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ABSTRACT
Entity Resolution (ER) allows to identify different virtual rep-
resentations of entities that refer to the same real world entity.
When applied to highly heterogeneous data, ER relies on schema-
agnostic blocking techniques to improve efficiency while yielding
good effectiveness. A drawback of schema-agnostic blocking is
the potentially high number of redundant pairwise comparisons.
This has led to the introduction of additional efficiency layers be-
yond blocking in the overall ER pipeline, which all aim at pruning
comparisons to reduce the unnecessary time overhead.

This paper proposes a novel technique based on Bloom fil-
ters that integrates in such an efficiency layer. In addition to
avoiding redundant comparisons, it further prunes superfluous
comparisons that are unlikely to result in matches when actu-
ally compared. Experiments on benchmark datasets show that
our approach improves existing approaches in space and time
efficiency, with insignificant changes in effectiveness.

1 INTRODUCTION
Entity resolution (ER) is the problem of identifying or matching
different digital representations of the same real-world entity (e.g.,
the same person, manufactured part). It represents a fundamental
task in data integration and data cleaning. While ER has mostly
been studied for homogeneously structured data (to which we
refer to as structured ER) [6], recent work has been extended
to unstructured ER, i.e., ER when it is not possible or useful to
transform heterogeneous entities to match a common schema [5,
10]. This for instance applies when considering ER for the Web
of Data or for data stored in data lakes.

For large datasets, handling the inherently quadratic complex-
ity of ER generally becomes computationally prohibitive. There-
fore, ER solutions commonly adopt blocking techniques [6, 12]
that reduce the total number of pairwise comparisons by perform-
ing comparisons only between entity representations placed in
the same block according to some criteria. This typically prunes
a significant number of comparisons between entity descriptions
that do not match anyway, to which we refer to as superfluous
comparisons. In structured ER, blocking techniques (and ER in
general) heavily rely on a fixed schema among all entity repre-
sentations. As this assumption does not hold in unstructured
ER, schema-agnostic blocking techniques have recently been
proposed for unstructured ER [5, 8, 10].

Figure 1 depicts a general pipeline for unstructured ER [12]. It
comprises three layers enabling efficient and effective ER. Block
building places entity representations, each denoted as ei , into
blocks. One problem of schema-agnostic blocking is that the
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Figure 1: Unstructured ER pipeline.

resulting blocks may significantly overlap and thus yield redun-
dant comparisons and the distribution of entity descriptions over
blocks may still yield too many pairwise comparisons. These
two problems have resulted in two further techniques for un-
structured ER. Block cleaning acts at a block level and either
prunes entire blocks (e.g., too large and thus most likely result-
ing in mostly superfluous comparisons) or entity descriptions
within blocks (e.g., descriptions appearing in too many blocks
are removed from the least important blocks). Finally, comparison
cleaning considers pairs of entity descriptions resulting from the
cleaned block collection. It prunes pairs if they are identified
as either redundant or superfluous. Otherwise, pairs of entity
descriptions are compared using a match function to determine
whether they represent the same entity or not. Examples of com-
parison cleaning techniques are comparison propagation [9] and
meta-blocking approaches [4, 11, 14].
Contribution. This paper presents a novel comparison cleaning
approach that prunes both redundant and superfluous compar-
isons. It relies on (i) a favorable order of blocks being processed,
for which we validate a heuristic that works in practice, and
(ii) false positives that are, in our context, a useful feature of
Bloom filters (BFs). Indeed, while false positives are typically un-
desired, we shall see that we can turn them to our advantage
when coupled with a favorable order. As Bloom filters are static
data structures that need to be correctly set up upfront, we further
extend our method to use scalable Bloom filters (SBFs). Our ex-
perimental validation on several real-world benchmark datasets
shows that comparison cleaning using SBFs is robust to different
block collection characteristics and provides a good trade off
between efficiency and effectiveness of comparison cleaning that
improves on baseline and state-of-the-art solutions.
Structure. Section 2 introduces our novel approach based on
Bloom filters and its extensions. Section 3 presents our experi-
mental evaluation. We conclude in Section 4.

