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ABSTRACT

We present the ML-Index, a memory-efficient Multidimensional

Learned (ML) structure for processing point, KNN and range

queries. Using data-dependent reference points, the ML-Index

partitions the data and transforms it into one-dimensional val-

ues relative to the distance to their closest reference point. Once

scaled, the ML-Index utilizes a learned model to efficiently ap-

proximate the order of the scaled values. We propose a novel

offset scaling method, which provides a function which is more

easily learnable compared to the existing scaling method of the

iDistance approach. We validate the feasibility and show the

supremacy of our approach through a thorough experimental

performance comparison using two real-world data sets.

1 INTRODUCTION

Processing queries on multidimensional data is a classical and

thoroughly investigated problem. A plethora of index structures

provides mechanisms for compactly storing and querying multi-

dimensional datasets, applied in countless application scenarios.

A recent idea proposed by Kraska et al. [4], suggests improvement

and replacement of traditional index structures with machine

learning and deep-learning models. They in particular success-

fully replace the B-Tree with a recursive learned model that maps

a key to an estimated position of a record within a sorted array.

With the use of the proposed learned models, they are able to

utilize the patterns in the data distribution, resulting in an im-

provement of both the memory consumption and the execution

time over the traditional index.

To provide a generalization of the B-Tree for multiple dimen-

sions, the data needs to be sorted in an order which can be easily

learned by supervised learning models. The ordering needs to

be done in such a manner that the correctness guarantees are

fulfilled when answering range and KNN queries. In practice,

techniques, such as the Morton and the Peano-Hilbert order, can

be exploited for sorting multidimensional data. However, directly

mapping the multidimensional data points within the aforemen-

tioned orders cannot be easily learned by deep learning models.

Kraska et al. [3] propose an approach for learning an order based

on successively sorting and partitioning points along several di-

mensions into equally-sized partitions. However, choosing only a

subset of dimensions may lead to performance degradation when

the number of dimensions increases and the deduction of the

partition neighbors may not be a time-efficient task.

Therefore, we create a novel Multidimensional Learned (ML)

index which generalizes the idea of the famous iDistance scaling

method [2] and uses the scaled ordering in combination with

a two-layer learned index, to answer multidimensional queries.
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Unlike existing indexes, it captures the data distribution in two

manners, by efficiently partitioning and scaling the data with

respect to distribution-aware reference points and by learning

the distribution of the sorted scaled values. Harnessing the power

of the deep-learning models, the ML-Index is the first complete

learned index, able to answer point, range and KNN queries

efficiently while having a low memory consumption.

2 RELATED WORK

Until recently, limited research was present in improving data

indices by interweaving them with machine learning. One of the

first distribution aware indices [1] focuses on the combination

of R-Trees with a self-organizing map. Another exact KNN al-

gorithm [9] employs k-means clustering and triangle inequality

pruning for efficient query execution.

Recently, Kraska et al. [4] draw the focus on a novel idea of

substituting indices with deep learning models. Lead by the as-

sumption that each index is a model, they draw a parallel between

the indices and their respective analogue in the machine learning

world. For instance, B-Tree Index and Hash-Index can be seen as

models that map a key to a position within a sorted and unsorted

array accordingly and can be easily replaced with neural network

models. A learned database system called SageDB [3], extends the

concepts to multidimensional data, by successively partitioning

points along a sequence of dimensions into equal-sized cells and

ordering them by the cell that they occupy. Although the order

produces a layout noted as learnable, the complexity of directly

learning the projection of n-dimensional points to an order posi-

tion increases with the increase of dimensionality. Even though

limiting the number of dimensions for partitioning avoids the

added complexity, it results in slower execution of range queries

including the missing dimensions.

Providing an inexpensive representation of multidimensional

points which can be meaningfully sorted has been already widely

explored, such as presorting the data by their Z-order [6], Hilbert

order [5], or the respective distance to reference points [2]. A

learned Z-order Model [8] focuses on combining the Z-order

scaling with a staged learned model, for efficiently answering

spatial queries. Although applicable for smaller dimensions, both

the Z-order model and the UB-Tree are limited when dealing with

a larger number of dimensions, which will be analyzed upon the

experiments and the direct comparison.

3 THE ML-INDEX

The ML-Index is a compound of two main components, as il-

lustrated in Figure 1. Its creation is carried out in two stages,

guided and generalized by the idea of previously existent iDis-

tance index [2]. The upper part consists of a set of reference

points, responsible for scaling the multidimensional data to one-

dimensional values, which can be easily sorted. The lower part is

a Learned Model used for learning the distribution of the scaled

values and a sorted array used for searching and storing the data.
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Figure 1: The ML-Index Approach

3.1 Scaling Methods

Consider a set of data points dl ∈ D, where dl = (d0,d1, ...,dn ) is

in an n dimensional metric space. The first stage, responsible for

creating the upper part, maps the data points from a n into a one-

dimensional data space. The scaling method aims to group points

that are similar to each other and project them in one-dimension,

such that the similarity is preserved by the proximity of the one-

dimensional values. To efficiently do the scaling, m reference

points Oi are chosen, each representing an identification or a

centroid of the data in partition Pi . The partition Pi is formed

from the points whose closest reference point is Oi . This means

that the minimal distance of a point dl to the reference points

determines the appropriate partition.

