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ABSTRACT
Record-level matching rules are chains of similarity join predi-
cates on multiple attributes employed to join records that refer
to the same real-world object when an explicit foreign key is not
available on the data sets at hand. They are widely employed
from data scientists and practitioners that work with data lakes,
open data, and data in the wild.

We present RulER, the first tool that allows to efficiently ex-
ecute record-level matching rules on parallel and distributed
systems—we developed that on top of Apache Spark to leverage
on its vast ecosystem of libraries and wide adoption. In this demo,
we show how RulER can be easily employed for data prepara-
tion tasks (i.e., to join data sets to be consumed by data analytic
tasks) and to support the user in debugging record-level match-
ing rules. Finally, we demonstrate how our execution strategy
of the record-level matching rules—introduced by RulER—is up
to 3 times faster than the naïve concatenation of similarity join
predicates.

1 INTRODUCTION
Combining data sets that bare information about the same real-
world objects is an everyday task for practitioners that work
with structured and semi-structured data. Frequently (e.g., when
dealing with data lakes or when integrating open data with pro-
prietary data) data sets do not have explicit keys that can be used
for a traditional equi-join [4, 8, 9]. When that happens, a common
solution is to perform a similarity join [6], i.e., to join records that
have an attribute value similar above a certain threshold, accord-
ing to a given similarity measure, as in the following example:

Example 1.1 (Similarity Join). Given two product data sets, join
all the record pairs with the Jaccard similarity of the product names
above 0.8.

Aplethora of algorithms have been proposed in the last decades
to efficiently execute the similarity join considering a single at-
tribute, i.e., attribute-level matching rules (see [6] for a survey). At
their core, all these algorithms try to prune the candidate pairs of
records, on the basis of a single-attribute predicate—to alleviate
the quadratic complexity of the problem.

Interestingly, only a few works had been focused on studying
how to execute record-level matching rules, i.e., the combination
of multiple similarity join predicates on multiple attributes (see
section 2.1.1). Yet, this kind of rules permits to specify more
flexible rules to match records, as in the following example:

Example 1.2 (Record-level matching rule). Given two product
data sets, join all the record pairs that have a Jaccard similarity
of the product names above 0.8, or that have a Jaccard similarity
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of the description that is above 0.6 and the edit distance of the
manufacturer lower than 3.

Furthermore, record-level matching rules can be used to rep-
resent decision trees [1], hence learned with machine learning
algorithms when training data is available. As a matter of fact,
a decision tree for binary classification (i.e., classification of
matching/not-matching records) can be naturally represented
with DNF (disjunctive normal form) predicates—the same con-
sideration can be done for a forest of trees.

To the best of our knowledge, no techniques have been pro-
posed to leverage on distributed and parallel computing for scal-
ing record-level matching rules. The benefit is twofold: (i) dis-
tributed computation allows to scale to large data sets that cannot
be handled with a single machine; (ii) parallel execution reduces
the execution times (3 time faster in our experiments). As a mat-
ter of fact, being able to efficiently execute similarity join is
crucial when time is a critical component, e.g., when users are
involved in the process. For instance, in exploratory search in a
data lake [7], users typically look for related data sets and low
latency in performing similarity join is required for enabling
the user’s interactive exploration. Also, when debugging record-
level matching rules, users typically try different configurations
of similarity metrics, thresholds, and attributes. Hence, enabling
fast execution of such rules can significantly save user’ time.
Contribution.We present RulER, a tool that enables users to effi-
ciently execute record-level matching rules to join large data sets
on distributed parallel systems. In particular, we implemented
RulER on top of Apache Spark1, to leverage on its vast ecosystem
of libraries and tools for data preparation, and machine learn-
ing. In this demonstration, we will showcase RulER on several
real-world data sets; attendees will write their own matching
rules through Jupyter notebooks, and explore and analyze the
results. We will demonstrate how to employ RulER both in a data
preparation pipeline and to debug record-level matching rules.
We implemented state-of-the-art similarity join algorithms for
Spark that can be employed to build chains of similarity join
predicates (i.e., to mimic record-level matching rules). Attendees
will run such similarity join chains and verify that RulER is actu-
ally significantly faster (up to an order of magnitude) and more
convenient to program such rules thanks to its APIs.

