
MALOS: A Movement-Aware Location Selection System
Di Yang, Hui Li

yanw.d@foxmail.com,hli@xidian.
edu.cn

School of Cyber Engineering, State
Key Laboratory of Integrated

Services Networks
Xidian University

Xi’an, China

Meng Wang
School of Computer Science
Xi’an Polytechnic University

Xi’an, China
wamengit@sina.com

Dan Li, Jiangtao Cui
i.danli@outlook.com,cuijt@xidian.

edu.cn
School of Computer Science and

Technology
Xidian University

Xi’an, China

ABSTRACT
Facility placement has been receiving considerable research at-
tention due to the proliferation of GPS equipped mobile devices.
Establishing new facilities has a wide spectrum of applications
including billboard placement, wildlife monitoring, supermar-
ket/restaurant placement, etc. In all these applications, finding
the best position to place a facility can lead to the optimal benefit
given plenty of target users, which are associated with many his-
torical position logs, e.g., user check-in data, wildlife monitor logs.
In this work, we demonstrate a general system, namely MALOS,
for answering the majority of facility placement problems given
movement logs of a series of target users. Specifically, MALOS
leverages on three academic works in the following scenarios.
Find the best one/k position/s to place one/k new facilities in
order that the overall benefit can be maximized; find one position
to place an extra facility given that there are k existing facilities
in different places, such that the overall benefit can be maximized.
Notably, in MALOS we consider only the geographical issues
that are common in all facility placement applications and choose
not to take into account the specialized factors that vary across
applications, such as billboard size, restaurant type, etc. We shall
provide an opportunity for demonstration users to experience
all kinds of these facility placement queries with a real-world
historical movement logs and corresponding maps interface.

1 INTRODUCTION
Facility placement has been receiving considerable research at-
tention due to the proliferation of GPS equipped mobile devices.
Establishing new facilities has a wide spectrum of applications,
for example, setting up billboards, monitoring wildlife, running
restaurants, building charge stations and urban planning. Majori-
ties of existing research work focus on solving a specific problem,
such as setting up billboards or running restaurants, etc. If we
change the application, these researches cannot be applied di-
rectly to the new one. Therefore, we are motivated to design a
general system to address facility placement problem, namely
Movement-Aware LOcation Selection system (MALOS).

Compared with the maximum coverage problem of existing
work [7], the advantages of MALOS are as follows. Firstly, as a
ready-to-use integrated system, instead of loading offline dataset
as input, MALOS incorporates a data acquisition module that col-
lects historical check-in data from the Internet and is updated in
real-time; secondly, [7] can only be applied in outdoor advertising
applications but fails to fit in other applications. In comparison,

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

we take into account the common factor of different facility place-
ment applications, i.e., distance, and allows user-configuration
for other factors specialized for particular scenarios. Thirdly, MA-
LOS is a general system that supports up to three different use
cases, while [7] considers only one of them.

MALOS is a general movement-aware facility placement sys-
tem, where general can be interpreted as follows: 1)We generalize
the common spatial-correlated issues within facility placement
applications, and avoid falling into application-dependent factors,
e.g., size and price of billboard, categories of restaurant and etc.,
which can be extremely different across applications. 2) We con-
sider the following representative scenarios in facility placement,
given the historical movement logs for a large scale of users.

• Place-One: query the optimal location which can influence
the maximum moving objects [6].

• Place-k : return k locations which can influence the largest
number of moving objects [4].

• Incremental-One: add a location into the existing locations
set which could provide the best marginal [1].

Our key contributions in this work are summarized as follows.
• We develop a general system based on user movement
data, namely MALOS, answering general facility place-
ment queries with user-friendly browser-based interface.

• The system provides three different queries to meet the
major requirements for facility placement applications.

• We provide a module to further incorporate check-ins data
for each moving object in real-time.

The rest of the demonstration proposal is organized as follows.
Section 2 formally defines the specific queries supported by MA-
LOS. Then, we introduce MALOS system in Section 3. Section 4
offers the demonstration details. Finally, Section 5 concludes the
demonstration.