Irrespective of the way to find reference points, we elaborate

on the usage of different scaling methods and we discuss their ad-

vantages and disadvantages. The straightforward case is scaling

dl with respect to a single reference point, by mapping it to a one-

dimensional value key = dist(Oi ,dl ). Although applicable for

smaller datasets, the method creates a considerably large amount

of false positives, produced by mapping multidimensional points

that are far from each other to the same value.

The second scaling method is the iDistance method described

by Jagadish et al. [2]. This method maps a data point dl into a one-

dimensional value key, based on key = i ∗ c +dist(Oi ,dl ), where

i is the index of the closest reference point Oi . The constant c

serves to partition the points into predefined ranges and based

on its value it stretches the ranges differently. Using the constant,

the points belonging to a partition Pi will be mapped to a range

[i ∗ c, (i + 1) ∗ c]. Although it provides well-scaled values and

drastically reduces the number of false positives, it is highly

dependent on the parameter c . A smaller value for c may create

an overlap between the partitions, causing multidimensional

points from different partitions to be mapped to the same scaled

value. Hence, upon search, the number of unnecessarily examined

points will be increased. On the other hand, having a larger c

directly affects the creation of the second stage of the ML-Index

which we thoroughly discuss in Subsection 3.2.

Finding the right value for the constant c , which will cause

no overlap and have perfectly ordered partitions, with no gaps

between them, is impossible. This comes as no surprise since ref-

erence points correspond to partitions of different sizes. Prompted

by the previous, we propose a novel scaling approach that pro-

vides a perfect ordering between the ranges of different par-

titions and overcomes the problem of overlapping. The new

method termed offset method, given a point dl and its closest ref-

erence point Oi , calculates the scaling value as key = o f f seti +

dist(Oi ,dl ), where o f f seti is different for every partition Pi .

Given an arbitrary ordering of the reference pointsO1,O2, ...,Om

and their adequate partitions P1, P2, ..., Pm , the offset is calculated

as the sum of the radii of their previous partitions:

o f f seti =
∑

j<i

r (j)

where r is the maximal distance fromO j to the points in partition

Pj . This method assures no overlap and it reduces the gap be-

tween the partitions, which is crucial regarding the performance

of the second stage of the ML-Index. Additionally, it omits the

problem of tuning the parameter c , for a suitable range creation.

The downside in comparison to iDistance is an unnoticeable

memory increase, caused by storing the offsets. Following the

scaling of the original data, each data point dl is associated with a

value key. Multiple points can have the same scaled value. Before

the execution of the second stage of the ML-Index, we sort the

points according to the value key. The resulting order is used as

a starting point for creating a learned model, which efficiently

predicts the position of a given key within a sorted array.

3.2 Learning the Order

The second stage of the ML-Index represents a Recursive Learned

Index, similar to the one described by Kraska et al. [4]. The index,

mimics the behavior of a traditional B-Tree, by mapping a given

lookup key within a sorted array with the guarantee that the key

is within proximity of the predicted position [pos−err ,pos+err ].

As observed [4], a model, which performs this task, effectively ap-

proximates the cumulative distribution function (CDF), modelled

as p = F (key) ∗ N , where N is the number of keys and F (key) is

the estimated CDF that estimates the likelihood to predict a key

smaller or equal than the lookup key. The learned index is built

in a top-down manner where a model in each stage provides a

prediction used to choose the model in the next stage, or the po-

sition of the key when the final stage is reached. For model f (x)

from modelsMl at stage l , with input x , the loss is calculated:

Ll =
∑

x,y

(f
⌊Ml fl−1(x )/N ⌋

l
(x) − y)2 [4]

Although Kraska et al. [4] suggest using multiple stages of

the learned index, we use only two. The incentive behind this

decision is that if the second stage index produces a larger than

expected error, the increase in the number ofmodels in the second

stage is sufficient to reduce the error. Additionally, unlike their

proposed learned index, the second stage of learned models in the

ML-Index is constructed solely by using a regression, with the

purpose of balancing the construction time and the performance

of the learned index. By using a simpler model, the number of

multiplications and additions upon search is reduced, leading to

lower search time. The final prediction of the learned model is a

predicted position within the sorted array where the key, in our

case the scaled value is stored. Because a position is predicted

with a certain error, one must also search within the error bounds

around the prediction for the correct position.

