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ABSTRACT

Queries that can navigate large search spaces to identify complex
objects of interest cannot be efficiently supported by traditional
DBMSs. Searchlight is a recent system that aims to address this
fundamental shortcoming by deeply yet transparently integrating
Constraint Programming (CP) logic into the query engine of an
array DBMS. This hybrid model enables exploration of large
multi-dimensional data sets progressively and quickly.

Fast query execution is only one of the requirements of ef-
fective data-exploration support. Finding the right questions to
ask is another notoriously challenging problem, given the users’
lack of familiarity with the structure and contents of the under-
lying data sets, as well as the inherently fuzzy goals in many
exploration-oriented tasks. To this end, in the context of Search-
light, we study the modification of initial query parameters at
run-time. We describe how to dynamically refine (i.e., relax or
tighten) the parameters of a query, based on the result cardinality
desired by the user and the live query progress. This feature al-
lows users to iterate over the datasets faster and without having
to make accurate guesses on what parameters to use. Our ex-
perimental results show that the proposed techniques introduce
little or no overhead while yielding considerable time savings
compared to user-driven, manual query refinements. The result
is a system that not only optimizes machine resource usage but
also reduces user effort.

1 INTRODUCTION

Consider a researcher working with the MIMIC II dataset [1],
which contains medical information for a number of ICU patients
over a large period of time. Assume that she is studying histori-
cal ABP (Arterial Blood Pressure) signal readings and wants to
identify time intervals that satisfy the following constraints:

o The length of the time interval can be from 8 to 16 seconds,
and it can start at any point in time.

e The average signal amplitude must be within [150, 200]
range for the interval.

e The maximum amplitude of the signal over the interval
must exceed the maximum amplitude of the signal over its
left and right neighborhoods by at least 80. The left (right)
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neighborhood is defined as an 8-second interval to the left
(right) of the main interval.

This seemingly simple search query is difficult to express and
even harder to optimize using traditional query languages and
DBMSs [10]. Recent systems, such as Searchlight [10, 11], extends
SciDB [2] with constraint-based search and optimization support,
effectively integrating two mature technologies (DBMS and CP-
based solver) to address queries that operate on large search
spaces and over large data sets.

Now imagine that the user gets zero results after running the
initial query, as illustrated in the top part of Figure 1. It turns out
that the query was over-constrained! She then tries to guess the
correct constraint parameters manually by relaxing the average
amplitude constraint: now the average ABP amplitude must be
within the [150, 250] range. When she runs this new query, she
gets flooded with a large number of intervals, many of which
overlap, as shown in the middle band of Figure 1. Since such a
result can be overwhelming for her to parse and study, expecting
that there might be more focused and “better” initial results she
could work with, she then tries to tighten the interval to [150, 220].
After running the query again, she gets a reasonable number of
results that she can explore in detail, as illustrated at the bottom
of Figure 1.
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Figure 1: Exploring the ABP waveform data. Top: original
query result. Middle: an over-relaxed query result. Bottom:
final query result.

This scenario illustrates a number of problems:

o The user has to go through a series of guesses to identify
a query that outputs a desirable number of results. This is
often a frustrating and cumbersome process, especially if
the user has limited knowledge about the data, which is
often the case when exploring new data sets.

o The process of manual refinements (i.e., relaxation and
tightening) might be quite complex even for seemingly
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simple queries. In the earlier example, the user can mod-
ify the average amplitude constraint, or the two neigh-
borhood constraints, or any combination of those, which
collectively create an exponential number of possibilities.
e With manual refinements, no guarantees can be given for
the final result. In general, users prefer to get results that
are as close as possible to the original query parameters.

We address these problems in the context of Searchlight, which
gives us an open DBMS platform to develop and test our solutions.
At the same time, we emphasize that these problems would arise
in any system supporting constraint-based queries and traditional
solving technology. We also note that these issues are amplified
when dealing with large datasets, as the query times can be
larger and it becomes even more critical to perform such query
iterations quickly and efficiently.

1.1 Motivation

A common initial step in data exploration is the identification
of a small number of interesting cases that the user dives into
for deeper study. In such cases, query refinements are applied to
assure a target result cardinality to meet a “budget” constraint typ-
ically on user time or money. For example, a medical researcher
may have the budget to run a survey on a specific number of
patients with certain characteristics. A business may have a dis-
count budget that is sufficient only to a specific number of cus-
tomers within a given campaign. An advancement officer of a
university may have a limited time to call a certain number of
alumni on a given day. An astronomy researcher may have the
time to study a limited number of celestial objects for a research
project. In all these cases, the ability to have the system automat-
ically tweak the query to produce a result set of a desirable size
is very helpful.

Beyond these generic use scenarios, we have anecdotal evi-
dence from a demonstration of waveform data exploration [11].
In this demo, the users were given the ability to fill in the pa-
rameters for template queries, such as signal amplitude, interval
length, etc. However, since they had very limited knowledge
about the presented dataset, their queries often output either too
many results (sometimes thousands) or nothing at all. Both of
the outcomes were frustrating, and the users had to go through
a number of trial-and-error runs to identify a small set of results
that is amenable to manual deeper inspection.

1.2 Query Refinement Approaches

Ideally, any system should perform any refinements automati-
cally by detecting if the query needs to be modified during its
evaluation without specific directives from the user. If there is a
need for relaxing the query, it should choose the constraints and
the degree of modification such that the final results are closest
to the original constraint parameters according to the provided
distance function. In the case of tightening, it should rank the
results and output the top ones according to the specified ranking
function. For performance optimization, it should reuse as much
computation as possible to minimize the overhead from multiple
searches. At the same time, if there is no need to modify the
query, the automatic approach should not incur any significant
overhead.

Query refinements have been studied in the context of re-
lational DBMSs [4, 6-8, 12-18]. Similar approaches can be ex-
tended to array DBMSs (such as SciDB) as well. However, the
query described in the example belongs to a different kind of
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search queries, which is the reason why an engine such as Search-
light that supported CP was used in the first place instead of the
original array DBMS. As we argue in Section 6, existing meth-
ods cannot be easily applied to constraint-based search queries.
These methods generally assume that either the result cardinality
can be easily estimated for the query, or appropriate range-based
indexes (e.g., B-trees or R-trees) exist over the objects of interest
(which are time intervals for the example above), so that the
search space of all possible objects could be traversed efficiently.
Due to the ad-hoc nature of search queries, however, the result
cardinality is hard to estimate. At the same time, since objects of
interest are defined by the query itself, as part of the constraint
specification, indexing becomes infeasible [10].

Another approach, possibly applicable to some simple search
queries, would be to rewrite such queries in SQL and execute
them on a relational (or array) engine, opening the possibility of
using the existing query refinement techniques. However, previ-
ous research [9, 10] suggests that executing such search queries
in a traditional engine, while possible, incurs significant perfor-
mance penalties. More importantly, such conversion results in
very complex SQL queries, for which the applicability of existing
refinement methods would be quite limited.

