do

Smem

64 times;

1
2
3 traverse Arr through unrolling
4: end for

B_L1D_list. The energy cost of this micro-benchmark mainly
involves the load operation from L1D cache and the CPU stall.
As shown in Algorithm 2, it follows the list traversal framework
and allocates memory size smaller than or equal to the size of
L1D cache, such as still 32KB. We also give an example to show
such data structure in Figure 4b.

Algorithm 2 B_L1D_list

Input: Sp;em: allocated memory size; T: loop times;
1: allocate Sy;em memory size as an array Arr with S’gf{" items;
2: partition each item into a pointer f (the first 8 Bytes) and the

last 56 Bytes of data;

Smem

3: for iter j in range =22 — 1 do

4 Arrljl.f = &Arr[j + 1];

5. end for

6: for iter i in range T do

7: use pointer f to traverse Arr and unroll S’Zfl'" times;
8

: end for

B_L2,B_L3 and B_mem. They will be used to evaluate AE,,
(Vm € {L2,L3, mem}). As shown in Algorithm 3, they follow the
list traversal framework and only access the specific memory
layers. When only accessing the memory layer m, the allocated
memory size should be as close as possible to the sum of the m size
and sizes of its higher caches to ensure that the majority of data is
in m. Using B_L2 as an example, the allocated memory size should
be close to 288KB (32KB L1D cache and 256KB L2 cache). Similar
setup methods can be extended to B_L3 and B_mem. Noting that
we do not use the linked list structure similar to B_L1D_list, the
sequential load along physical position means the simple access
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pattern, which is easily employed by the modern CPU to improve
the performance. However, it has the serious impact on profiling.
For example, when setting Syem = 260K B for Algorithm 2, the
L1D hit rate is 55%, so that there is no guarantee that only L2
cache is accessed. Thus, we randomize the access order (logical
position) and generate jump access on a large span to break the
data locality, as shown in Figure 4d. Because the low memory
layer is far larger than the high memory layer, the data will
usually miss in the high memory layer.

Algorithm 3 B_L2, B_L3 and B_mem

Input: Spem: allocated memory size; T: loop times; Espan' Span
threshold of two given data items;

1: allocate Sy, memory size as an array Arr with S’gi"‘ items;

2: partition each item into a pointer f (the first 8 Bytes), and
pointer b (the second 8 Bytes) and the last 48 Bytes of data;

. for iter j in range S’gi”‘ —1do

Arrljl.f = &Arr[j + 1];

Arr[jl.b = &Arr[j—-1](j— 1> 0);

: end for

: for iter z in range S”éi’" —1do

: //avoid frequent exchange of logical neighbors when e is
always the same value.

® N U oe W

9: randomly pick e € [1, S'gfl’" —2] to satisfy |z—e| > espan
and Arr[e] is not the logical neighbor of Arr[z];

10: exchange the logical positions of Arr[z] and Arr[e];

11: end for

12: for iter i in range T do

13: use pointer f to traverse Arr and unroll S’gi’" times;

14: end for

B_Reg2L1D. The energy cost of this micro-benchmark mainly
involves the store operation from registers and the L1D cache.
As shown in Algorithm 4, it only accesses the same variable
repeatedly, but it is effective to ensure that the CPU only execute
the store operation. This benchmark always access the same
variable, the CPU can find it in registers, instead of reading it
from L1D cache every time. In addition, the allocated memory
size is large enough, so that the CPU has to perform multiple
store operations to complete the assignment. Due to temporary
variable assignment, the vast majority of store operations only
involve L1D cache.

Algorithm 4 B_Reg2L1D

Input: T:loop times; ut: unrolling times;
1: allocate 64 Bytes of memory size as a variable A;
2: for iter i in range T do
3 execute p = A through unrolling ut times; //variable
assignment
4: end for

Our micro-benchmark set can achieve the specific perfor-
mance behavior. Noting that it may be not the only way, but
it has been enough accurate to help us profile the energy cost of
database systems.

2.5.3 Runtime Configuration. The accurate execution of our
micro-benchmarks depends on some runtime configurations to
overcome the measurement error.

Compiler optimization. In order to minimize the impact of
unnecessary instructions, our micro-benchmark set is compiled



with an optimization level of -O3. The necessary temporary vari-
ables are added with a volatile modifier, such as a temporary
pointer variable for linked list pointer tracking, which can can-
cel the compiler’s active optimization to avoid the microscopic
behavior changing.

Thread switching. In order to prevent the thread attached
by the micro-benchmark from being switched between different
idle CPUs during execution, the micro-benchmark will be fixed
on a specific logic core to run.

DVES knobs. EIST (Enhanced Intel SpeedStep Technology),
an Intel DVFS implementation, changes CPU frequency and volt-
age to balance energy cost and performance. The energy cost of
micro-components will increase with the improvement of CPU
frequency and voltage. Because our micro-benchmarks are effec-
tive under the stable frequency and voltage, EIST technique will
incur the measurement error of energy cost. We turn off these
options and execute our micro-benchmarks under the given fre-
quency and voltage according to our experimental requirement.

Prefetcher. The data prefetching could lead to the unexpected
load instructions into our micro-benchmarks. So, the hardware
prefetcher will be turned off by modifying MSR registers when
running our micro-benchmarks. It will be turned on when evalu-
ating the energy cost of query workloads.