As mentioned, the different scaling methods impact the second

stage of the ML-Index. Since the naive scaling method is infea-

sible, we elaborate only on the impact of the iDistance and the

offset scaling method. Both methods result in different functions

that need to be estimated by the learned index. When consider-

ing the iDistance we distinguish two scenarios, one with overlap

between the partitions and one without. When c is smaller than

the maximum radius of all the partitions, then an overlap be-

tween the ranges of the partitions is inevitable. However, sorting

the data with a smaller c creates a function which can be easily
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learned. This is a result of the overlapping that leads to a larger

density of the scaled values which results in a fairly continuous

function. The second case is having a larger c , that avoids over-

laps, but creates large gaps within the function. Therefore, the

neural network will learn the data present in the different ranges.

However, upon search time it is possible to search for a point that

is not present within these ranges, but it is located within the

gaps of the function. Vast research has been proposed for filling

the missing values in a function to be learned, however, this leads

to a pre-processing step which can be easily avoided by using the

offset method. The offset method circumvents the gaps created

by the different maximal sizes of the partitions and provides a

better łlearnablež function in which the missing values may only

appear due to sparsity in the clusters and not the scaling method.

4 QUERY PROCESSING

Point Query: The point query identifies the existence of a mul-

tidimensional point within the index and it is executed in three

steps as shown in Figure 1. The first step includes searching for

the closest reference point Oi to the query q and calculating the

scaled value key = o f f seti + dist(ClosestOi ,q), where o f f seti
is calculated as i ∗ c for the iDistance scaling and appropriately

for the offset method. Once calculated the key is used to predict

the position of the point q, within the sorted array of points.

The predicted value is the position pos of the key within the

sorted array, and it is used in its exponential search with bounds

[pos − err ,pos + err ]. The complexity of the first step, form ref-

erence points and d dimensions, is O(m ∗ d). The learned model

complexity depends on the architecture of the neural network.

A neural network with a single hidden layer with width h and

input size N will have O(hN ) multiplications and additions.

KNN Query: Given a query q and a parameter k , the KNN

query finds the closest k points Sk , to the query such that ∀di ∈

Sk , ∀dj ∈ D \ Sk , dist(q,dj ) ≥ dist(q,di ). Since the iDistance

was initially created for executing KNN queries, we adapt the

algorithm for the ML-Index. The algorithm creates several one-

dimensional range queries, whose selectivity expands until the

result is complete. The major modification is locating the start of

the range. For this purpose, the Algorithm 1 is used, that exploits

the learned model to predict the position of a given key within a

sorted array. However, since a key which is not present within

the array can be provided, we need to search for the key with

the smallest difference to the initial key. Nonetheless, searching

for the closest key to the initial key is not only dependent on the

bounds provided by the error of the learned model but also the

bounds of the ranges occupied by the reference points. There-

fore, we modify the binary search to also include the o f f seti and

o f f seti+1, which further reduces the search space. The method

closest returns the position of the value closest to the key in the

range [o f f seti , o f f seti+1]. To describe the need for the second

bounds, we consider having two reference points and their re-

spective ranges within the array [1, 5][6, 10]. Let’s further take

the assumption that the first range has the keys [1, 3, 5] and the

second [7.5, 8, 10]. Upon search, we want to find the closest key

to key = 6 for the reference point O2. If we do not consider that

the reference point O2 has a lower bound 6 we would retrieve

the key 5 as closest which does not belong to the region 2 and

thus, in reality, may not be even close to the query point.

Range Query: Widely applicable for smaller dimensions, the

range queryq = q1,q2, ...,qn , whereqj = [boundmin ,boundmax ],

defines bounds of a dimension j, retrives the data points di ∈ D

Algorithm 1 Predict Closest Position

Require: scaled value key (if outside of range, set to of f si or of f si+1),

range for Oi [of f si , of f si+1]

1: mid = predict (key), s =mid − err, t =mid + err

2: while s ≤ t do

3: mid = ⌈(s + t )/2⌉

4: if datamid == key then

5: returnmid

6: withinRanдe = T rue

7: if datamid outside [of f si , of f si+1] then

8: withinRanдe = False , set s or t tomid

9: if withinRanдe or |s − t | ≤ 1 then

10: if key < datamid then

11: if key ≥ datamid−1 then

12: return closest (data, key,mid − 1,mid, of f si )

13: t =mid − 1

14: else

15: if key ≤ datamid+1 then

16: return closest (data, key,mid,mid+1, of f si+1)

17: s =mid + 1

where ∀j ∈ n, di j ≥ qj0 and di j ≤ qj1. For the execution of

the range query within the ML-Index, we adapt the Data-Based

Method for range approximating suggested by Schuh et al. [7].