1.3 Overview of Dynamic Query Refinement

In a nutshell, Searchlight uses Constraint Programming (CP) to
perform the search over an in-memory synopsis of the original
data. The solver dynamically builds the search tree, possibly
pruning parts of the tree that cannot satisfy the constraints. We
observe that the main reason the original query fails and, thus,
produces an empty result is search pruning. If the query needs
relaxation, only the previously pruned parts of the search space
need to be revisited. Thus, we track these parts and later “replay”
the search over them, if needed. The replaying is guided by a
user-provided distance function — more promising replays are
explored first. It is important to mention that this replay happens
automatically, when we detect the absence of the desired number
of results. At the same time, replaying is performed as part of the
original query, thus removing the need to re-explore previously
finished parts of the search space, resulting in considerable time
savings. From the logical perspective, this approach can be seen
as introducing an objective function and searching for results
that minimize it. This results in a very natural extension of the
traditional CP model that already supports objective function-
based search. The only piece of information required from the
user is the desired cardinality of the result k and, possibly, the
distance function d() !. Our approach guarantees to produce
top-k results closest to the original constraints (i.e., minimizing
d())-

Query tightening can be seen as a dual problem for query
relaxation. Thus, the two work closely together. If the number of
results at some point during the search exceeds the desired result
cardinality, we switch the approach to query tightening, which
essentially ranks all results according to the specified ranking
function r() 2. The main idea behind our approach involves intro-
ducing a dynamic ranking constraint at that particular moment
during the search that restricts the final result to top-k objects
maximizing r(). As in the case of relaxation, it can logically be
seen as introducing an objective function with the maximization

!We provide built-in distance functions by default.
2Some built-in ranking functions are provided by default as well.



goal. We call such a constraint dynamic since its parameters are
constantly updating depending on the current result.

1.4 Contributions
Our main contributions are as follows:

e We introduce a novel distributed relaxation and tighten-
ing framework for search queries, which automatically
detects the need for modifying the query at run-time and
performs query refinements without the need for any user
intervention. The user just needs to specify the target re-
sult cardinality and, optionally, the distance and ranking
functions.

o The framework is general and applicable to different types
of constraints. It works for any constraint of form a <
fc() < b, where f;() is an arbitrary expression, including
User-Defined Functions (UDFs). It can be extended to other
types of constraints, with the introduction of a meaningful
distance and/or ranking measure. If desired, it can be even
applied to other engines beyond Searchlight, provided
they follow the CP execution model.

e Our implementation of this framework operates at the
DBMS engine level and extends it in a natural way that
is compatible with a generic CP model. Due to such a
seamless integration, it does not interfere with the existing
query processing, does not impact performance of queries
that do not require relaxation/tightening, and leverages
existing DBMS engine features.

We performed an extensive experimental evaluation over syn-
thetic and real (MIMIC II) data, which we discuss in Section 5.
Our results reveal tremendous time savings compared to manual
refinements and very low overhead.

The rest of the paper is organized as follows. In Section 2
we describe Searchlight as the DBMS/CP platform we use to ex-
plore our solutions. Section 3 presents the formal model behind
our relaxation/tightening framework. Section 4 describes design
and implementation of our solutions. Section 5 presents the ex-
perimental evaluation Section 6 discusses the related work and
Section 7 concludes the paper.

2 SEARCHLIGHT BACKGROUND

Searchlight is an extension of a traditional query processing
engine for efficient execution of search queries. It introduces
Constraint Programming (CP) methods to the query processing
and operates inside the engine. The user submits a search query in
form of a constraint program (decision variables and constraints
over them).

Searchlight processes the query by creating a number of CP
Solvers that perform the search on an in-memory synopsis of the
original data. Since synopsis is a lossy compression of the original
data, the CP-provided results (solutions) might contain false pos-
itives. Thus, the results need to be verified over the original data.
This is done by another Searchlight component called Validator.
The two components work concurrently to facilitate online an-
swering. When Validator confirms a solution, it is immediately
output, while false positives are filtered out. While Searchlight
does not have the notion of a query plan, each execution can
be imagined as a pipeline between two “operators”: Solver and
Validator. The Solver receives the query, outputs a stream of so-
lutions (tuples) to the Validator, while the latter filters out false
positives and outputs the final solutions to the user. Searchlight
is implemented as part of the SciDB query engine and uses its
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infrastructure to distribute both search space and data across the
cluster. Thus, Solvers and Validators exhibit both multi-node and
multi-core parallelism. The details of query processing are out of
scope of this paper, and the in-depth discussion can be found in
the Searchlight paper [10].

There are no specific limitations on types of queries Search-
light can work with, since CP solvers are quite general. Users
can use any of the constraints generally found in CP solvers. At
the same time, most useful types of queries tend to use aggre-
gate functions to assess regions in the data. For example, the
query presented in the introduction section can be represented
in Searchlight as follows:

e Decision variable x defines the start of the resulting inter-
val. Its domain is the entire length of the recorded data,
since the interval can start anywhere.

e Variable [x defines the length of the interval, Ix € 8, 16].

e The amplitude constraint: avg(x, x + Ix, ABP) € [150, 200],
where avg() is a built-in Searchlight aggregate. We will
denote it ¢y for future reference.

o The left neighborhood constraint: |max(x, x + Ix, ABP) —
max(x — 8,x, ABP)| > 80. The right neighborhood is simi-
lar. We will denote them as ¢z and c3 respectively.

When the Solver receives a CP specification similar to the
above, it dynamically builds a search tree for the query. An exam-
ple of such a tree for the query above can be seen in the left part
of Figure 2. The nodes represent the current variable domains
(search states), while edges represent Solver decisions that lead to
the corresponding search states. Children’s variable domains are
subsets of the parent’s ones, and leaves have the variables bound
(i.e., the domains are scalars). The decision process (search heuris-
tic) is tunable, can be selected and modified by the user [10]. The
search process itself is performed in a traditional backtracking
way. If, while building the tree, the Solver establishes a viola-
tion of query constraints (by relying on estimations from the
synopsis), the entire corresponding sub-tree is pruned from the
search (marked with the red “no” symbols in the figure), and is
never built or visited. When a leaf of the tree is reached (i.e., the
variables are bound to scalar values), the corresponding variable
assignment (solution) is passed to the Validator.

3 QUERY REFINEMENT MODEL

In this section we discuss our relaxation/tightening framework.
While described in the context of Searchlight, the model does
not depend on its implementation details and is primarily driven
by well established CP concepts. Throughout the paper, we use
query “constraining” as a synonym for “tightening”.

Each CP search query consists of a number of decision vari-
ables X and constraints C. Given such a query the search frame-
work either outputs all results or proves there is none. However,
if the user specifies the desired cardinality of the result k, the
framework behaves differently depending on the outcome of the
original query:

e The query outputs exactly k results. In this case the be-
havior stays the same.

o The query outputs a set of results R = r, |R| < k. In this
case it is automatically modified to produce additional
k — |R| results. The additional results are guaranteed to
minimize the specified RD(r) function (discussed below).
This is query relaxation.



o The query outputs |R| > k results. In this case the frame-
work effectively ranks the results based on the RK(r) func-
tion (discussed below), and the query returns top-k results
according to RK(r). This is query constraining.