2 TOOL ARCHITECTURE
2.1 Preliminaries

2.1.1 Record-level matching rules. In RulER, matching rules
are written in Disjunctive Normal Form (DNF), i.e., as a disjunc-
tion (logical OR) of conjunctions (logical AND) of similarity join
predicates on multiple attribute (i.e., at the record level). This
design choice is driven by the fact that DNF matching rules are
easy to read and thus to debug, in practice. Moreover, DNFs can
be employed to represent the trained model of a decision tree (or

1https://spark.apache.org/
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of a random forest), hence suitable for exploiting labelled data.
In this demonstration, we focus on how to scale DNF matching
rules and we do not investigate how to generate good DNFs (i.e.,
decision trees/random forests) starting from training data.

To the best of our knowledge, the only related work tackling
this problem is [1], which focuses on single-node execution, bor-
rowing optimization techniques from the traditional relational
database approaches. Similarly, [5] focuses on how to optimize
multi-attribute similarity join, but only for conjunctions of pred-
icates (i.e., not for DNF).

2.1.2 Similarity join with prefix index. The naïve solution for
similarity join (i.e., each predicate of a DNF) is to enumerate
and compare every pair of records, i.e., highly inefficient and
not feasible on large data sets. To reduce the task complexity,
different approaches were proposed in literature [2, 10–12]. All
these approaches adopt a filter-verification pattern: (i) first an
index is used to obtain a set of pre-candidates (e.g., prefix filter);
(ii) the pre-candidates are filtered using a set of filters that are
fast to apply; (iii) the resulting candidate pairs are probed with
the similarity function to generate the final result.

The most efficient technique to obtain the pre-candidates effi-
ciently is the prefix filter [2], which works as follows. Given
a set of strings (the values of an attribute in a table, for in-
stance), a pre-processing function is applied to each string to
obtain a set of elements (e.g., tokens or n-grams, etc.). These
elements are then sorted according to a global order, usually by
their not decreasing document frequency of the elements (i.e.,
1/#(strinдs containinд that element))—typically infrequent ele-
ments yield fewer candidate pairs [2]. Then, for each sorted set
of elements only the first π are considered, i.e., the prefixes. A
pair of element ⟨ri , r j ⟩ can be safely pruned if their prefixes have
no common elements. The prefix size depends on the adopted
similarity function and threshold. For example, the prefix filter
for the overlap similarity is defined as follows: given two sets, ri
and r j , and an overlap threshold t ; if |ri ∩ r j | ≥ t , then there is
at least one common element within the πri -prefix of ri and the
πr j -prefix of r j , where r = |r j | − t + 1 and s = |r j | − t + 1.

An example of prefix filtering is reported in Figure 1. The
prefixes, assuming an overlap threshold t = 4 are highlighted
in grey. Since the two prefixes do not share any element, the
pair ⟨ri , r j ⟩ can be pruned. The intuition behind this is that the 3
remaining elements to check can provide at most a similarity of
3, that is not enough to reach the requested threshold t .

a b c ? ? ? d e ? ? ?t = 4 r1 r2

Figure 1: Prefix filtering example: The pair ⟨ri , r j ⟩ can be
pruned since the prefixes (in grey) have no common ele-
ments. The elements to check can provide at most an over-
lap similarity of 3 (or a Jaccard similarity of 3/8).

The prefix filter can be adapted to work with many similarity
measures like Jaccard, Dice, Cosine, Overlap [11] and Edit Dis-
tance [10], and it is employed by best performing similarity join
algorithms [6].

The state-of-the-art distributed and parallel similarity join
algorithms [3] partition the candidate pair of records according
to the entry in the prefix index, i.e., for each element in the in-
dex, all the corresponding pairs of candidates are assigned to a
computational node—more optimizations can be performed, but
at their core, this is how parallelization is achieved by existing
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Figure 2: RulER execution model: green cells represents
executed and passed rules; red cells executed that do not
pass the rules; grey cells not executed rules.

algorithms. So, if two different similarity join conditions are con-
sidered (e.g., two different similarity measures on two different
attributes), existing algorithms would create two different prefix
indexes and generate two completely different parallelization
strategies. Thus, given a fixed number of computational nodes,
by employing existing algorithms, the only way to get the com-
plete result of multiple similarity joins (i.e., the predicates of the
matching rule) is to perform the joins in series and then combine
the result sets.

2.2 The RulER execution model
The main intuition of RulER is to exploit the prefix indexes—one
prefix index for each predicate of the matching rule—to build
a graph structure, which is then employed to iterate over the
records (the nodes of the graph), efficiently applying the rules
and keep only the candidates (the edges of the graph) that pass
the whole rule. In other words, RulER adopts a record-based
parallelization approach; in contrast to the existing algorithms,
which adopt a prefix-based parallelization approach on a single
predicate at a time.