Through running our micro-benchmarks, we can isolate the
specific micro-operations and reduce most of measuring errors.
It will lead to an easy solution to AE,, in next section.

2.5.4 Energy Model to Evaluate AE,;,. We construct a series
of energy models to map the energy cost of the micro-benchmark
into AE,,. For any micro-benchmark mb € MBS, we define the
Active energy cost of mb as E(mb) which will be given in next
section. Here, we assume that E(mb) is known to give the solution
of AE,,.

Through running B_L1D_array which only loads data from
L1D cache, we can solve the AEr1p as

E(B_L1D_array)
NLip '

Recalling that Np1p is the count loading data from L1D cache in
Section 2.4. Similarly, when running B_L1D_list, we can solve
the AEg; 4 as

AEpip =

E(B_L1D_list) — Er1p

Nstall .
For the micro-operations x,y € C = {L1D, L2, L3, mem}, if the
micro-operation x loads data from the higher memory layer than
y, we denote x > y. When running the micro-benchmark B_L2,
B_L3 and B_mem, respectively, we can solve the AE, as

AEgqn =

ieC
E(B_m)— 3 AEiN;—Egq
i>m
Nm
Due to the step-by-step replication strategy, loading data from
the low memory layer must also lead to a load operation from
the higher memory layer. So, the load energy cost of the higher
memory layer needs to be eliminated in Eq. (2). When running
B_Reg2L1D, we can solve the AEgeg211D as

AE, = (2)

E(B_Reg2L1D)
N .

Reg2L1D

AEReg2L1D =

Prefetching energy. In term of the energy cost, the data
prefetching and the regular data fetching are similar. we follow
the assumption that the energy is mainly consumed in moving
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data from a specific memory layer to a higher layer [18] and set

L2 _ L3 _ L2 :
AEPf = AEr3and AEpf = AEnmem. AEPf is the energy cost of an
individual L2 prefetching from L3 cache and AE;;; is the energy

cost of an individual L3 prefetching from main memory[4].

2.5.5  Verification Method of AE,. For verifying the accuracy
of AEy,, we propose a verification micro-benchmark set VMBS
derived from MBS, where each micro-benchmark shows a more
complex performance behavior.

Micro-benchmarks in VMBS essentially perform a series of
data movement operations and data calculation operations to sim-
ulate the real workload. We first construct two micro-benchmarks
B_add and B_nop. They only loop the known number of add
and nop instructions to evaluate the AE, 44 and AEp,p. Next, we
add the add and nop instructions into the micro-benchmarks in
MBS to finally construct VMBS including 7 micro-benchmarks
shown in Table 3. For example, B_L1D_list_nop is to add the nop
instruction into B_L1D_list.

When running a micro-benchmark v € VMBS, Eq. (1) is used
to solve the estimated Active energy cost Eactive (v) where we set
the Egtper(v) = AE43aNaaq(v) + AEnopNnop(v). We measure
the real Egcrive(v) and define the accuracy as

|Eactive(v) — Eqctive()]
Eactive(v)

acc(v) =1- ,
where acc < 0, set acc = 0. If the acc is closer to 1, the estimated
energy cost is closer to the real energy cost, showing that the
AEp, got by our approach is accurate.

Through the above effort, we have got all of AE,, (m € MS).
Next, we introduce how to measure the Active energy.

2.6 Active Energy Evaluation

Our experiments run on the server with an Intel i7-4790 processor
(L1D cache size is 32KB, L2 cache size is 256KB and L3 cache
size is 8MB), 32GB DDR3-1600 main memory and a 500GB SATA
hard drive. Our processor is popular to enable that our results are
representative. The operator system is Ubuntu 14.04 including
Linux Perf, ocperf and RAPL (Running Average Power Limit)[10].

We leverage RAPL to measure the energy cost. RAPL counters
are highly accurate on x86_64 and allow us to separately measure
the energy cost of the core domain E(core), the package domain
E(package) (including the core, L3 cache and memory controller)
and the main memory domain E(memory). We can run an only-
blocked program (e.g., sleep 1) to use its RAPL’s measurement
values as the Background energy cost of three different domains
per second when disabling idle states (i.e., C-states[7]). For work-
loads which do not access L3 cache and main memory, we observe
the E(core) as the Busy-CPU energy cost, such as B_L1D_list and
B_L1D_array. For the workloads which do not access main mem-
ory, we observe the E(package) as the Busy-CPU energy cost.
For other workloads, we observe E(package) + E(memory) as the
Busy-CPU energy cost. Eq¢tive is Busy-CPU energy cost minus
the corresponding Background energy cost.