When relaxing or constraining a query, we consider only
range-based constraints of form a < f(X) < b. The nature of f()
is not important. It might be an arbitrary algebraic expression
containing User-Defined Functions (UDFs), built-in functions
and variables from X. In our running example f() is the avg()
function for constraint ¢; and the max(x, x + Ix) — max(x — 8, x)
expression for cp. We generally treat f() as black boxes, but we
assume the knowledge of values a’, b’ at every node of the search
tree, such that a’ < f(X) < b’ for all possible values of X at that
node. This information is readily available as part of the search
process and is used to make search decisions (for building the
tree) and prune parts of the tree. In Searchlight a’, b’ are derived
from the each node’s variable domains by using the synopses to
estimate constraint functions [10]. Thus, no modification to the
query engine should be required in this regard. By default, we
consider all range-based constraints for relaxation/constraining,
but the user can exclude any of them from the process. We denote
constraints considered for relaxation (constraining) as C" (C°).
C" does not necessarily equal C°.

The relaxation and constraining processes are based on re-
sult ranking via separate relaxation and constraining ranking
functions. In the two following sections we describe the default
functions we use. Then we discuss the custom ranking functions
requirements.

3.1 Query Relaxation Model

Assume a constraint ¢ € C" : a < f¢(X) < b and a result r
such that f.(r) = t. We define the relaxation distance RD.(r) as
follows:

0 ifa<t<b
b .
RD.(r) = —max(i’c(X))—h ift>b
4 ift<a

—t
a-min(fc(X))
Then, the total relaxation distance RD(r) is:
RD(r) = max weRD(r),
ceCr

where w, € [0, 1] are constraint weights, which can be defined
by the user. By default, w, = 1.

We selected the RD() definition above just as a suitable default,
aiming at providing reasonable out-of-box experience. As we
discuss in Section 3.3, users can choose their own functions,
provided they respect certain requirements. In general, p-norm is
a logical choice when some distance between query points needs
to be measured [4]. We chose max (p = o) to penalize results
where some outlier constraints have large RD.() values. This
allows us to limit the distances of final results. A weighted sum
(p = 1) or Euclidean distance (p = 2) are other viable choices.

The denominators in RD(r) require further explanation. In
general, fc() from different constraints might have different
scales. For example, one constraint might deal with ages (e.g.,
fe, () € [0,150]), while another with similarities (e.g., fc,() €
[0, 1]). That is why we perform [0, 1]-normalization of each RD(r)
by dividing it by the maximum possible difference in values.
Min/max values for f;() can be usually derived from the obvious
domain restrictions (e.g., age cannot exceed 150). We addition-
ally allow users to specify the max/min values with the query,
giving them more control over relaxation: we will not relax the
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corresponding constraints beyond the specified min/max values.
We will use RD.(r) to denote the normalized distances, as well
as the original ones, where appropriate.

In addition to RD(r) for each result r we define VC(r) as the
number of constraints from C" violated by r divided by |C"|. Thus,
VC(r) € [0, 1] is the normalized number of violated constraints.
Then, we define the total relaxation penalty for r as:

RP(r) = aRD(r) + (1 — a)VC(r)

The RP() allows users to prefer results with smaller number of
violated constraints, which is especially important in cases when
RD(r) “looses” information about individual constraints (e.g., as
in our choice of max). a controls the degree of the preference
(the default is 0.5). We picked weighted sum as a suitable default,
giving the user the choice between two criteria, RD() and VC().
However, this default is not essential for the proposed framework.
RP() can be changed, and other criteria can be incorporated in
the formulation, if required.

The model provides the following relaxation guarantee: if the
user submits query Q with the cardinality requirement k, the
query outputs at least k results r with the lowest RP(r) values
possible.

The definition above naturally incorporates queries in no need
of relaxation, with > k results. If r satisfies the original con-
straints, RP(r) = 0. Thus, the guarantee is automatically ful-
filled. If the user chose to specify tight min/max bounds for some
fe(), we might not be able to find k results in case there are not
enough results satisfying even maximally relaxed constraints
(i.e., min fc() < fc() < max fc()). This is because we effectively
treat such f¢() specification as a “hard” constraint.

Let us revisit the running MIMIC example. Assume the user
wants k = 3 results and C" = {¢y, ¢, c3}. Additionally, avg()
and max() values for the ABP signal lie within [50, 250]. Then a
possible search might progress as follows:

(1) A result r;{ = (180, 85, 85) is found (we write a result as
a tuple of fi() values). Since it satisfies the constraints,
RP(r1) = 0 and it is output to the user.

(2) r2 = (190, 80, 90). Since, RP(ry) = 0, it is output.

(3) Searchlight cannot find any more results, so it starts relax-
ing the query.

(4) r3 = (160,70, 60) is found. It violates c2 and c3. For r3:
RD., = 0,RD., = 3 = 0.125,RD,, = 2 = 0.25. Thus,
RD(r3) = 0.25, and RP(r3) = £(0.25 + %) = 0.458.

(5) r4 = (130, 80, 80) is found. For r4: RD, = % = 0.2,RD,, =
0,RDe, = 0.Thus, RD(ry) = 0.2,and RP(r4) = $(0.2+3) =
0.267. Since RP(r4) < RP(r3), r3 is discarded, and r4 is put
into the result.

3.2 Query Constraining Model

The query performs constraining only when the number of re-
sults exceeds the k required by the user. That means during
constraining each result r; satisfies all constraints in C¢. For
each function f;(X) from constraints in C¢ the user can spec-
ify her preference in form of maximization or minimization of
the function. For example, if some constraint’s f;(X) is a prop-
erty like the amplitude of a signal, the user might prefer large
values of fc(X). On the other hand, if f;(x) is some spatial dis-
tance, the user might prefer smaller values. For each constraint
ceC:c=a< fe(X) <bandresultr: f.(r) = t we define the
ranking function RKc(r) as follows:



—t

RK(r) = { b

b-a

Since r satisfies the constraints, a < t < b. As in the case of

query relaxation, we normalize RK,() to [0, 1] to account for the

possibility of different scales for f.(). If the interval is half-open,

i.e., a or b is not specified, a suitable domain boundary for f;()

can be used instead.

We define the full rank of result r as:

RK(r)=1- Z weRKe(r),

ceCe

if ¢ is being maximized

if ¢ is being minimized

where we,0 < we < 1A Y. we = 1 represent the constraint
weights to prioritize some constraints over others. By default,
We = ﬁ Note, RK(r) assigns higher ranks to better results,

which is more natural to the user. As in the case of RD(), any p-
norm could be a reasonable choice for RK(). We saw the weighted
sum providing meaningful results in practice. In addition, it al-
lows us to demonstrate that the approach is flexible to the choice
of distance functions.
Assuming these definitions, the model provides the following
constraining guarantee: when the user submits query Q with the
cardinality requirement k, if Q has at least k results r, the query
outputs at most k results with highest RK(r) possible. Note, if
the query does not have at least k results, the relaxation will be
performed instead.
Revisiting the running MIMIC example, let C¢ = {¢1, ¢z, ¢3},
we, = 3. Let us assume the user prefers maximization for all
constraints and wants a single result. Note, that f¢, and f, has
the maximum value, 200, derived from the domain. The search
might progress as follows:
(1) A result r; = (160, 100, 100) is found. Its rank is RK(r1) =
1- 2(3% + 198 4 198) = 0.178.

(2) A result r; = (150, 80, 85) is found. Its RK(rz) = 0.014.
Since RK(ry) < RK(ry), r is discarded.

(3) The next result is r3 = (190, 120, 120). Its RK(r3) = 0.289.
Since RK(r3) > RK(r1), ry is discarded, and r3 becomes
the new top-1.