Example 2.1 (Distributed and parallel matching rulewithRulER).
Given amatching ruleR = (C1∧C2∧C3)∨(C4∧C5), in which each
Cx is a similarity join predicate (e.g., Jaccard Similarity title ≥ 0.8).
An example of how RulER executes R is outlined in Figure 2. First,
a prefix index is built on the basis of the record-level matching
rules expressed in the main matching rule R. Then, the index is
distributed to each worker. Each worker iterates over each record
in its partition extracting the possible candidates from the prefix
index. The rules are applied to each candidate. If more rules are
in or it is possible to avoid computing the other rules when one
of them is verified, e.g., with r1-r2 the rule (C1 ∧C2 ∧C3) is not
verified since the pair passes the rule (C4 ∧C5). Otherwise, if more
rules are in and , it is possible to avoid the computation when one
of them fails, for example for the pair r1-r3 C2 fails, so C3 has not
to be computed.

2.2.1 The algorithm. The RulER matching rule algorithm is
outlined in Algorithm 1. The presented algorithm is the self-join
version for sake of the presentation; adapting it for joining two
different data sets is straightforward. The algorithm takes as
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input a collection of records and a record-level matching rule
M and gives as output the set of record pairs that satisfyM.
Recall thatM is in DNF, i.e., it is composed of sets of predicates
Pj in logical or, each set Pj contains predicates pk in logical and.
First of all, the values of attributes are converted into sets of
elements (Line 1) according to the matching rule requirements
(e.g., n-grams, trigrams, tokens, etc.); then the prefix indexes
are built to find the candidate pairs (line 2)—one prefix index is
needed for each predicate pk of the matching rule. The prefix
indexes are sent in broadcast to each node (line 3) to be available
to each computational node (called worker). Then, each worker
iterates over its portion of records (lines 5-6), and performs the
following operations for each record ri . First, a set of candidates
for ri is initialized as an empty set Cri (line 7). Second, for each
set Pj , a set of candidates CPj is initialized as an empty set (lines
8-9) and for each pk ∈ Pj the candidates Cri ,pk that can match
with ri are extracted using the prefix indexes (lines 10-11). Third,
the candidates Cri ,pk are pruned by removing those that already
passed one of the previous Pj set of predicates (line 14), and
those that did not passed previous pk ∈ Pj predicates (lines 15-
16). Fourth, the retained candidates are probed with other filters
that further improve the efficiency of the overall process (e.g.,
length filter, position filter, etc. [10, 11]) according to the rule
(line 18). Since pk is in logical and with the previous predicates,
only the candidates that pass the filters are kept. Finally, the
resulting candidates from Pj are added to Cri (line 20).

2.2.2 Difference operator. RulER implements a method to per-
form the difference between the result pairs generated by two
matching rules, i.e., given two matching rules M1, M2 it ef-
ficiently performs the difference of the result sets res(M1) \
res(M2). Since the algorithm works at record level it is possible
to perform a fine control on the application of the rules: when a
record ri is processed firstM1 is checked, so to get res(M1, ri );
then,M2 is applied only on the records r j ∈ res(M1, ri ), avoid-
ing to compute it on the whole pairs again, retaining only the
records r j that do not satisfyM2 (i.e., res(M1) \ res(M2)).

Algorithm 1 RulER core
Input: R collection of records to join
Input: M matching rule in DNF
Output: C , the pairs of records that can satisfyM
1: RT ← дetElements(R,M)
2: I ← buildPref ix Indexes(RT ,M)
3: broadcast(I )
4: C ← {} //Candidate pairs
5: foreach partition par t ∈ RT
6: for each ri ∈ par t do
7: Cri ← {} //Candidates for ri
8: for each Pj ∈ M do //For each set of predicates in logical or
9: CPj ← {} //Candidates that satisfy Pj
10: for each pk ∈ Pj do //For each predicate in logical and
11: Cri ,pk ← I (pk , ri ) //Gets the candidates from the prefix index

12: /*Removes candidates that already passed previous predicates in or

13: and those that did not pass previous predicates in and*/
14: Cri ,pk ← Cri ,pk −Cri
15: if CPj , ∅ then
16: Cri ,pk ← Cri ,pk ∩CPj
17: /*Applies filters (length, positional, ...)*/
18: CPj ← applyF il ter s(ri ,Cri ,pk , pk )
19: Cri ← Cri ∪CPj
20: C .append (Cri )

3 DEMONSTRATION SCENARIO
During the demonstration, participants will try RulER2 on several
scenarios and data sets by means of Jupyter Notebooks3. Users
will be guided in: defining custom matching rules for a practical
data preparation task (Section 3.1); debugging a matching rule
(Section 3.2); and compare the efficiency of RulER w.r.t. existing
state-of-the-art similarity joins (Section 3.3). Multiple scenarios
and data sets (e.g., products, movies, books, finance, etc.) on
which it is possible to try our RulER are available, but for sake of
the presentation we describe only some of them in the following.