2 BLOOM FILTER ENHANCED BLOCKING
BFs have been previously used in ER, for example, to obscure
sensitive data [15] or to summarize the blocking structure of a
dataset [7]. In our work, we employ BFs for comparison clean-
ing. In this section, we describe our algorithm leveraging BFs
(Section 2.1), the block ordering heuristic allowing to turn false
positives inherent to BFs to our advantage (Section 2.2), and
details on extending our algorithm with SBFs (Section 2.3).
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Algorithm 1: Comparison cleaning using a Bloom filter
Input :pmax , s , B

1 initialize(BF , pmax , s);
2 while B has further pairs to process do
3 pi , j ← next pair according to order defined by P ;
4 if ! lookup(BF , key(i , j)) then
5 insert(BF , key(i , j));
6 submit(match(pi , j ));

2.1 General BF based comparison cleaning
To discuss our algorithm that uses BFs, we first provide relevant
background on BFs. We refer readers to [2, 3] for further details.

A BF is a space-efficient probabilistic data structure that of-
fers two operations: insert(k) inserts the key k in the filter and
lookup(k) answers if the key k has been inserted with some proba-
bility, or definitely if it has not been inserted. False positive prob-
ability (the probability of a lookup returning true even though
k has not been inserted) can be computed and it increases with
insertions of unique keys. A Bloom filter BF is initialized by pro-
viding a maximum acceptable false positive probability pmax and
the number of expected keys to be inserted, denoted s .

In our context, a key ki , j uniquely identifies a pair pi , j =
(ei , ej ). We assume that ei and ej are unique identifiers of entity
descriptions. We generate ki , j using a function key : Inteдer ×
Inteдer → Inteдer . The pairs to be sequentially inserted into the
BF (by inserting their integer key) are pairs produced from a block
collection B = [b1, . . . ,bn ] that comprises n blocks of various
sizes. The maximum number of keys possibly being inserted is
bounded by O(|b1 |2 + |b2 |2 + . . . + |bn |2). Given that the false
positive probability increases with the number of keys that have
been inserted into a BF, we assume that we can iterate over pairs
resulting from B in a specific order. That is, our algorithm uses
an iterator to retrieve pairs in the order given by

P =
[
(eki , e

k
j )

��� eki ekj ∈ bk , 1 ≤ k ≤ n, 1 ≤ i < |bk |, i < j ≤ |bk |
]

where the three ranges specified fork , i , and j are to be interpreted
as three nested loops with k being the outer and j the most inner
loop. How to sort B in a good order for efficient and effective
comparison cleaning is further discussed in Section 2.2.

Using the above assumptions and notation, Algorithm 1 sum-
marizes how we leverage BFs to perform comparison cleaning. It
first initializes a Bloom filter BF , givenpmax and s . Whilepmax is
generally user defined (we will see how to best set it in practice in
Section 3), s can also be computed as the upper bound of compar-
isons based on B (which we do in all experiments). The algorithm
then iterates over pairs retrieved from B in the order given by P ,
retrieving each pair pi , j one at a time. In line 4, we check if pi , j
has already been inserted in BF . To this end, a unique key ki , j is
generated for pair pi , j . If looking up ki , j in BF returns false, we
know that the pair has not been compared before. So we insert
the key into BF , perform the pairwise comparison of the actual
pair of entity descriptions using amatch function, and propagate
the result (could be e.g., a boolean, a similarity score, or a match
probability) for further processing via a submit method.
Time analysis. Time to insert or search a key in a BF is O(|H |),
with |H | the number of hash functions used to fingerprint the
key in the BF [3]. Defining c̄ the average cost for comparing two
entities, the desiderata is that O(|H |) ≪ c̄ . This typically holds
in practice because hashing a pair of integers is less expensive
than fetching and matching two entity representations.

ascending descending random

Figure 2: Distribution of pairwise similarities per iteration
for different order heuristics

Space analysis. The minimum bits sizem of the filter is deter-
mined bym ≥ 1.44s · loд2(1/pmax ) [3]. For instance, assuming
pmax = 0.1, we havem ≈ 4.78s bits.