In addition to the scalar ranking approach just described we
support another popular vector-based ranking called skyline [3].
In that case the query simply outputs non-dominated results,
where a result is a vector of values of fc(),c € C° (as in the
example above). By definition, V dominates W, iff Vi : v; >
w; A 3i : v; > w;. The meaning of > for each f;() is defined by
the user’s minimization/maximization preference, as in the scalar
case. For skyline, however, we cannot guarantee that the number
of results will not exceed k, since non-dominated vectors are not
comparable.

3.3 Approach Customization

In addition to the default penalty and ranking functions discussed
above, the user can add their own custom functions. The func-
tions may be called by the query engine during the search at any
search tree node, where some variables may still be unbound.
This means the custom RP()/RK() functions must be able to out-
put the penalty/rank interval for all possible solutions contained
in the corresponding sub-tree. Our implementation provides the
user with the current variable domains and synopsis-based in-
tervals for all constraint functions at any node. This information
should be enough to compute the required bounds.
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The functions must conform to the certain requirements to
ensure the relaxation/constraining guarantees and proper per-
formance. For a custom RP returning ranges [Ip, hp], the require-
ments are:

e RP() > 0, with larger values corresponding to worse relax-
ation. All results satisfying the original query must have
RP() = 0.

o Ip = hp at solutions (leaves) of the tree, since the variables
are bound there.

e RP() cannot underestimate [p, which means it cannot be
greater than the minimum of penalties for all possible
solutions at the corresponding sub-tree.

The requirements for the RK functions are similar, with the
only differences that RK() assigns larger values to better candi-
dates and, thus, should not underestimate hp. The user can define
her own dominance measure for the skyline ranking as well. The
corresponding function is periodically called over the current
top-k results to determine if any of the current sub-tree solutions
might enter the top-k.

In principle, customization can go beyond static ranking func-
tion. Dynamic functions is an interesting extension, where the
ranking functions may change depending on the results already
found, e.g., the user might want to prefer “diversity” among the
relaxed results so that their relaxation distances differ by at least
the specified amount. This can be accomplished by introducing
new constraints depending on the results already discovered.
Other dynamic modifications might be possible as well, depend-
ing on the user’s preference. Studying such richer functionality
is left for future work.

4 QUERY RELAXATION AND
CONSTRAINING

In this section we describe the implementation of the relax-
ation/constraining model. Our approach is general and can be
applied to other CP-based engines.

In general, a CP solver dynamically builds and traverses the
search tree. The dynamic nature of the search process allows
for modification of existing constraints and the addition of new
ones. Thus, if a query does not produce enough results satisfying
the original constraints, we can revisit some parts of the search
tree with modified (relaxed) constraints. If a query produces too
many results, we can introduce new dynamic constraints to prune
results having smaller ranks than the already found ones.

The efficiency of the relaxation and constraining heavily relies
on effective pruning. We exploit the following cases:

e During the main search at the Solver. This is the most
effective point. It allows us to prune parts of the search
tree with possibly large number of candidates and avoid
unnecessary validations later.

o Just before validating the candidate at the Validator. This

is effective in case Validators lag behind the Solvers, and

their candidate queues grow large. In that case new rank-
ing/penalty information about the current result might
allow us to perform additional pruning and avoid expen-

sive I/O.

After validating the candidate at the Validator. Even if

the candidate passes the validation over the real data,

it is necessary to check them again with the up-to-date
penalty/ranking values. However, this is is done only for
correctness, with no performance benefits. These checks

do not require any additional I/O.



4.1 Query Relaxation

A CP solver dynamically builds the search tree and validates
query constraints at every node of the tree. A node either satisfies
the constraints or fails. Successful nodes eventually lead to leaves,
which produce candidate solutions. When the search is finished,
if we have not found k results (the user’s desired cardinality), we
start revisiting parts of the search tree with modified, relaxed
constraints. We do not have to revisit successful search nodes,
since these nodes satisfied the original constraints and cannot
yield any new solutions. Previously failed search nodes, on the
other hand, could lead to new candidates satisfying the relaxed
constraints. We call this process fail replaying.

When we encounter a failed search node, we prune the node
as usual. However, we also record the current search state of the
node:

e Current decision variable domains. This information is
crucial when the fail is replayed later to resume the search
from this exact point without revisiting any extraneous
search nodes.

o The ranges [a’, b’] for every function f¢(),c € C". As we
discussed in Section 3, these are available as part of the
normal search process.

After this information has been obtained, we compute the
best (BRP) and worst (WRP) relaxation penalties possible for the
saved failed node (i.e., for the solutions in its sub-tree). For the
built-in RP function this is straightforward from the definition.
The custom function, as discussed in Section 3.3, must compute
these values itself. After the relaxation penalties are computed,
the fail is inserted in the priority queue ranked by the BRP.

If during the search at least k results are found, we just stop
recording the fails. At the same time the constraining mechanism
turns on, which we discuss further in Section 4.3. If the main
search completes with less than k results, the relaxation is needed.
We start replaying fails from the priority queue (i.e., minimizing
BRP). To replay a fail, we do the following:

(1) A new CP search is initiated with the decision variables
assigned the domains recorded at the fail. This can be seen
as traveling back in time to the moment just before the
fail.

(2) Each violated constraint is modified: a < fe() < b — a’ <
fe() < b, where [a’,b’] is the recorded interval. This
guarantees the search will not fail again when resumed.

The new search is handled exactly the same as the original
one. Thus, it might fail again, at other search nodes further in the
search tree. One example is when a previously valid constraint
becomes violated due to more accurate synopsis estimations
(those tend to become better closer to leaves). Such repeated
fails are caught as the original ones and might be replayed later.
During replays we explore only previously untouched parts of the
search tree. No search nodes are ever revisited, which improves
performance and guarantees the absence of duplicate results.

The discussed replay mechanism can be seen as naive, since it
does not allow any additional pruning at the search level. When
we replay a fail, we relax previously failed constraints maximally,
so they cannot fail again. Thus, we just relax constraints until the
search reaches the leaves. The new candidates, however, do not
necessarily belong to the best-k results. To improve the efficacy of
pruning we take into account the Maximum Relaxation Penalty
(MRP) among the already found results.

MRP € [0, 1] effectively defines the worst penalty a result can
have to belong to the best-k, and it constantly changes during
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the execution. Let us first assume the built-in RP function. While
the number of results found is less than k, the MRP = 1. When at
least k results have been found, MRP might decrease. We modify
the process as follows:

e When a fail is recorded, its BRP is compared with MRP.
If BRP > MRP, the fail is discarded completely, since its
search sub-tree cannot provide any useful candidates (i.e.,
with RP(r) < MRP).

e When a fail is selected for replaying, its recorded intervals
[a’,b’] are tightened according to the current MRP to
improve pruning, since the constraints will be relaxed as
minimally as possible. In addition, we repeat the BRP and
MRP comparison, since MRP might have changed.

Let us discuss the interval tightening in more detail. Assume
the built-in RP() function discussed in Section 3.1 with a # 0.
If @ = 0, the relaxation distance does not influence RP(), so no
tightening is possible. Otherwise, to qualify for the result, all
candidate solutions r must have RP(r) < MRP. Since RP(r) =
aRD(r) + (1 — a)VC(r),

MRP — (1 — a)VC(r)
p .