2.7 Selection of CPU Frequency and Voltage

Our micro-benchmarks set is usually used to evaluate AE,, under
the fixed CPU frequency and voltage. However, the real work-
loads widely run with the EIST knob turned on to balance the
performance and energy. So, in this section we will profile the
performance of TPCH query workloads when turning on EIST
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Table 1: Runtime behaviors of micro-benchmarks

Micro- BLI L.lD FZ I._‘3 e
benchmarks miss% | miss% | miss%
B_L1D list 98.9 0.01 - - 0.26
B_L1D_array 99.5 0.01 - - 2.02
B L2 98.5 99.93 0.02 - 0.09
B L3 98.6 98.68 99.98 0.01 0.03
B_mem 97.8 98.86 99.88 97.45 0.005
B_Reg2L1D 99.98 0.02 - - 1.01
B_add 98.4 - B - 2.01
B_nop 99.87 - - - 3.99

Table 2: Energy cost of micro-operations at different CPU
frequencies and voltages

P-state 36 24 12
(3.6GHz) (2.4GHz) (1.2GHz)
Micro-operations Energy cost (nJ)

AEi1D 1.30 0.90 0.60
AEL, 437 3.25 1.64
AE3, AEVS 6.64 5.91 5.33
AEmem, AEL 103.1 99.1 99.04
AERega11D 2.42 1.60 1.10
AEq a1l 1.72 1.07 0.80

AE 44 1.03 - :

AEnop 0.65 - -

to identify their preference for CPU frequency and voltage. That
can help us evaluate a more reasonable AEp,.

EIST usually sets the CPU into different states to save energy!,
including C-states and P-states[7]. C-states are idle states {CO0,
C1, C2, ...}. CO means the CPU non-idle and others mean that the
CPU enters an idle state with different energy-saving levels. CO
can be further subdivided into different P-states. So, P-states can
be called as operational states. Each P-state also has a different
energy-saving level. We focus on P-states due to the profiling of
Active energy cost. In truth, a P-state is both a frequency and volt-
age operating point. For the high CPU load, a high-performance
P-state might be set, and vice versa. Intel i7-4790 includes 29 can-
didate P-states. CPU frequency of each P-state differs by 100MHz.

!The modern processor frequency can be separated into (1) core frequency involving
ALU, L1 cache, L2 cache and etc, and (2) uncore frequency involving L3 cache,
memory controller and etc. In this paper, the CPU frequency means core frequency.
The uncore frequency in Intel i7-4790 will dynamically match the CPU frequencies.
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Table 3: Energy cost of verification micro-benchmarks and
the accuracy

mlciioe-r];fe‘lrcligz‘f;rks Eactive (J) Eactive (J) acc%
B_L1D_list_nop 129.34 122.04 94.36
B_L1D_array_add 169.85 150.71 88.73
B_L2_nop 122.01 125.57 97.08
B_L3_add 215.37 224.16 96.07
B_mem_nop 396 345,37 87.22
B_L1D_list_L2 168.29 158.26 94.01
B_L1D_list_nop_add 193.06 186.94 96.83

The highest P-state is 36 (3.6GHz CPU frequency) and the lowest
is 8 (800MHz CPU frequency).

In this experiment, we turn on the EIST knob and set the P-
state range from 8 to 36. Our purpose is to analyze the P-state
preference of query workloads. We use 22 TPCH queries [8]
to benchmark PostgreSQL, SQLite and MySQL with baseline
configuration and baseline data size (more detailed instructions
in Section 3) and sample the runtime P-state per 100 milliseconds.
According to the percent of P-state 36, Figure 5 shows query
count distributions of three database systems. We find that most
of queries tend to run at P-state 36, due to the high CPU load
(average 96% CPU usage). So, we will fix the CPU at P-state 36 in
the following trunk experiment. We also evaluate the impact of
other P-states on our results in Section 3.5.

2.8 Results of Micro-Benchmarks

We turn off these knobs which will lead to measurement errors
shown in Section 2.5.3, fix the CPU at P-state 36 and specify all
workloads to run on the core CPUO. For B_L1D_list, B_L1D_array
and B_Reg2L1D, we allocate the memory size as 31KB; for B_L2,
allocate 260KB; for B_L3, allocate 6MB and for B_mem allocate
60MB. These setups ensure that our micro-benchmarks only fetch
data from the single memory layer under an acceptable latency.
Performance behaviors of micro-benchmarks. As shown
in Table 1, BLI (Body-Loop Instruction%) is the percentage of the
desired instructions in the main loop and IPC (Instruction Per
Clock) is the number of instructions per cycle. For BLI, 98.9%
instructions of B_L1D _list is to load data from L1D cache. For
other micro-benchmarks, this metric also has a good performance,
showing that our micro-benchmarks have little noise instructions.
In addition, our micro-benchmarks can provide the specific per-
formance behavior. For B_L1D_list, L1D miss rate is only 0.01%,
showing that it always only accesses the L1D cache. Even for
B_mem, it can still skip out of cache memory and load data from
main memory with a hit rate 97.45%. Especially, IPC shows the
CPU stall status. For B_L1D_array, IPC is 2.02 showing that CPU
is always busy and no stall. However, IPC=0.26 for B_L1D_list
shows that 4 cycles are required to execute a load operation. For
B_Reg2L1D, IPC is 1.01 and the number of L1D store instructions
are 98.37% of all instructions, showing that CPU always executes
1 store instruction per cycle. These results reveal that our bench-
marks can work properly with specific performance behaviors.
Evaluation of AE,,. According to Eg4¢tive of micro bench-
marks and energy models in Section 2.5.4, we give the energy
cost of micro-operations in Table 2. The unit of energy cost is
Nanojoule. For the load operation the data is closer to the CPU
causing the energy cost to be lower. Especially for AEr;p, it is
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Figure 6: Active energy cost breakdown of the basic query operations for three different database systems.

the lowest than other load operations. Oppositely, loading from
the main memory will get a high energy cost penalty. Actually,
it explains that why improving cache hit rate can improve both
the performance and energy-efficiency.