In our algorithm, we can easily replace the BF by any other dic-
tionary data structure implementing an insert(·) and a lookup(·)
method.We opt for BFs for two reasons. First, a BF is awell known
space efficient data structure and we validate experimentally that
in comparison to other dictionary data structures, it exhibits bet-
ter performance for comparison cleaning (see Section 3). Second,
a BF allows us to additionally prune superfluous comparisons.
This slightly more hidden benefit is rooted in both pmax inherent
to Bloom filters and the order of entity pairs determined by P .
This interplay is further discussed next.

2.2 Block ordering heuristic
The false positive probability inherent to a BF results in three
possible cases when a pair pi , j is processed by Algorithm 1:

True negative (tn) lookup(BF ,pi , j ) returns false, so pi , j is
not redundant

True positive (tp) lookup(BF ,pi , j ) returns true and the
pair is indeed redundant

False positive (fp) lookup(BF ,pi , j ) returns true even
though pi , j has not yet been inserted

While tn and tp are desired cases, fp may be problematic for the
effectiveness of ER as it may reduce the recall of ER if a wrongly
pruned pi , j had, if compared, resulted in a match. We refer to
this case as miss-match. On the other hand, if pi , j would have
resulted in a non-match upon comparison, the comparison was
a superfluous one, i.e., a comparison we actually want to prune.

When the number of keys inserted in the BF increases, the
false positive rate of the BF increases up to pmax . The basic idea
of our Bloom filter based comparison cleaning is to put this “ef-
fect” of BFs to good use by determining an order of pairs for P
that has a high probability of processing true matches early (to
minimize the negative effect of miss-match cases) and using the
increasing false positive probability coming with later processing
to prune superfluous comparisons. Such behavior is intuitively
obtained when finding an order of pairs where the match prob-
ability decreases with increasing number of iterations. Clearly,
the performance of our approach relies on both identifying a
suited order that mimics the behavior described above, and on
the parameter pmax . Given a block collection, [12] postulated
that similar entity descriptions are more likely to be found in
small blocks rather than in big blocks.We experimentally validate
this heuristic on several real-world datasets (see Table 1). Figure 2
shows representative results for three order heuristics resulting
from sorting blocks in ascending, descending, and random order
of the number of entities they contain on the CDDB dataset. The
plots show the first occurrence of a pair pi , j at position (x, sim)
when it is the x-th pair to be processed and the similarity compu-
tation yields a similarity sim. We cut off similarities below 0.5 for
better readability. As is common in ER, we assume that the match
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Dataset Size(D1) Size(D2) Duplicates Brute-force

AG Products 1354 3039 1104 4.11e06
CdDb 9763 // 299 4.77e07
Movies 27615 23182 22813 6.40e08

Table 1: Dataset characteristics (same as in [1]).

Dataset Redundancy Comparisons Recall

E1 AG Products 79% 1.9e7 1.0
E2 Movies 15% 6.5e7 0.98
E3 Movies 7% 9.7e6 0.96
E4 CdDb 36% 2.2e7 0.99
E5 CdDb 7% 4.6e5 0.99

Table 2: Experiment settings.

function determines pi , j to match if its similarity is above a simi-
larity threshold. So the higher the similarity, the more likely it is
we determine a match. Clearly, the ascending order of block sizes
best mimics the desired behavior for our order heuristic. This
experimentally validates the claim that in practice, sorting the
block collection B in ascending order of its block sizes is suited
to approximate the desired behavior on match probability.

2.3 Extension using scalable Bloom filters
We have seen in Section 2.1 that initializing BF requires setting
both pmax and s , which are key in optimally setting the number
of bits allocated to the Bloom filter. While s is in the order of
sum of squares of individual block sizes, this is in practice a very
loose upper bound for the expected number of unique keys to
be inserted, especially when a high degree of redundancy can
be expected. To avoid allocating unnecessary space to a BF and
be less sensitive to variations of both the redundancy and match
distribution in P , we explore how to extend our comparison clean-
ing algorithm with scalable Bloom filters. We provide relevant
background on SBFs and refer readers to [2] for details.