2 DEFINITION OF QUERIES
In this section, we will introduce the definitions of three queries
mentioned before.

Definition 2.1 (Place-One). Given a set of candidate locations
C , a set of moving objects Ω, a certain distance-based probability
function PF and a user-specified influence threshold τ , the Place-
One query aims to find the optimal candidate c ∈ C such that
∀c ′ ∈ C − {c}, in f (c) ≥ in f (c ′), where in f (c) is the number of
moving objects in Ω that are influenced by c [6].

Definition 2.2 (Place-k). Given a set of candidate locations
C = {c1, c2, ..., cn }, a set of moving objects Ω and the budget
number of new facilities k(k ≤ n). Place-k aims to find ∃S ⊆ C to
maximize σ (S). σ (S) denotes the total number of moving objects
that are influenced by candidate set S [4].

Demonstration

 

 

Series ISSN: 2367-2005 595 10.5441/002/edbt.2020.72

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.72


Figure 1: Architecture of MALOS.

Definition 2.3 (Incremental-One). Given a set of candidate loca-
tionsC , a spatial network graphG(V ,E), a set of existing facilities
F and a set of moving objects Ω, each of whose movement can
be modeled as a set of reference locations, Incremental-One aims
to find the optimal location c among a set C of query candidates
such that ∀c ′ ∈ C,∆(c) ≥ ∆(c ′), where ∆(c) is expected reduction
of total distance for c [1].

In particular, in our default settings, we follow the same sug-
gestions from original corresponding academic works for differ-
ent queries. For instance, in Place-One, the probability of a user
checking-in at a point-of-interest decays as the power-law of
the distance between them. We set the distance-based probabil-
ity function PF as ρ(d0 + dist(c,p))−λ by default as suggested
in [6], where ρ is a factor to describe behavior pattern, d0 is a
distance factor, dist(c,p) is the distance between candidate c and
position of moving object p, λ is a exponential factor to configure
the mapping from distance to influence probability. In MALOS
system, the default values of the number of candidates, probabil-
ity threshold τ , behavior factor ρ, and exponential factor λ are
600, 0.7, 0.9, and 1.0, respectively. In fact, it can also be manually
adapted to other functions by MALOS users.

3 MALOS PROTYPE
In this section, we cover the framework of MALOS, the acquisi-
tion of check-in data, modeling of check-in data in database and
interaction with data.

3.1 The MALOS architecture
MALOS adopts the browser-server model and is implemented
with JavaScript and Java, built on top of PostgreSQL. MALOS im-
plements three algorithms: PINOCCHIO algorithm [6], GreedyPS
algorithm [4] and Local Network Based (LNB) algorithm [1].
However, MALOS is not a simple aggregation of these three algo-
rithms, which consider only how to address particular use cases
given the data sources. Instead, as a real-time and ready-to-use
system, MALOS has to additionally address two other grand chal-
lenges, 1) where and how to get the data these algorithms rely
on; 2) how to store the data such that these algorithms can be
efficiently carried out. Our solutions towards both challenges are
discussed in detail within Section 3.2 and 3.3, respectively.

The architecture of MALOS is shown in Figure 1, which in-
cludes data acquisition, query processing and visualization mod-
ules. The data acquisition module obtains the historical position
logs from third-party resources (e.g., Sina Weibo, Twitter). In or-
der to efficiently crawl data from theweb, we use the Scrapy archi-
tecture, which can efficiently obtain historical location check-in
data to ensure real-time performance [5]. Users submit query
requests through the browser, which executes a particular facil-
ity placement algorithm (Place-One, Place-k or Incremental-One )
based on the request. Finally, the results are returned to the users,

and are displayed over a Map interface (e.g., Google Maps, Baidu
Map) in the browser.

3.2 Data acquisition
How to obtain moving users’ historical position data is a first
challenge for MALOS. At present, there are two direct ways to
address it, one is to be authorized to obtain real-time data directly
from giant LBS (location-based service) enterprises (e.g., Uber,
Google), the other is to cooperate with government departments.
However, neither of them is easy to be carried out for ordinary
companies. In this end, MALOS system aims to provide a friendly
usage for general public users, who are unable to get the data
through the ways discussed above. Therefore, we developed a
general web crawler to obtain the historical locations of people
through third-party services.