Verification of AE,,. We use the verification method in Sec-
tion 2.5.5 to evaluate the accuracy of AEy,. In Table 3, we give
the real Active energy cost and the estimated Active energy cost
and the accuracy. The unit of energy cost is Joule. The average
accuracy is 93.47%. Even for the most complex B_mem_nop, the
accuracy is still high. It shows that AE,, proposed by us is accu-
rate enough to break down the energy cost of real workloads.

3 ENERGY COST DISTRIBUTION OF
QUERIES

In this section, we use AE,, to break down the energy cost of
query workloads implemented on the real database systems. We
use the PostgreSQL-9.5.2, SQLite-3.14.2 and MySQL-8.0.13 as our
analysis targets. We will deeply analyze the energy cost of 7
basic query operations and 22 queries in TPCH[8] with different
data sizes and knob settings. We will compare the energy cost
breakdown of queries with the typical CPU-bound workloads.
In addition, we also show the impact of different P-states on the
energy cost breakdown.

To avoid the random error, we disable the result display by
updating the database kernels and run the workloads 100 times
(10 times for long-running workloads). Finally, the average en-
ergy cost is got. We turn on the hardware prefetchers, specify all
workloads to run on the core CPUO and fix the CPU into P-state
36. In addition, the percent of the Background energy cost is
47.2%-51.7% of Busy-CPU energy cost in our experiments. Our
main findings are summarized as follows.

® 77.7%-89.2% of Busy-CPU energy cost can be broken down
into the energy cost of data movement and the Background
energy cost. The energy cost of data movement (7 micro-
operations in MS) is 55%-76.4% of Active energy cost.

® Er1D + EReg2L1D is 39%-67% of Active energy cost, identi-
fied as the energy bottleneck. This phenomenon does not
appear in the typical CPU-bound workloads. In addition,
it is little affected by the data size, the database setting
and CPU frequency and voltage.

o The sequential scanning in query workloads is the major
reason that leads to this energy cost pattern.

3.1 Experimental setup

We take our experiments with 100MB (baseline), 500MB and 1GB
data. In addition, each database system has many configurable
knobs. We investigate them and tune two important knobs that
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Table 4: Knob settings for three database systems

Database Knobs Small | Baseline | Large
systems

PostgreSQL Shared_buffers 8MB 128MB | 1024MB
Work_mem 4MB 64MB 512MB

SQLite Cache_size 2000 16000 65000
Page_size 4KB 8KB 16KB
Inbuffer_size 8MB 128MB | 1024MB

MysQL Inpage_size 4KB 8KB | 16KB

also have similar roles in three database systems. In Table 4, we
give three kinds of database settings to limit the memory usage.
The resource size provided to three database systems at each
setting is approximate. The small setting looks stringent and the
large setting is relaxed.

3.2 Energy Cost of Basic Query Operations

We profile the energy cost of 7 basic query operations with the
baseline data size on the baseline setting. 77.7%-89.2% Busy-CPU
energy cost can be broken down into the energy cost of data
movement and the Background energy cost, showing that our
energy breakdown approach can work well on database systems.
Figure 6 gives the breakdown of E4ctipe. The energy cost of
data movement is 68.1% for PostgreSQL, 76.4% for SQLite and
56.8% for MySQL, becoming dominant. For the three database
systems, the energy cost distribution is similar, and much energy
is consumed in L1D cache load/store. EL1p + EReg2L1D is 41.6%
for PostgreSQL, 66.6% for SQLite and 43.4% for MySQL. So, we
can think that this phenomenon could be general for most of
relational database systems.

L1D cache load. Actually, we can easily explain why the per-
cent of Er;p is high. In the database systems, almost all of the
query operations is based on sequential scan. Even if segmenta-
tion or paging strategies are used to manage data, each data block
is big enough to fit the CPU cache to ensure a good data locality.
So, the modern CPU architecture can ensure most of data to be
loaded at L1D cache when sequentially scanning. For example,
L1D hit rate of 7 basic query operations is 97.74% and IPC of the
complex join operator is 1.85, showing good data locality.

L1D cache store. In addition, the reason why the energy cost
of L1D cache store is high is because the query workload will
generate many temporary data, such as temporary storage of
intermediate data and output stream. These temporary data are

1For MySQL knobs, inbuffer_size is short for innodb_buffer_pool_size and
inpage_size is short for innodb_page_size.
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Figure 7: Active energy cost breakdown of TPCH for three different database systems.

written in L1D cache but they little have to be persisted due to
the write-back strategy. In our experiment, the store operations
are frequently issued by 7 basic query operations, being about
66% of the load operations but 99.86% of them occur at L1D cache.

In summary, although the implementation of three database
systems has impact on the energy cost distribution, L1D cache
load/store is still their energy bottleneck. In addition, the query
workload is read-only operation, but the energy cost of temporary
data write is still high.