A SBF is a list of Bloom filters BF0, . . . ,BFn . Initially, the list
includes a single BF, denoted BF0, with an associated initial capac-
ity s0 and maximum false positive probability p0. More generally,
each BFi has an associated capacity si and a false positive proba-
bility pi . Given BFi the last BF in the list, a new key is inserted
into BFi . When BFi becomes full (i.e., new keys cannot be in-
serted without exceeding pi ), a new BFi+1 is inserted in the list.
Given a tightening ratio θ with 0 < θ < 1 and a growth ratio
σ ≥ 1, BFi+1 is set with pi+1 = p0θ i and si+1 = siσ . Overall, the
capacity of the SBF gradually increases as needed while the com-
pound false positive probability pfp is bounded by pfp ≤ p0

1
1−θ .

This means that we do no longer have to set s upfront, assuming
the worst case in Algorithm 1. We can choose a more conser-
vative initial capacity s0 << s to improve space efficiency and
extend it if needed. The additional parameters of SBF can be fixed
to θ = 0.9 and σ = 2, following the recommendation of [2].

3 EVALUATION
We experimentally validate the comparison cleaning approaches
presented in this paper. We both perform a parameter sensitivity
study and a comparative evaluation to baseline and state-of-the-
art methods. Performance metrics are runtime (time), memory
footprint (space), and quality (recall over the set of executable
comparisons considering a ground truth file).

All algorithms were implemented in Java 1.8 as extensions of
the JedAI library [13] that supports numerous state-of-the-art

unstructured ER solutions. We ran experiments on an OpenStack
virtualized server (16 processors at 2.30GHz, 50GB RAM).

Our experiments use data from three benchmark datasets
commonly used to evaluate unstructured ER (e.g., in [8, 11]).
Their characteristics are summarized in Table 1. They are publicly
available at the JedAI webpage together with ground truth files.

Our evaluation relies on different experiment settings. Each
setting varies in the block collection B input to the evaluated
comparison cleaning techniques, obtained by varying datasets
and steps preceding comparison cleaning. Table 2 summarizes
the characteristics of five settings E1 through E5. Here, “Redun-
dancy” reports the fraction of redundant pairs produced by B.
“Comparisons” is the total number of pairs resulting from B, i.e.,
|P |. “Recall” reports the maximum possible recall that can be
obtained based on B.

3.1 Parameter sensitivity
We study the effect of parameter variations on performance by
varying the parameters for both BF and SBF as follows:

BF Capacity s = |P | (see Comparison column in Table 2),
pmax ∈ {0.1, 0.5, 0.8}

SBF Initial capacity s0 ∈ {0.01|P |, 0.1|P |, 0.5|P |} and
p0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}

For all considered parameter settings, we studied their effect
on time, space, and recall. Due to space constraints, we only
report representative results on settings E1 and E3, two extreme
cases with high and low redundancy. The remaining results are
analogous and in line with our discussion.

Figure 3(a) studies recall when varying the false positive prob-
ability for different configurations of the capacity in both E1
and E3. For setting E1, we observe that recall is stable across
all tested configurations. The reason is that E1 has high redun-
dancy, so even the most aggressive configuration setting for a SBF
(low initial capacity, high initial false positive probability) has
an acceptable low loss in recall because typically, it only prunes
comparisons that are indeed unnecessary. In E3, where we have
low redundancy, an aggressive solution based on SBFs with a
very small capacity and high false positive probability loses much
more in effectiveness (25% total loss in recall) compared to a solu-
tion using an higher capacity and same false positive probability
or a solution that uses a smaller false positive probability. This
is due to the fact that a SBF with such aggressive configuration
converges faster to the maximum compound false probability
than the other solutions, resulting in more miss-matches.

Figure 3(b) shows runtime for the same configurations as
the previous experiment. In E1, the aggressive configuration
mentioned before using SBF with very low initial capacity and
high false positive probability is particularly efficient because
it starts to remove non-redundant pairs earlier than the other
solutions but in a point where the match probability is already
very low. This positive effect on runtime decreases as the initial
capacity of a SBF increases, until it eventually converges to the
behavior of a BF. In E3 and similarly in other settings with low
to moderate redundancy, the behavior is similar, yet the slopes
are more evident. This is due to the fact that in such settings,
higher false positive probabilities prune more pairs that are not
redundant (and thus pruned by any configuration).