In MALOS system, we use Scrapy framework [5] to collect
data. Scrapy is an excellent open source framework for quick
crawling of web sites and extracting structured data. There are
mainly seven components in Scrapy. Scrapy Engine is responsible
for controlling the data flow between all components of the sys-
tem. Scheduler receives requests from the engine and enqueues
them for further usage by the engine. Downloader is responsible
for fetching web pages and feeding them to the engine which, in
turn, feeds them to the spiders. Spiders are custom classes written
by us to parse responses and extract items from them or addi-
tional URLs to follow. Item Pipeline is responsible for processing
items once they have been extracted by the spiders. Downloader
Middlewares are specific hooks that sit between the Engine and
the Downloader; and process requests (resp., responses) when
they pass from the Engine to the Downloader (resp., Downloader
to the Engine). Spider Middlewares are specific hooks that sit
between the Engine and the Spiders; they are able to process
spider input (responses) and output (items and requests). The
framework also provides a convenient mechanism for extending
Scrapy functionality by plugging custom code.

We present a feasible crawling strategy for MALOS (By de-
fault, the crawling site of the MALOS system is Weibo). First, we
select one (or more) seed users in a region as the initial target,
which is determined by the geographic location label in the per-
sonal information list. For each crawled object, we grab personal
information in turn, locations of historical check-ins in all Weibo
pages, as well as fans list and follower list. Then, add the two lists
in the upper level watchlist to the crawl object list. Following this
iteration, the reptile radiation can be formed, which takes the
seed user as the core and diffuses outward layer by layer. In fact,
there are a lot of records with noise information, such as some
vulgar marketing numbers. Therefore, we need to set a threshold
value for the captured object to determine whether the user is a
target user. In MALOS, we parameterize a target moving user as
follows: the number of message < 5000, fans < 5000, follower <
5000.

Given the above strategy, Scrapy in MALOS works as follows
(illustrated in the left part of Figure 1). When the web Spider
starts, it will extract each URL from the start URL of a seed user
and encapsulate it into a request, which will be sent to the Engine.
Then the requests are passed over to the Scheduler and form a
queue. The first item in the queue will be sent to Downloader for
retrieving the corresponding content. The response file returned
from the Downloader will be handed over to a parse method.
Finally, the parse method calls the a predefined XPath to extract
the check-in data from the crawled page content.

596



Figure 2: The browser interface of MALOS.

In order to meet our requirements, we customize these com-
ponents by defining some parameters as followings.

ROBOTSTXT OBEY = False
DOWNLOAD DELAY = 0.1

CONCURRENT REQUESTS = 16

3.3 Storage of check-in data
The check-in data reflects the spatio-temporal behavior of the
moving object. It generally includes user ID, check-in location,
timestamp, check-in area, etc. The check-in location sequence
with time mark constitutes the user’s historical positions logs.
Based on the check-in records, we are able to construct historical
positions logs for each individual Weibo user we have crawled.
In particular, in PostgreSQL we present the following schema for
user historical positions logs.

CI PAIR (USER ID varchar(40), LAT real, LNG real, CI Time
timestamp, CITY varchar(256));

Each CI PAIR object stores the position of a moving user at a
particular timestamp. Multiple records of a user are combined to
form a spatial-temporal movement history.

We store the dataset in PostgreSQL (version 11.6) extended by
PostGIS1. In addition to using the embedded distance calculation
function ST Distance (дeometry д1,дeometry д2), MALOS sys-
tem extends the integration of PLACEONE(dataset ), PLACEK(
dataset , parameter k) and INCREONE (dataset , parameter k)
functions into the PostgreSQL database. The extensions are basi-
cally customized functions that define specific query processing
algorithms. As a mild coupling external module, the extensions
can be easily distributed and maintained.

3.4 Usage of MALOS in facility placement
In MALOS system, data operations are initiated by users from
browser side. The browser side offers two panels, the function
panel and the map panel [2]. The function panel provides the
interfaces to users for obtaining check-in data and generating
queries. The map panel shows a map that illustrates the returned
objects given the required query input of system users.

Users interact with the system through the function panel. The
function panel provides data acquisition interaction function and
location query interaction function. Note that in case that API
authentication settings for real-time crawling mode may require
troublesome modifications, in the demonstration we also provide
an alternative mode to allow the system to load offline track data.