3.3 Energy Cost of TPCH

We profile the energy cost of TPCH with the baseline data size
on the baseline setting. 79.2%-88.7% Busy-CPU energy cost can
be broken down. As shown in Figure 7, the energy cost of data
movement is 65% for PostgreSQL, 75% for SQLite and 55% for
MySQL. In addition, the energy cost distributions of three data-
base systems are similar. The percent of EL1p + ERegaL1D is
so attractive, 46.8% for PostgreSQL, 60% for SQLite and 38.6%
for MySQL. The phenomenon is like it in basic query operations
because complex queries are the combination of basic operations.

Sequential scanning. For SQLite, the percent of Er1p +
ERegar1p is higher than that of two other database systems ei-
ther in the TPCH or the basic query operations because SQLite
tends to the sequential scanning. Actually, the energy cost of
sequential scanning prefers to L1D cache. We take an example to
illustrate the relationship between sequential scanning and the
energy cost of L1D cache. As shown in Figure 6, the difference
of both index scan and table scan is scan table using the index (B
tree) or not. Obviously, index scan utilizes the pointer chasing to
reorganize data causing the relatively weak data locality. Table
scan tends to the sequential scanning. Without exception, the
percent of Ef1p + ERegar1p reduces and the percent of Eg; 4y
increases for index scan compared with table scan.

Similarly, SQlite as the mobile database is usually used to man-
age the small-scale data so that it does not involve many complex
optimization strategies, such as the hash join. The main data
access method is sequential scanning. It is reasonable because
the hardware optimization is more important than software op-
timization for the small-scale data. The sequential scanning is
easily sped up by the hardware optimization, such as speculation
and out-of-order execution. It will lead to the less stall cycles. For
SQLite, the present of E;4;; is 12% lower than two other database
systems, showing the good performance of sequential scanning.
For optimizing performance on large-scale data, we think that
both PostgreSQL and MySQL may construct the complex data
structure and reorganize the data, such as the compact buffer
management. These optimizations can improve the performance,
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e.g., average 3.31x faster than SQlite in our experiment. However,
they will introduce the extra calculations, and they also hinder
hardware optimization due to the weak data locality, leading to
the low percent of Ep1p + ERegZLlD-

Impact of data size. We evaluate the energy cost distribu-
tions of three database systems with different data sizes (100MB,
500MB and 1GB) on the baseline setup. As shown Figure 8, we
only illustrate the average energy cost result of 22 queries in
TPCH as a vector due to the space limitation and PG is short for
PostgreSQL. As the data size increases, the energy cost distribu-
tions of three database systems have not changed significantly.
We also analyze the energy cost change of every query and find
that E;; 477 of 14% queries is improved by 2X when increasing
the data size. The large data size may lead to frequent swapping
in and out of data pages and CPU stall. In general, the L1D cache
load/store is still the energy bottleneck which is hardly affected
by the data size.

Impact of different settings. As shown in Figure 9, we also
compare the impact of different database settings being from
Table 4. For MySQL, E; ,;; is reduced when the large setting pro-
vides more memory to fit data pages but PostgreSQL and SQLite
are not sensitive to different settings. It still suggests that different
settings have little impact on the energy cost distribution.

In summary, sequential scanning is the basic behavior of query
workloads. For different database system implementations, the
dependency of sequential scanning affects the energy allocation
for L1D cache. Data size and database settings do not lead to sub-
stantial changes in this energy cost distribution. So, our findings
could be general for query workloads of database systems.

3.4 Comparison to CPU-Bound Workloads

With the optimization of database systems and the performance
improvement of the disk, the database system has tended to be
CPU-bound from disk-bound. For example, CPU usage is 96%
and IPC=1.9 showing a busy CPU, when running TPCH in our
experiment. In this section, we compare the energy cost distri-
butions of query workloads with the energy cost distributions
of typical CPU-bound workloads. As shown in Figure 10, we
evaluate the energy cost of 9 workloads in the classic CPU bench-
mark CPU2006-v99([2], involving the compression, compiling
and simulation workloads, etc. Not like the query workloads, the
energy cost distributions of typical CPU-bound workloads are
not similar to each other. For three database systems, the percent
of EL1p + EReg2L1D of 76% queries is greater than 40%, but the
percent is only 11% for CPU2006. For some extreme CPU2006
workloads (Mcf and Libquantum), Ep1p + EReg2r1p is so low at
only 5.6%, but this behavior does not occur in query workloads.
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Figure 10: Energy cost breakdown of CPU2006.

In summary, we think that the energy cost pattern of query
workloads is totally different from the typical CPU-bound work-
loads and it could be unique to query workloads.

3.5 Impact of CPU Frequency and Voltage

In the real scenario, the EIST knob is usually turned on, so that
we in this section explore the impact of different CPU frequencies
and voltages on the energy cost breakdown. We select two other
P-states: P-state 24 and P-state 12 to first evaluate energy cost
of micro-operations and then break down energy cost of three
databases under baseline knob settings and baseline data size.