Considering space (no graphs shown for conciseness), all con-
figurations require less than 25MB of memory, making both SBFs
and BFs space efficient data structures. Considering BFs, as ex-
pected by the formula in Section 2, the space decreases with
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Figure 3: Recall and runtime for parameter configurations

increasing pmax . Considering SBFs, we observe that required
space is lower than for BFs only when the degree of redundancy
is sufficiently high.

From our parameter sensitivity analysis, we observe that good
performance across all settings is obtained when SBF capacity
is set between 0.1 and 0.5 times |P | (the size of a BF) coupled
with a high/moderate false positive probability (0.3 to 0.5). As
BFs do not suffer from efficiency or space degradation caused by
SBF extensions, their false positive probability can be set to even
higher values (as these high values kick in late in the process
where typically, most matches have already been processed), for
which we recommend the range between 0.5 and 0.8.

3.2 Comparative evaluation
Given our above conclusion, we now select two good configura-
tions: BF* with s = |P |, pmax = 0.5 and SBF* with s0 = |P | ∗ 0.5,
p0 = 0.5). We compare them to two other comparison cleaning
approaches. The first baseline uses a hash set (HS) instead of a BF.
The second approach applies comparison propagation (CP) [9].
CP uses inverted indexes to avoid redundant comparisons. The
inverted index is basically a hash-map where the keys are entity
identifiers and the list of values associated to the key identifies
the block indexes where the entity appears. Given a processing
order of the blocks b1,b2, ...,bn , two entities are compared in a
blockbi only if the lowest common index of their associated block
indexes is i . We again evaluate time, space, and recall. We do
not consider meta-blocking [11] as a competitor because it is not
integrable in Algorithm 1, which interleaves pairwise similarity
computation with comparison cleaning.
Quality comparison. Both HS and CP yield the maximum pos-
sible recall (see Table 2) as they exclusively prune redundant
comparisons. The possibly lower recall of our Bloom filter based
solutions is attributed to miss-matches caused by false positives
(see Section 2). Throughout all settings E1 through E5, the recall
of BF* (SBF*) does not reduce by more than 4%.
Time comparison.Table 3a shows the runtime for the compared
approaches in all setings. We further report on the runtime of ER
without any comparison cleaning in the “Nothing” column.When
high redundancy occurs like in E1, all the comparison cleaning
solutions outperform the approach that compares all redundant
pairs (Nothing). Also, we observe that HS and CS consistently
have comparable runtimes. In scenarios with low redundancy,
HS and CS are worse than (or comparable to) Nothing, as their
overhead time to find redundant pairs is higher than the time
avoided by not comparing them (see E3 and E4). Both BF* and
SBF* outperform the baseline approaches thoughout all settings,
improving runtime between 7% and 31% over the best competitor.

BF* SBF* CP HS Nothing

E1 75 74 95 81 540
E2 1235 1161 1557 1566 2038
E3 183 160 255 218 221
E4 77 71 103 112 120
E5 4 4 5 5 4

(a) Time (in seconds)

BF* SBF* CP HS Dataset

E1 6 3 4 223 3
E2 23 38 55 5063 40
E3 3 5 39 785 40
E4 7 13 12 1281 6
E5 <1 <1 5 39 6

(b) Space (in MB)

Table 3: Results for time and space

Space comparison. Table 3b shows space required by the com-
pared comparison cleaning approaches. Unsurprisingly, HS per-
formsworst. CP performs better because the size of its inverted in-
dex depends on the number of entity descriptions of the datasets,
the number of blocks in B, and the level of redundancy of entities
in multiple blocks. We observe that the space used by BF* and
SBF* further usually improves on CP (up to 90%) while, at the
same time, improving efficiency and maintaining high quality.

4 CONCLUSIONS
We proposed a novel approach comparison cleaning approach
in entity resolution based on Bloom filters that removes both re-
dundant and superfluous comparisons to improve efficiency. The
technique relies on a validated heuristic that pairs a decreasing
match probability with an increasing false positive probability.
We further present an extension to our approach, using scalable
bloom filters. Our experimental validation demonstrates that our
approach outperforms state-of-the art algorithms in space and
time, while maintaining high effectiveness.
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