The MALOS system mainly provides users with three func-
tions: Place-One, Place-k and Incremental-One. Place-One and
1www.postgis.net/

Place-k functions are mainly for users who have not yet deployed
any facility and want to select locations to deploy new ones in
some candidate areas, which can also be manually set by the
system users. Place-One, which aims to find the optimal loca-
tion from a set of candidates to place a new facility such that
a score (i.e., benefit or influence on some given objects) can be
maximized. Further, a user can specify a constraint k to perform
Place-k , which indicates the number of candidate locations the
user plan to choose. Considering that there are existing facil-
ities, and users may intend to expand the scale of the facility
network by opening a new one, the system provides Incremental-
One function, which allows users to enter a series of existing
facilities locations as constraints for location selection. Different
algorithms with respect to each of these use cases have been
implemented in MALOS system.

The Place-One function is addressed using PINOCCHIO algo-
rithm. PINOCCHIO algorithm employs the R-tree structure to
build geographic data index, then leverages two pruning rules
based on a novel distance measure. With the help of influence
arcs (IA) rule, it identify the candidates that influence the object.
For the remnant candidates, non-influence boundary (NIB) rule
is used to exclude those cannot influence the object. Lastly, the
remnant candidates are verified.

The Place-k function is solved byGreedyPS algorithm. GreedyPS
algorithm first calculates the set of objects affected by all candi-
dates. Then it maps these sets tow bitmaps. Finally, it selects the
candidates with the largest number of ‘1’ in bitmaps until K is in
each iteration process.

The Incremental-One function is addressed via LNB algorithm.
It first constructs an index structure, Local Network Table (LNT),
based on network locality. With the help of LNT, we initialize a
Max Heap LNH ordered by ∆+(vivj ), which is the upper bound
of expected reduction of total distance (ERD) if a facility is built
on edge vivj . Then it iteratively checks the top candidate c in
LNH. If ∆(ol) of current optimal candidate ol is greater than ERD
upper bound for the top edge in LNH, the validation is finished.
Otherwise, for every reference location whose local network
covers vivj , it needs to calculate ∆(c) through relevant rules. If a
better candidate is found, it updates ol by c and eventually the
optimal answer can be obtained, where ∆(c) is ERD for c .

After the request is processed by the server, the objects re-
trieved are returned. In order to enable users to observe the data
intuitively, we need to visually present the spatial and temporal
distribution of trajectory data. Visual comparison is one of the
most fundamental and common visualization tasks [3]. Thus, we
add a thermal layer, where we provide users with two types of
density maps, namely, heatmap and roadmap. The thermal layer
demonstrates the distribution density of the target trajectory in
the geographic location by overlaying different color blocks on
the map. In case that the volume of the check-in location data
heat layer does not clearly reflect the trajectories of the crowd,
we extensively add a trajectory layer to the system. The trajec-
tory layer distinguishes the trajectories of different people by
different colors, and reflects the overall trend of the trajectories
by sampling method, which enhances the interaction experience
for users. The marker layer provides a solution for visually pre-
senting the results returned by the server and marking the input
location points by users. For the Incremental-One function, a user
does not need to enter the specific latitude and longitude coor-
dinates of the existing facility in the system function panel. It
is only necessary to find the location of the facility in the map
panel and perform correlated marking on the marker layer.

597



Figure 3: Illustration of Incremental-One function.

4 DEMONSTRATION
In our demonstration, as discussed before, we additionally im-
plement an offline mode within MALOS system, in case there is
troublesome modification for crawler API settings that is brought
by the network connection issues. In offline mode, we adopt real-
world check-in data in Singapore2 to give users the opportunity
to interact with MALOS and experience how the system can be
used to select the location of facilities. The browser interfaces of
MALOS has been shown in Figure 2. Users can use the system to
find the best location of facilities in various scenarios, including
Place-One, Place-k and Incremental-One.