3.1 Data preparation scenario
In this scenario we use two movies data sets Rotten Tomatoes4

and Roger Erbert5. The former gather users’ ratings about
movies, the latter critics’ ratings. There is no foreign key be-
tween the two data sets. We ask the attendee to discover if
there is a correlation between the ratings given by the users
with the ones given by the critics. To do that, we need to define
a matching rule to integrate the two data sets, then we com-
pute the Pearson correlation on the obtained results. We ask to
the attendee to write a record-level matching rule, for instance:
(”movie_name”, ”Title”, JS, 0.8) ∧ (”actors”, ”Cast”, JS, 0.5), That
means that the JS between the names of the movies must be
greater or equal than 0.8 and the JS between the actors of the
movies must be greater or equal than 0.5. After the matching, it
is possible to obtain a scatter plot of the ratings, and compute
the Pearsons correlation rating given by critics and the rating
given by users on the same movie.

Figure 3 shows how simple is to use RulER. The user has just to:
include RulER library (line 1), load the data as Spark Dataframe
(lines 3-4), define the rules (lines 6-7) and combine them to obtain
the final matching rule (line 9). Finally, the matching rule can be
used to join the two dataframes with the joinWithRules method
(line 11).

3.2 Matching rule debugging scenario
In this scenario we show how RulER can be used to efficiently
debug different matching rules by using the difference operator.
In particular, given two matching rulesM1,M2 we will show
how to use RulER to find the matches provided by the first rule
that are not present in the matches provided by the second one,
i.e. how to perform the difference between the two result sets
res(M1) \ res(M2). An example is shown in Figure 4. First, two
matching rules are defined: in the first one the records are aligned
by using the title and the director of the movies, while in the latter
by using the title and the cast. Then, a new debugging rule is
created using the difference operator defined in RulER. Finally,
the debugging rule is applied to the dataset, obtaining thematches
generated bym1 that are not generated bym2.

3.3 RulER efficiency demonstration
In this scenario we connect to a Spark cluster and use a subset of
the IMDB data set6 that contains records about movies, providing
different fields that can be used to generate matching rules (e.g.
movie title, cast, director, plot, etc.).

2We implemented RulER in Scala and made it open source: https://github.com/
Gaglia88/ruler
3https://jupyter.org
4https://www.rottentomatoes.com
5https://www.rogerebert.com
6https://www.imdb.com
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Figure 3: RulER usage example.

Figure 4: Rule’s debugging example.

We show how difficult is to write a complex rule by using ex-
isting similarity join algorithms w.r.t. the use of RulER. Moreover,
RulER is much more faster. Figure 6 presents this scenario. To
execute the rule as a similarity join chain, we use EDJoin [10]
to perform a similarity join based on Edit Distance and PPJoin
[11] to perform a similarity join based on Jaccard Similarity. The
matching rule written by chaining similarity joins is expressed
in lines 13-16. Note that, each rule provides a partial result and
then the partial results of each rule have to be combined (line
16). If two rules are in and the partial results have to be inter-
sected; if they are in or they have to be merged. To merge two
candidate sets and avoid duplicates, a distinct operation has to be
performed. The distinct and the intersection are very expensive
operations in Spark because they require a shuffling since the
same pairs have to be computed by the same worker.

0 10 20 30 40 50 60
Execution time (s)

Join chain
RulER

prefix processing join res. merge

Figure 5: Execution time of RulER vs the execution time
of the join chain in Figure 6.

Figure 5 shows the execution time of both the solutions. For
the join chain, the prefix indexing and join times are computed
as the sum of each join. The RulER indexing time is higher due
to the time requested to broadcast the index, but the join time
is faster. Moreover, RulER does not need to merge the partial
results, that is the costly task of the join chain, which makes it
highly inefficient.

Figure 6: Join chain vs RulER execution.
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