RD(r) <

Let us revisit the example from Section 3.1 and illustrate the
above algorithm with Figure 2. In this figure the search nodes
are rectangles with the synopsis values for the ¢; and ¢y func-
tions (we do not show c¢3). The search encounters two fails.
The first one in the search order is the lower one, for which
both ¢; and cs are violated, since 110 < 150 and 60 < 80. Its
BRP = %(max(%, %)) + %% = 0.53. The fail is recorded into the
table. Then the search encounters the upper fail, for which only
¢y is violated. Its BRP = %(%)+ %% = 0.29. Assume MRP = 0.5 at
some point during the relaxation, and the next fail is being taken
from the table. According to the formula above, RD(r) < 0.33.
Thus, the [10, 60] is tightened to [80 — 0.33 * 80, 60] = [53, 60],
which is used as the relaxed cs.

For the custom RP() function we cannot apply the same logic
for tightening intervals, since the custom RP() is effectively a
black box. In this case the constraints are relaxed to the [a’, b’]
intervals. However, at each search node we call the custom RP()
function to check against the MRP. If the search node does not
pass the check, we fail the node and prune the sub-tree com-
pletely.

After the search tree with relaxed constraints reaches a leaf,
the corresponding solution is submitted to the Validator in the
same way as in the original search. Validator is aware of the
relaxation and validates the relaxed candidate accordingly, by
taking into account the current MRP value. As we discussed in
the beginning of Section 4, it performs two checks: one before
and one after the validation. At the first one it compares the
candidate’s BRP(r) value (supplied by the Solver) with the current
MRP and discards the candidate if BRP(r) > MRP. Otherwise,
it performs the validation as usual with all constraints relaxed
maximally with respect to MRP. Relaxing all constraints here
is required for correctness, since even if some constraints fail
during validation, the solution’s penalty might still be below the
MRP, and it will qualify for the result. That is why the second
check is required after the validation.

It is the responsibility of the Validator to update the MRP value,
since it produces the final result. If a new result decreases MRP,
the Validator broadcasts the change to all instances in the cluster,
so MRP is (asynchronously) updated for all Solvers/Validators
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Figure 2: Example of fail recording and replaying for the running MIMIC query.

participating in the query. No special changes to the distributed
query processing is required beyond that.

The correctness of the the model’s relaxation guarantee is
due to the correctness of the CP search itself. While the search
process itself uses heuristics to guide the process, the pruning
is performed in the provable way, without eliminating any valid
results. Constraints modification during the search process is
guided by the MRP, which is maintained based on the currently
discovered results, so subsequent relaxation results will not be
eliminated. As far as the complexity of the approach goes, it is
equivalent to the complexity of the underlying CP search problem,
since the relaxation is performed as in terms of CP.

4.2 Query Relaxation Optimizations

We now discuss a number of useful optimizations for query re-
laxation. These do not modify the main algorithm, but offer per-
formance gains in common situations.

Computing functions at fails. When we catch a fail, we
save the [a’, b’] intervals for functions f;(),c € C". However, if
the search fails at a search node, it does not necessarily mean all
constraints have been verified yet. The fail might happen at the
first violated constraint, in which case the subsequent constraints
are not touched at all. This implies some f;() values might be
unknown. For example, in our running MIMIC example, if ¢;
fails, cg, c3 are not verified, and min/max ABP values are not
computed.

In such cases we can force the computation via the Search-
light API to obtain [a’, b’] ranges for the remaining constraints.
However, f.() might be relatively expensive, and the cumula-
tive overhead of the fail recording might become quite large. We
perform the computation in a lazy way instead, when the fail
is replayed. There are compelling reasons behind the lazy eval-
uation. First of all, if the query does not require any relaxation
(i.e., it discovers at least k results) or the fail does not pass the
MRP check later, the fail and its intervals will not be needed
at all. Thus, the total completion time might improve. Second,
delays for interactive results might decrease, as we do not pay the
full price of computing f.() immediately, but later, when really
needed.

This does not require any significant changes to the engine.
Lazy evaluated functions’ values are recorded as unknown, and
the constraints are considered as non-violated. During the replay,
Searchlight automatically estimates unknown values and checks
the constraints.

Partial relaxation at replays. When we replay fails, we re-
lax the violated constraints according to the saved [a’, b’] inter-
vals (tightened with respect to the MRP value). However, even
the tightened intervals might be quite wide, resulting in poor
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pruning. This is especially true for fails happening closer to the
root of the tree. To avoid over-relaxation, we do not relax the
violated constraints all the way, but rather use a percentage of
the relaxation interval — a parameter called Replay Relaxation
Distance (0 < RRD < 1). If, for example, a constraint f;() < 10
needs to be relaxed to f¢() < 20, and RRD = 0.3, we relax the
constraint to f¢() < 10 + (20 — 10) X 0.3 = 13. The parameter
exposes a trade-off. On the one hand, the relaxation becomes
more conservative, avoiding potential performance drops. Too
much tightening, however, might result in an increased number
of fails and the cost of maintenance. On the other hand, loosing
the relaxation decreases the number of replays, but might result
in increased cost of the search itself. Our experiments showed
that the cost of the search usually considerably outweighs the
cost of the maintenance, and decreasing the value of RRD might
considerably speed-up some queries without slowing down the
others. This parameter does not change the result and is purely
performance-related.

Saving function states at fails. When recording a fail, we
store enough information to replay the fail later. However, some
fc() functions might have additional information computed. For
example, max() might store support coordinates for its [a’, b’]
range, which might allow us to avoid recomputing the function
at other nodes of the tree. We extended the Searchlight API
with the ability to serialize such information and save it when
recording a fail. During the replay this information is restored.
The optimization provides significant performance benefits in
the presence of a large number of fails with expensive functions.

Sorting the Validator queue on BRP. When candidate solu-
tions are received by a Validator, they are put into its FIFO queue,
which does not take candidate BRP values into account. However,
candidates with better BRP values might have a better chance of
belonging to the final result. They also might help to decrease
the MRP faster, which improves pruning at Solvers. Thus, we
decided to use a priority queue ranked by BRP at the validators
instead. While a priority queue is generally more expensive than
FIFO, in practice performance benefits resulting from better prun-
ing outweigh the queue maintenance costs, as supported by our
experiments.

Speculative Relaxation. Before relaxing a query, we exe-
cuted the original query until completion. Only then the recorded
fails are replayed if needed. If the user does not mind intermedi-
ate results, relaxation can start when first fails are encountered.
We call this speculative relaxation and provide it as an option.

Speculative relaxation is done by additional CP solvers replay-
ing fails concurrently with the main execution. This is done only
when the Validators are idle, so that relaxed candidates do not
interfere with the main search. Speculative Solvers still consume



CPU resources, which might slow down the main Solvers and
increase query result latency for the user. At the same time, they
might provide relaxed results much faster. The best use-case for
speculation is probably when the user has little insight about the
data, and expects an original query to fail.

4.3 Query Constraining

Query constraining deals with the problem of many results. That
means it does not need to examine fails, since it is only interested
in the results satisfying the original constraints, which failed
sub-trees cannot contain. After the query begins execution, we
consider only the query relaxation and tracks the fails. If the
query produces at least k results, it turns off the relaxation, stops
tracking fails and starts constraining the query to prune inferior
results. The pruning is based on ranking supplied by the built-in
or custom function, as described in Section 3.2. Effective pruning
allows us to avoid discovering and ranking each result of the
original query by eliminating entire parts of the search tree that
cannot contain better results than already discovered.