4.1 Data loading and request submission
First, the user needs to select a target city to place the facility, and
then select a function in the function panel to initiate the request.
In MALOS system, we provide a list of cities for users to choose.
For offline mode, the city can be only configured as Singapore.
When the user selects a region where he wants to deploy the
facilities, the map panel will automatically switches to focus on
the corresponding area, and the server loads the historical check-
in locations within the region. As shown in Figure 2, when the
system loads the offline Singapore dataset, and the map panel
also switches to Singapore. To specify the interested location, an
audience can select a fine-grained location by drawing a rectangle
on map panel (the latitude and longitude of the location are
obtained using the Map API). For the Incremental-One function,
theMALOS system allows users to enter some request constraints
before running it. A user can enter a constant k to indicate the
number of locations need to be picked. As illustrated in Figure 3,
user enters a constant of 5 and marks five locations on the map
to indicate the currently deployed facilities. The results display
list also shows the longitude and latitude of these five facilities
for user input verification.

4.2 Visualization and results display
Users can also explore the distribution of urban population infor-
mation by visualization. There are three kinds of visualization
methods, namely, heatmap, roadmap and trajectory-map for users
to choose. As shown in Figure 4, heatmap is shown. In heatmap
and roadmap, the darker the color, the greater the population
density. The trajectory map shows the migration path of the
crowd, and users can view the spatial and temporal distribution
of urban population. As illustrated in Figure 3, when the query

2The default trajectory data source can be found in the github of PINOCCHIO listed
in our MALOS project homepage: https://lihuixidian.github.io/malos/

Figure 4: A visualization method of MALOS sys-
tem(heatmap).

results are returned to the browser, the result objects are dis-
played in both the map panel and the result list. At the same time,
users can further explore the surrounding environment of the
recommended location by the system with the visualization.

5 CONCLUSION
In this demonstration, we present a general facility placement
system, namely MALOS. MALOS solves a group of representative
facility placement problems based on historical check-in location
data that comes from the Internet and is updated in real time.
MALOS adopts the browser-server model and provides an easy-
to-use interface to answer Place-One, Place-k and Incremental-One
queries. The queries cover the majority of facility placement prob-
lems given historical movement logs of massive users. Moreover,
the system focuses on geographical issues that are general in all
facility placement applications, and avoids taking into account
application-dependent factors, such as the size of billboard, etc.
In this way, the system can be used as a basic framework and
easily adapted to different applications by taking into account
extra specific application-aware factors.

ACKNOWLEDGMENTS
The work is supported by National Natural Science Foundation of
China (No. 61672408, 61972309, 61976168), National Engineering
Laboratory for Public Safety Risk Perception and Control by Big
Data (PSRPC) and China 111 Project (No. B16037).

REFERENCES
[1] Jiangtao Cui, Meng Wang, Hui Li, and Yang Cai. 2018. Place Your Next Branch

with MILE-RUN: Min-dist Location Selection over User Movement. Inf. Sci.
463-464 (2018), 1–20.

[2] Piotr Jankowski, Natalia V. Andrienko, and Gennady L. Andrienko. 2001. Map-
centred exploratory approach to multiple criteria spatial decision making.
International Journal of Geographical Information Science 15, 2 (2001), 101–127.

[3] Johannes Kehrer and Helwig Hauser. 2013. Visualization and Visual Analysis
of Multifaceted Scientific Data: A Survey. IEEE Trans. Vis. Comput. Graph. 19, 3
(2013), 495–513.

[4] Dan Li, Hui Li, Meng Wang, and Jiangtao Cui. 2019. k-Collective Influential
Facility Placement over Moving Object. The 20th IEEE International Conference
on Mobile Data Management (2019).

[5] Jing Wang and Yuchun Guo. 2012. Scrapy-Based Crawling and User-Behavior
Characteristics Analysis on Taobao. In 2012 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery, CyberC 2012, Sanya,
China, October 10-12, 2012. 44–52.

[6] Meng Wang, Hui Li, Jiangtao Cui, Ke Deng, Sourav S. Bhowmick, and Zhenhua
Dong. 2016. PINOCCHIO: Probabilistic Influence-Based Location Selection
over Moving Objects. IEEE Trans. Knowl. Data Eng. 28, 11 (2016), 3068–3082.

[7] Yipeng Zhang, Zhifeng Bao, Songsong Mo, Yuchen Li, and Yanghao Zhou.
2019. ITAA: An Intelligent Trajectorydriven Outdoor Advertising Deployment
Assistant. Proc. VLDB Endow. 12, 12 (2019), 1790–1793.

598


	MALOS: A Movement-Aware Location Selection SystemDi Yang, Hui Li, Meng Wang, Dan Li, Jiangtao Cui