The algorithm iterates over the reference points and for each ref-

erence point calculates the closest and the furthest point from the

given range q. For the computed furthest and closest point, the al-

gorithm issues a range query of the form [dist(Oi ,pointclosest )+

o f f seti , dist(Oi ,pointf ur thest )+o f f seti ]. Since the closest and

furthest points can also have keys which are not present within

the sorted array, the method described in Algorithm 1 is used.

5 EXPERIMENTS

For evaluation, all indices are in main memory and implemented

in Java. The learnedmodel is implementedwith TensorFlow and it

is extracted to omit the overhead. Its width is set according to the

dataset. The reference points selection is done using the KMeans

algorithm, due to better results for the real-world data. GMeans

was not considered, since the branching factor of theM-Tree is set

to k , for a fair comparison. We compare the following structures:

the ML-Index, the iDistance index [2] with keys computed by

our offset method, the M-Tree, and the index based on learning a

Z-order, ZM-Index [8]. Two real-world datasets were used, Color

Histogram (dim: 32, points: 68040, size: 19.5 MB) and Forest Cover

Type (dim: 10, points: 581012, size: 68.7 MB).

Scaling Methods Comparison: Figure 2a shows the abso-

lute error of learning the order produced by the different scaling

methods, by varying the width of a single layer neural network.

For the iDistance, c is once set to produce 10% and once 0% range

overlap between the different reference points. The data is di-

rectly learned in several epochs, without preprocessing. The error

produced by the offset scaling method is much lower from the er-

ror by the iDistance method when no overlap occurs. Differently,

due to the density of the values, the approach with an overlap

performs slightly better. However, an overlap between the ranges

will result in slower query execution, therefore, the offset method

performs the best when considering both aspects.

Memory: Figure 2b (Note the log scale 2) shows the memory

consumption of the M-Tree, the iDistance and the ML-Index for

both datasets. As observed, the ML-Index has a drastic reduction

in memory and has only small storage required for the learned

model and the offset distances. Increasing the number of clusters
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Figure 3: Range search when varying range selectivity

(left) and clusters (right) for Forest Cover Type dataset

results in an unnoticeably small increase in memory due to the

number of offset values.

Query Execution: Since the M-Tree is drastically slower, we

show only the comparison between iDistance and ML-Index. Fig-

ure 3 shows the execution time of 100 range queries by varying

the query selectivity, representing the fraction of points within

the query range from the total number of points, and the num-

ber of clusters used for choosing the reference points. Figure 4

shows the execution time of 1000 KNN queries by varying k and

the number of clusters. The ML-Index is always faster than the

iDistance, which is a result of the superiority of the search with

the learned model over the search with B+Tree. This is especially

visible for larger ranges and k values where the result may be-

long to more clusters, requiring multiple predictions from the

learned model, causing a more visible difference in the execution

time. Upon an increase of clusters, the difference between the

search time of the ML-Index and iDistance is smaller. Assuming

we search for the closest point, we need to first find the closest

cluster amongm clusters, which is performed the same for the

iDistance and ML-Index. Hence, whenm is large, the execution

will be impacted more by the cluster iteration than the prediction.

Comparisonwith learnedZM-Index: For comparisonwith

ZM-Index, we extract 2, 4, and 6 dimensions from the Forest Cover

dataset, we scale the values to reduce the number of bits and the

large gaps between successive Z-values, which produce a slower

execution time. We always use our learned model, since having

the number of neurons mentioned in [8], results in incomparably

large execution time. ZM-Index outperforms ML-Index when

searching for a two-dimensional point, as seen in Figure 5a. This

is intuitive since a search through multiple clusters requires more

time than a bit shifting operation, which is not the case for larger

dimensions and a smaller number of clusters. When considering

the range query comparison in Figure 5b, the ZM-Index performs

far worse. Upon searching for a next Z-value which is within the

range, we exchange every bit accordingly, resulting in a longer
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(right) for Forest Cover Type dataset
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parison with ZM-Index for Forest Cover Type dataset

execution when dealing with both large numbers and dimensions.

More importantly, in each step, the next Z-value within range is

calculated, which may correspond to a value not present within

the dataset and thus it will lead to unnecessary access.

6 CONCLUSION

We addressed the problem of replacing multidimensional indices

with a learned, distribution-aware ML-Index. The ML-Index en-

tails two core tasks: representing the dataset by one-dimensional

values based on reference points chosen with respect to the data

distribution, and a learned model capable of accurately learning

the order of the values. Experimental results demonstrated the

feasibility of the approach and its superior performance com-

pared to state-of-the-art competitors. Future work includes ren-

dering the index resilient to updates by observing degenerated

performance and triggering retraining only when necessary.
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