Recall that we explore three possible points of pruning. The
first one is Solver-based, at the search tree. When at least k re-
sults are found, Searchlight computes the Minimum result RanK
(MRK) — the minimum rank RK() among all the k results found
so far. This is similar to the query relaxation’s MRP. For a new
result to belong to the top-k results its rank RK must exceed
MRK. Similar to query relaxation, for each search sub-tree we
compute BRK — the Best possible RanK, which is the maximum
RK among all solutions that might be found in the sub-tree. This
can be easily done by using Searchlight-provided synopsis estima-
tions for constraint functions. If the BRK value for the sub-tree
falls below MRK, it is pruned, since no results from that sub-
tree can enter the top-k. The check is done by introducing a
new dynamic constraint into the search: BRK(r) > MRK. The
constraint is dynamic, since MRK is updated during the search,
with new information coming from both local and remote Search-
light instances. It results in progressively better values for BRK,
and, thus, better results. At the same time the pruning becomes
progressively tighter, resulting in better performance. The MRK
updates are performed by Validators, as in the case of MRP, since
Validators produce final results. The cost of checking the dynamic
constraint is negligent. We ensure it is done after the original
constraints have been checked at the node, so all f;() functions
have been already computed. Computing BRK itself just involves
a small number of arithmetic operations.

Let us revisit the example from Section 3.2 with the same
C¢ and parameters. Let us assume at some search node ¢; €
[100, 190], ¢2, ¢3 € [100, 200]. Then, for the sub-tree BRK = 1 —
%(% + 0) = 0.933. If, for example, MRK = 0.8, the search will
continue for the sub-tree. However, if at some node in the sub-
tree ¢; € [100, 180], ¢, c3 € [100, 150], the BRK becomes %(% +
2%) = 0.589 < MRK. Thus, the sub-tree is pruned.

When a leaf of the search tree is reached, the corresponding
candidate is sent to the Validator, which does checks similar to
the query relaxation, but without relaxing any constraints. It
takes into account the BRK(r) value of the candidate and updates
the global MRk (if r enters the top-k).

Skyline computation (see Section 3.2) is done similarly to the
scalar query constraining. It is implemented by introducing an-
other dynamic constraint for the result. However, instead of
checking the scalar MRK value at every node, the constraint
compares the estimated f;() intervals with the current skyline.
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If the sub-tree is dominated by the skyline, it is pruned. Other-
wise, we keep traversing the tree and passes the candidates to
the Validator.

The same correctness and complexity argument as for the
relaxation applies to the constraining as well, since it is performed
as CP search.

5 EXPERIMENTAL RESULTS

We performed an extensive experimental evaluation of the pro-
posed techniques. The main part of the evaluation consisted of
measuring the benefits of using our approach against the only al-
ternative available to the user — manual relaxation/constraining.
Additionally, we wanted to make sure these features do not bring
any significant overhead to the existing query processing. An-
other important part of the evaluation was to measure the ben-
efits of our optimizations from Section 4.2. Note that existing
query refinement solutions are designed for traditional database
systems running SQL over relational data, and are not readily
applicable to constraint-based search queries over multidimen-
sional data, which we study here. Finally, a head-to-head com-
parison of Searchlight with a pure DBMS approach is available
elsewhere [10] for both synthetic and a real-world data sets. The
same paper [10] also argues about the prohibitive complexity of
formulating CP queries in relational terms.

We measure the benefit of our approach in terms of query
latency. While the quality of the final results might be another
measure, such a measure would be governed by the user via
the ranking/penalty functions and, thus, can be considered as
immutable for our purposes.

Performing a user study would be important to measure the
usability of our approach. Such a study would allow us to measure
user satisfaction with the quality of the refined results and to
more accurately account for time savings for the user. This works
was primarily directed at the design and implementation part
of the framework. It also lacks a GUI component, as well as a
realistic workload to perform a meaningful user study. We leave
a user study for future work.

All experiments were performed on a four-instance Search-
light Amazon AWS cluster. The cluster consisted of c4.xlarge
machines running Debian 8.6 (kernel 3.16) with 7.5GB of mem-
ory. We used two data sets. The first one was a synthetic data set
from the original Searchlight paper, 100GB total size. The second
data set was a part of the MIMIC II [1] waveform data for the
Arterial Blood Pressure (ABP) signal. The data set size was 100GB
as well. These data set are representative of general Searchlight
workloads: the synthetic one introduces areas of varying function
amplitudes, while the MIMIC provides real-world distribution.
On a side note, the data sets choice plays secondary importance
to the queries, since our approach relies on the efficacy of the
general Searchlight search process and should work for all data
sets that can be handled efficiently by Searchlight.

We used a variety of queries to perform the experimental eval-
uation. However, to provide concise and meaningful presentation,
we discuss different aspects of our approach with the help of two
characteristic queries for each data set. By default, we assumed
the user’s cardinality requirement of 10 results. The queries were
as follows:

o S-SEL (from Synthetic SELective) is an empty-result query
for the synthetic data set. Being maximally relaxed it be-
comes a non-empty, but very selective query.



e S-LOS (from Synthetic LOoSe) outputs empty result in-
tially. However, the maximally relaxed version is very
loose, outputs a very large number of results, and does
not allow the search process to perform much pruning.

e M-SEL/LOS (from Mimic SELective/LOoSe). This are the
MIMIC versions of the queries above

Semantically, the M-SEL/LOS correspond to the running exam-
ple from Section 2, They contain exactly the same variables and
constraints, but different parameters (domains and thresholds).
Thus, we do not repeat the query constraints here. S-SEL/LOS
have the same constraints (function amplitude and neighbor-
hoods), but with synthetic attributes from the generated data. So
queries basically look for certain “spikes” in the data, where a
spike is determined by comparing the resulting intervals with
the neighborhood.

The main idea behind choosing selective and loose types of
queries is the observation that a selective query allows the user
to perform manual relaxation without significant performance
penalties. The user just have to relax the constraints maximally,
and the query still finishes in a reasonable amount of time. The
user then can choose the best 10 results. A loose query, however,
being maximally relaxed outputs an avalanche of results, which
results in significant latency. Such over-relaxation might be quite
costly in practice. Since the user cannot easily predict the selec-
tivity beforehand, the system should be able to handle both types
of queries automatically.

We used the maximally relaxed versions of the queries above
to measure the performance of the query constraining, since they
output more than 10 results. As in the case of relaxation, the
selective queries’ results can be ranked manually. For the loose
query this is infeasible.