As shown in Table 2, the energy cost of micro-operations
under low P-states will definitely reduce. The closer the micro-
operation is to the CPU core, the more significantly the energy
cost decreases. For example, AE1 1 p reduces by 53.8% from P-state
36 to P-state 12, but 3.9% for AEem.-

As shown in Figure 11, we compare the energy cost breakdown
of three databases at different P-states. In our experiment, Egctive
decreases by 32%+2% at P-state 24 and 51%+1% at P-state 12, but
the energy cost breakdown has little impact due to the lower en-
ergy cost of micro-operations. In detail, because AE ¢, has little
change at different P-states, the percent of both E,er, and Epr
(involving main memory accessing) have a significant improve-
ment at P-state 12, about 2X and 2.2 X compared with P-state
36. However, the absolute impact is still little. Actually, different
P-states cannot change the query runtime characteristics, so that
the L1D cache load/store hit rate is still high, only leading to
the slight reduction of the percent of EL1p + Egeg2r1D at low

Figure 11: Impact of CPU frequencies and voltages.

P-states. For example, the percent of Ep1p + EReg2r1D at P-state
12 only decreases by 4%-8.6% for three databases, compared with
it at P-state 36. Our result shows that the L1D cache load/store
operations are still the energy cost bottleneck at different CPU
frequencies and voltages.

In essence, this experiment reveals the energy cost profiling for
typical query runtime characteristics at different CPU frequencies
and voltages. For other query scenarios, the CPU could not always
be at the high P-state when turning on the EIST knob, such as real-
time query workloads. However, their runtime characteristics
should be similar to those shown in this paper. So, we think that
this energy cost bottleneck could be general for many query
scenarios even if turning on the EIST knob.

In summary, the low CPU frequency and voltage will lead
to the low energy cost of micro-operations, but the L1D cache
load/store operations are still the energy cost bottleneck.

4 PROOF-OF-CONCEPT SYSTEM

In the section, we will discuss the customized CPU architecture
design which can enable the energy-efficient database systems.
The optimization and evaluation on SQLite will be given.

4.1 L1D Energy-Efficient CPU Architecture

L1D cache load/store is the energy bottleneck, but their optimiza-
tion is difficult on typical x86_64 architecture because L1D cache
has the lowest energy cost than other memory layers.

For database systems, a good energy-efficient CPU architec-
ture should provide the lower energy cost L1D cache (i.e., Arch
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1) or provide a piece of the low energy cost memory at the same
speed as L1D cache (i.e., Arch 2). For Arch 1, users can transpar-
ently migrate the database systems on it. For Arch 2, users need
to update the kernel of database systems to decide what data to
put into the low energy cost memory. We investigate many CPU
architectures and only find the architecture similar to Arch 2. As
shown in Figure 12, ARM1176JZF-S[1] supports 16KB L1D cache,
32KB DTCM (Data Tightly Coupled Memory) and 256 MB main
memory. TCM is the programmable on-chip memory which is
as fast as L1 cache but its energy cost is lower than L1 cache. So,
ARM1176JZF-S could be as an L1D energy-efficient CPU archi-
tecture. In this section, we will use the DTCM load instead of the
L1D cache load to reduce Busy-CPU energy cost.

4.2 System-Level Co-Design

We will optimize SQLite because, as a mobile database it can work
well on ARM architecture, but the optimization is still difficult.
First, although Linux supports many hardware environments,
it cannot be directly compiled in this ARM environment. The
ARM hardware environments are so diverse that Linux can only
identify some mainstream architectures and it does not support
ARM1176]ZF-S well. We have to modify and update Linux kernel
to make it support TCM, Linux perf and cross compiling. Second,
we have to implement the TCM driver and API enabling that TCM
can be accessed in user space. It took us about 2 months to build
an available runtime environment. For SQLite, our optimization
strategies are as follows.

Database buffer. We allocate 16KB DTCM for database buffer,
which will be dynamically managed by SQLite.

Special variables. We use the Linux perf to profile the SQLite’s
runtime and find that about 70% L1D cache load operations
are issued by the sqlite3VdbeExec() function to execute the
query plan. This phenomenon in x86_64 architecture is simi-
lar to it in ARM architecture. We allocate 4KB DTCM and put
some key structures of sqlite3VdbeExec() init, such as query
plan (Vdbe), meta data (Vdbe->db), cursor (Vdbe->apCsr and
Vdbe->apCsr->a0ffset), head address of heap space (Vdbe->aOp
and Vdbe->aMem), etc.

B tree. Every table in SQLite is organized as a B tree. The
primary key or row ID will be the key of B tree. So, the top layers
of B tree will be frequently read. Based on this, we allocate 12KB
DTCM to put the root and first few layers of B-tree of current
tables into DTCM. We divide DTCM memory evenly according
to the number of tables being queried. In this way, we can ensure
that more B tree data of small tables are loaded into DTCM.

Noting that our strategies are for L1D cache load operation.
The energy cost optimization of L1D cache store operation is
more difficult. We do not discuss it in this paper.
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Figure 13: Energy saving and performance improvement
for SQLite using DTCM or not on ARM1176JZF-S.

4.3 Evaluation Results

ARM does not support RAPL, so that we use the external power
meter to measure the energy cost. We first design a micro bench-
mark B_DTCM_array, which only loads data from DTCM. It is
similar to Algorithm 1 but allocates memory from DTCM, instead
of main memory. Compared with B_L1D_array, the energy cost
of B_DTCM_array can reduce by 10% with no performance loss.
Therefore, 10% will be as the peak energy saving of DTCM in our
experimental environment.