5.1 Query Relaxation

We measured the benefits of the automatic relaxation over the
manual approach, in which the user would be forced to guess
the correct query, possibly in several iterations. This manual
relaxation scenario is the only alternative available to the users
and exactly the case we want to avoid in practice, hence it was
important to compare it with our solution. The manual approach
was performed using Searchlight as well, so the search engine
remained the same. We will often refer to the automatic approach
as just Searchlight. We studied the following scenarios:

e USER-3. This is a common user scenario. The original
query gives an empty answer. Then the user relaxes it in a
cautious way, several times, and gets the required number
of results on the second try. Thus, she comes through 3
iterations (hence, the name). In practice the number of
iterations might be much larger, due to a large number of
relaxation possibilities, but three iterations was enough
to demonstrate our point.

e USER-2. In this scenario the user guesses the query cor-
rectly from the first try, for the total of 2 iterations. Note,
this scenario is quite infeasible in practice, and can be
seen as an oracle-based approach, in which the user im-
mediately knows the correct relaxation. This approach
establishes an important baseline.

e USER-MAX. This is the scenario in which the user just
relaxes the query maximally after the original query fails.
Depending on the query, this might perform like the oracle
approach above (e.g., for selective queries) or just start
outputting a large stream of results without any means
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of pruning (for loose ones). In the latter case the user
would have to stop the query and guess further, since such
queries might easily take hours to finish.

First, we provide query completion times for the selective
queries S-SEL and M-SEL under different scenarios described
above. The results are illustrated in Table 1, where the “SL” col-
umn corresponds to the automatic Searchlight relaxation ap-
proach discussed in the paper. For the USER-2 scenario in the
parenthesis we specify the completion time of the second, cor-
rectly relaxed, query. For these queries the USER-2 and -MAX
scenarios are basically equivalent since there is no much penalty
in relaxing the query maximally.

Table 1: S/M-SEL query completion times (secs) for query
relaxation.

Query | SL | USER-3 | USER-2 | USER-MAX
S-SEL | 97 | 327 210 (120) | 216
M-SEL | 150 | 544 380 (240) | 380

As can be seen, even comparing with the USER-2 approach
Searchlight provided considerable performance gains. They come
from two sources:

e Searchlight does not need to re-explore the already tra-
versed parts of the search tree. After the main search is
finished, it can concentrate only on the previously unex-
plored (i.e., failed) parts. This is in contrast with any of
the manual approaches, which have to start every query
iteration from scratch.

e When relaxing the query, Searchlight is able to provide
additional pruning based on the best results found so far.
While for selective queries it is not necessarily the game
changer, it has a much more pronounceable effect for loose
queries, which we show later.

We also measured the time it took Searchlight to obtain the
first result. For the S-SEL queries it took Searchlight 42 seconds
in the SL approach versus 91s seconds for the USER-2 (the best)
approach. The corresponding times for the M-SEL query were
45 and 198 seconds. We saw similar trends across all queries we
ran. The results come as no surprise, since Searchlight is able to
start the relaxation right away without restarting queries with
new parameters.

When it came to the overhead of the query relaxation approach
itself, it did not exceed 5 seconds for the synthetic and 3 seconds
for the MIMIC queries. This overhead mainly came from assessing
and recording the fails.

Table 2 provides the corresponding results for the loose queries.
For the “Max” case, we stopped the query after 1 hour (hence the
> symbol in the table), since this was enough to demonstrate our
point.

Table 2: S/M-LOS query completion times (secs) for query
relaxation.

Query | SL | USER-3 | USER-2 | USER-MAX
S-LOS | 105 | 314 208 (106) | >3600
M-LOS | 91 | 177 118 (83) | >3600

This experiment shows the same trend as for the selective
queries with a single exception: the USER-MAX and USER-2 be-
haved differently. When the user relaxed the query maximally, it



ran for a very long period of time (we stopped it after 1 hour) due
to the very large number of results. In practice, the user cannot
just stop the query and rank the currently found results, since
she is not guaranteed to find the top-k among them. However,
Searchlight guarantees correct top-k results. Since the maximal
relaxation is out of the question, without Searchlight the user
would have to continue the guessing game of scenario USER-3
but with potentially more iterations and longer times.

Searchlight outputs the first result in 92 and 45 seconds for
S-LOS and M-LOS, respectively. The corresponding times for the
USER-2 were 108 and 77 seconds. This is the same trend as we
discussed for the selective queries. The auto relaxation overhead
remained at comparably low levels: 15 seconds for S-LOS and 1
second for M-LOS.

The next experiment measured the overhead of the auto relax-
ation for the queries that do not need it. We wanted to explore
the possibility of keeping the relaxation always on, without the
user turning the knob. For this experiment we ran the second
query from USER-2 with the relaxation turned on. The results
are given in Table 3.

Table 3: Query completion times (secs) for queries not
needing relaxations.

Relax | S-LOS | M-LOS | S-SEL | M-SEL
Off 106 83 120 240
On 116 98 127 290

As can be seen, turning on the auto-relaxation does not have
any significant impact on the query completion times. The no-
table exception is M-LOS query, for which Searchlight submitted
a lot of relaxed candidates to the Validator before 10 results were
actually found. However, this overhead was the largest we saw
for alarge number of queries we ran. Even with such an overhead
the auto-method would be quite helpful for the user, since the
relaxed candidates are output to her as useful feedback. At the
same time, the time to first result did not change significantly
for all queries, which means the interactivity was not hampered,
and the overhead was limited to the total completion time.

5.2 Query Constraining

In the absence of automatic query constraining, the only option
is to run the query until completion and then rank results at the
client. While this might work for queries with small number of
results, it is very inefficient for queries returning a lot of them. In
addition, the manual approach misses significant pruning oppor-
tunities. Our main results are shown in Table 4. “Off” means no
constraining, which is equivalent to the manual approach; “Rank”
means scalar ranking automatic constraining, and “Skyline” —
vector domination constraining. Both approaches were described
in Section 3.2. By default we specify times in seconds, and we
use ’h’ and ‘'m’ symbols to denote hours and minutes.

Table 4: Query completion times (secs) for query con-
straining,.

Method | S-LOS | M-LOS | S-SEL | M-SEL | M-SEL’
Off 2h 8m | 2h24m | 120 240 263
Rank 60 154 29 139 135
Skyline | 314 13m 93 269 218
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The loose S/M-LOS queries could not even finish in a reason-
able time. These queries actually were outputting results with
very low latency during the execution. However, since constraints
were loose, they created an avalanche of such results without
the ability to prune. To guarantee the top-10 results the user
would have to stop the query and constrain it by hand, possibly
in several iterations.

At the same time, for the same queries Searchlight provided
considerable performance gains, coming from pruning both at
Solvers and Validators, as we described in Section 4.3. This was
especially evident for the rank-based constraining. The skyline
constraining was less effective, with respect to the query comple-
tion time. However, comparing with the manual “Off” approach,
the performance benefits were considerable. The reduced effi-
cacy can be attributed to the nature of skyline — it is harder to
prune interval-based search nodes at Solvers and candidates at
Validators.

The selective queries S-SEL and M-SEL allowed us to measure
the constraining benefits for the queries for which the client-
based filtering is a viable alternative due to their reasonable com-
pletion time. In most cases our approach resulted in considerable
gains. The M-SEL query is somewhat of an exception, for which
the skyline approach performed worse than the “Off” approach.
This can be attributed mostly to some overhead from the skyline
based checks during pruning (without any benefits) and slightly
different rebalancing of the candidates between Validators. The
last column of the table (M-SEL’) provides results for another
selective MIMIC query. It can be seen that both rank and skyline
auto approaches provided significant improvements for query
completion times, so the M-SEL case should not be considered a
trend for selective queries.