In Figure 13, we show the energy saving and performance
improvement of the optimized SQLite. Noting that we compare
whether SQLite uses DTCM on ARM, not SQLite on Intel CPU
or ARM CPU. We use 10MB TPCH data and the small setting
to take our experiment. Our optimization makes SQLite save
average 6% energy and improve average 1.5% performance. It
means that our approach can achieve 60% of the peak energy
saving. The dominant factor is that accessing the hot data in
DTCM can bypass the L1D cache leading to L1D cache energy
saving. In addition, the performance of 64% queries can be further
improved due to the avoidance of hot data misses. For the non-
optimized SQLite, 25% L1D miss rate in ARM1176]JZF-S could
cause the hot data to swap in and out the L1D cache from main
memory. However, DTCM has the fixed physical address, so that
the hot data in DTCM is not loaded from main memory.

Advantages. Limited to the hardware implementation, 6%
energy saving in our experiments may seem to be less, but our
approach has three advantages as follows. First, compared with
the existing approaches, our approaches can save energy with
no performance reduction. It is advantageous for energy-strict
real-time tasks, such as UPS-powered data centers and databases
in smart phones. Second, our approach is orthogonal to existing
approaches. Our approach tends to save energy from the view of
CPU architecture, so that it can work together with application-
level energy optimization approaches, such as energy-oriented
query optimization and DVFS-based approaches. Third, our ap-
proach is depend on the implementation of TCM. So, these results
in our paper only suggest that our approach can achieve 60% of
the peak energy saving, and do not mean the final energy-saving
potential. The existing work shows that the optimized TCM has
got 40% energy saving compared with L1D cache[9]. If integrat-
ing such an optimized TCM into ARM1176]ZF-S, our approach
should get a maximum 24% energy saving.

In summary, our optimized SQLite can achieve 60% of the peak
energy saving. It can also achieve 1.5% performance improvement
due to the avoidance of hot data misses.



Table 5: Energy cost bottleneck of B_mem at different CPU

frequencies and voltages

Postate 36 24 12
(3.6GHz) | (24GHz) | (1.2GHz)
Micro-operations Energy cost (J) / Percent%
E 295.4 284.2 284.6
mem (16.6%) (29.8%) (47.4%)
E 1416.1 630.6 310.1
stall (79.8%) (66.2%) (51.6%)
b 177255 952.9 600.5
active (100%) (100%) (100%)

5 POTENTIAL OPTIMIZATIONS

Based on the Busy-CPU energy breakdown results, we also find
some additional interesting energy cost phenomena in Figure 6
and 7 that suggests other optimization approaches.

In index-intensive scenario, especially for index scan of Post-
greSQL and MySQL, the percent of both Epn e and Ej ¢ becomes
prominent, also causing a high E;,;;. Similar phenomenon can
also be seen in PostgreSQL’s basic query operations compared
with them of two other database systems. In addition, as the data
size increases, the main memory access is also more frequent,
especially for MySQL. They imply a memory-bound tendency.
In this section, we will focus on the energy cost optimization of
memory-bound workloads. Actually, we think that improving
main memory performance or radically lowering CPU frequency
and voltage are efficient ways to save energy.

To explain our idea, we first profile the energy cost of a typical
memory-bound workload under different CPU frequencies and
voltages. The micro-benchmark B_mem is a typical memory-
bound workload and we break down its energy cost shown in
Table 5. Interestingly, such a slight change to AE; ¢, does not im-
ply that the low P-state will cause the energy cost to increase for
memory-bound workloads, although the elapsed time may be in-
creased. Actually, B_mem’s performance bottleneck is main mem-
ory, the energy cost bottleneck is the CPU (E;4y;, not Epem)-
This result suggests that the energy cost bottleneck is in the
CPU, even if for non-CPU bound workloads. So, the ultra-linear
decrease in Eg;,j; causes a reduction in Eq¢¢ive With slight per-
formance loss. For example, B_mem only trades 7% performance
loss for 46% Egctive saving when lowering P-state from 36 to

Eﬁi:{;y)[M] is improved by 70%. In
addition, EIST cannot work well on memory-bound workloads.
When turning on the EIST knob, the percent of P-state 36 is 98.6%
due to the high CPU load (99.8% CPU usage), implying failure of
dynamic energy saving.

Actually, for memory-bound query scenarios, an energy-saving
chance is to reduce E;,;;. Improving main memory performance
tends to reduce Ny;4j; or radically lowering CPU frequency and
voltage tends to reduce AEg;,;;. We take a preliminary experi-
ment on PostgreSQL’s index scan to confirm the second approach.
When lowering P-state from 36 to 24, PostgreSQL’s index scan
only trades 20% performance loss for 27% E4ctrive saving, show-
ing that the energy-efficiency is improved by 10%. However, our
strategy is not trivial. PostgreSQL’s table scan, a CPU-bound
workload, has to trade 30% performance loss for 28% Egctive sav-
ing, i.e., the energy-efficiency is reduced by 3%. So, a customized
DVFS approach is expected for memory-bound query scenarios.
It should analyze the query plan, such as index-intensive or not,
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and monitor the main memory access to employ a more radical
DVES strategy.

The percent of MySQL’s E,; ., is higher than that of two
other databases, especially for basic query operations, so that
energy-efficient calculation components or instruction-related
components, e.g., instruction TCM (ITCM), should be considered.

6 RELATED WORK

Energy characterization and optimization in database systems
is the basic work to design an energy-efficient database systems.
There are extensive researches on this topic from different aspects,
including (1) macro energy cost breakdown, (2) trade-off based
energy optimization and (3) employing TCM. However, we take a
micro analysis of the Busy-CPU energy cost of database systems
and then provide a customized CPU architecture to enable the
energy-efficient database systems.

Macro energy cost breakdown. The energy-efficient data-
base design is systematically reported in [14]. From then on, the
researchers had made much effort to make sense of its energy
bottleneck. Research work focuses on the breakdown of the en-
ergy cost of the major resources, i.e., the CPU, main memory and
disk, on various of system architectures. For the classic x86_64
architecture with local disk, the CPU is identified as the energy
cost for disk-based database systems[19, 25] and in-memory data-
base systems[13]. For the architecture of ARM+RDRAM (Rambus
DRAM), the main memory is identified as the bottleneck[23]. For
the system with the remote disk array, the disk is the energy
bottleneck[24]. These above conclusions are difficult to explain
whether the power is consumed by the database system or by the
hardware itself because the measurement of the total energy cost
contains the Background energy cost and Idle-CPU energy. Our
work divides the Busy-CPU energy cost into the Active energy
cost and the Background energy cost, and only profile the Active
energy cost which is consumed by database systems. In addition,
the existing work focuses on the macro energy breakdown of
major resources. However, the main drawback is that they cannot
give the clear optimization suggestions on hardware architecture
due to the lack of the fine-grained information. We study the mi-
cro energy analysis inside CPU and have the ability to make sense
of microscopic energy cost distribution. It is helpful to design the
CPU architecture for energy-efficient database systems.

Trade-off based energy optimization. For the x86_64 ar-
chitecture, the CPU has been identified as the energy bottleneck
for database systems. Because the energy cost distribution inside
the CPU is unknown, the existing work sees the CPU as an in-
separable whole to design the energy-oriented query optimizer
or tune the external DVFS knobs. Inspired by the performance-
oriented query optimizer, PET [28, 29] as an energy-aware query
optimization constructs a cost model to choose the low-energy
query plans under a DBA-specified energy/performance trade-
off level. QED [21] uses query aggregation to leverage common
components of queries to reduce energy cost. These query opti-
mization techniques are used to gracefully trade response time
for energy. DVFS knobs can be configured by users to trade the
voltage and CPU frequency for energy. It provides the chance to
optimize the energy. PVC[21] and sweet spots[13] attempt all of
combinations between the voltage and CPU frequency for a spe-
cific workload to choose one combination which can minimize
the energy cost. Their drawback is hard to apply to all queries.
Other approaches leverage feedback-control loops to dynami-
cally set DVFS knobs using the load profile and can obey a query



latency limit as a soft constraint. Based on this idea, lots of work
has achieved the adaptive energy control for various of databases,
such as the disk-based transaction-oriented DBMS [20, 26, 30]
and data-oriented in-memory DBMS [19]. In order to get a good
energy-saving effect, these techniques expect a relaxed run-time
constraint, so that they in essence trade the performance for the
energy. Through our micro analysis of the Busy-CPU energy cost,
we have found the micro-operation level energy bottleneck. With
the help of the L1D cache energy-efficient CPU architecture, we
can cut down the energy cost of database systems with slight
performance improvement.

Employing TCM. TCM as on-chip memory is usually used
for performance improvement by combining the micro perfor-
mance feature of applications, such as digital signal processing[12],
MapReduce framework[16] and embedded multi-media[15]. How-
ever, we attempt to use TCM to reduce the energy cost, combining
the micro energy feature of database systems. The main idea of
our optimization is to put the hot data into TCM to save the
energy. The similar idea for TCM has appeared. They at compile-
time analyze a given piece of program, identify the hot data
and put them into TCM at runtime to reduce the energy cost
of data movement, such as a SPM management framework for
nest-loop[17], a data program relationship graph for global and
stack variables[27] and heap data[11]. Facing the complex data-
base systems, these program-level optimization methods under
specific premises may not work. Actually, our optimization is
system-level. We profile the runtime behavior of database sys-
tem, review its source code and elaborately identify the hot data.
Although the optimized SQLite is only a proof-of-concept system,
it confirms that our method is feasible. Providing the customized
CPU architecture is a possible way to enable energy-efficient
database systems.

7 SUMMARY & FUTURE WORK

In this paper, we propose a novel idea to reduce the energy cost
based on profiling the energy cost of CPU micro-operations for
databases systems. Our approach can break down the majority of
Busy-CPU energy cost and isolate the accurate energy cost of data
movement. The CPU energy breakdown method exposes that
L1D cache load/store is the energy bottleneck of database systems.
The finding supposes that we may achieve energy efficiency by
adopting a customized CPU architecture with lower L1D energy
cost. TCM can meet this requirement well and an optimized
system-level co-design solution for SQLite is implemented to
evaluate the proposed idea. The experimental result of the proof-
of-concept system shows that our method can achieve 60% of the
peak energy saving with further performance improvement.

In future, we will try to profile the energy cost of other typical
database systems, such as NoSQL systems to identify their energy
distribution feature on CPU and check if our method can be
employed into more type of database systems.
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