When it comes to the overhead of the automatic approach,
it is kept at the minimum. Actually, it is smaller than that for
the query relaxation since it does not need any maintenance
similar to tracking of failed search nodes. As for the Solver-
and Validator-level checks, they are quite cheap for the rank-
based constraining, being in-memory algebraic comparisons. For
skyline-based constraining the checks are somewhat more expen-
sive, and they must be active all the time, from the beginning of
the query. However, the checks can be done quite efficiently us-
ing the variety of existing methods for skyline computation. This
problem is well-researched, for example, for relational skylines.
The overhead in this case is basically the cost of computation,
which cannot be avoided for such a non-trivial constraint.

5.3 Query Relaxation Optimizations

In this section we describe experiments to measure the perfor-
mance of the relaxation optimizations from Section 4.2.

Computing functions at fails. In this experiment we mea-
sured the difference between the two different strategies to com-
pute functions f;() when catching fails. The first strategy, “Full”,
corresponds to fully evaluating all functions at the failed node.
The “Lazy” corresponds to the lazy evaluation. Both strategies
were described in Section 4.2.

The results are presented in Table 5 where the parenthesis
times specify the times to first result, which is a reasonable mea-
sure of interactivity. While times to the first result might seem
large, they include the completion time of the original query,
which found no results at all. The optimization provided benefits
for more expensive synthetic queries. At the same time it did
not result in any overhead for all queries. We also ran additional



experiments for more expensive MIMIC queries, for which we
took the same M-SEL/LOS queries and increased their cardinality
requirements from 10 to 200 results. We saw the significant ben-
efits at the fail recording stage: for some queries the fail tracking
overhead decreased from 30 to 15 seconds.

Table 5: Query completion and first result times (secs) for
fail recording methods.

Method | S-LOS | M-LOS | S-SEL | M-SEL
Full 120(100) | 81(45) | 112(46) | 149(45)
Lazy 105(90) | 91(45) | 97(42) | 150(45)

Saving UDF states at fail recording. In this experiment we
measured the impact of saving additional UDF information when
recording fails. In contrast with the previous optimization, which
just lazily postpones computation of some UDFs, this optimiza-
tion allows us to avoid re-computation of some UDFs completely.
The results are presented in Table 6 for query completion and
first-result times (the latter is given in parenthesis).

Table 6: Query completion and first-result times (secs) for
the UDF saving optimization.

UDF saving | S-LOS | M-LOS | S-SEL | M-SEL
On 105(90) | 91(45) | 97(42) | 150(45)
off 113(111) | 104(70) | 97(40) | 154(46)

The optimization was especially beneficial for the loose queries.
For the selective queries the benefits were not pronounced due to
the structure of those queries. The replays were relatively cheap,
involving less re-computation. As in the previous case, this op-
timization did not result in any overhead as well, at the same
time allowing better performance in many cases. The memory
footprint for the saved states depends on the functions. Stan-
dard aggregate functions use about 80 bytes per save for the
two-dimensional data set (16 bytes for the range itself plus 64
bytes for the support coordinates for the min and max values).

Speculative execution. As can be seen from the experiments,
the time to the first result is often quite large. This is a logical
result for empty-result queries, since Searchlight first finishes
the main, non-relaxed, query and only then tries to relax it. We
support speculative relaxation as a means to start the relaxation
sooner. The corresponding query completion and first result
times are presented in Table 7.

Table 7: Query completion and first result times (secs) for
speculative relaxation.

Speculation | S-LOS | M-LOS | S-SEL | M-SEL
On 128(7) | 90(45) | 115 (2) | 152(47)
Off 105(90) | 91(45) | 97(42) | 150(45)

As can be seen from the results in many cases speculative
execution significantly improved times to the first result. We
could not find suitable queries to demonstrate the same trend
for the MIMIC queries. While the speculative Solver for those
queries replayed some of the fails, they resulted in a small number
of non-perspective candidates. As we discussed in Section 4.2,
speculative Solvers are restricted to fails found by main Solvers
so far.
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As expected, the speculative relaxation has its own overhead
coming from the consumption of CPU resources by the specu-
lative Solver. For some queries the increase in the completion
time was significant. We decided to run an additional experiment
(not shown here), with one additional CPU thread available. As
expected, the times for the speculative relaxation turned on and
off were the same, which suggests the overhead is CPU related
and cannot be trivially extinguished. Basically, the decision of
trading off some completion time to faster interactive results is
up to the user.

Partial relaxation during replays. This optimization ad-
dresses the issue of over-relaxing the query at a fail replay, when
early fails might be relaxed in a very loose way because of loose
estimations. As we discussed in Section 4.2, the RRD parameter
(0 < RRD < 1), allows us to perform the relaxation in a more
controlled way by enforcing tighter relaxation. The results of
changing this parameter for the loose queries are presented in
Table 8. We did not see any significant effect of the parameter to
first result times.

Table 8: Query completion times (secs) for different RRD
values.

Query RRD | 0.1 [ 0.3 | 0.5 | 0.7 | 1.0
S-LOS 106 | 105 | 106 | 106 | 106
M-LOS 87 91 112 | 145 | 54m

As can be seen from the table, the optimization resulted in
gains only for some queries (we saw gains for other MIMIC
queries as well). M-LOS query, for instance, fails almost imme-
diately, and replaying its early fails with maximal relaxation
effectively results in traversing most of the search tree. For S-
LOS, on the other hand, search fails are relatively deep in the
search tree, so maximal relaxation does not cause significant
increase in the number of visited search nodes. In general, the
benefits of the optimization depend on the nature of the search
tree, which in turn depends on the query. At the same time, it
does not introduce any overhead, which allows us to keep it
always on. We saw a slightly elevated number of fail recordings
and replays, but not significant enough to cause any drop in
performance.

Additional experiments with the fail and candidate queues.

We extended the Validator to sort the candidates on the BRP value.
This in general might allow the Validator to identify better re-
laxed results faster, which in turn results in better MRP values
and more effective pruning. We performed the experiment over
a number of queries with different cardinality requirements to
vary the number of candidates at runtime. For some queries, we
saw 8-12% improvement in total completion times and no major
impact on the first results.

We also measured the benefits of our fail-based approach
presented in the paper against simply continuing the search
“through” the fail. The latter would still involve relaxing con-
straints, but no fail recording (and later replaying) would be
made — the search would be immediately resumed from the
point of failing. One reason to do that would be to simplify the
approach and decrease the memory overhead. However, we claim
it would result in a sub-optimal approach, where the utility of the
fails is not taken into consideration. Our experiments supported
this claim. When we replayed the fails in the order they were
encountered, simulating the immediate search resume, we did



not see any improvements in the completion or first result times.
Moreover, for some queries the completion times increased up to
several orders of magnitude. For example, for S-LOS the time in-
creased from 105 seconds to 56 minutes. We believe these results
emphasize the necessity of a utility-based approach.

6 RELATED WORK

Query relaxation [12, 14-16] deals with the empty-answer and
too-few-answers query problems by relaxing the original query
constraints. The past work on query refinement can be studied
under two broad categories. The first includes relaxation based on
some statistics readily available in the database. For example, the
Stretch-and-Shrink (SnS) framework [14] uses query cardinality
estimations via precomputed samples and then uses the estima-
tions to find relaxed ranges for each range-based query constraint
independently. The framework heavily relies on fast cardinality
estimations. Multiple estimations might have to be made at ev-
ery step of the interactive refinement. Another framework [4]
uses histograms to produce cardinality estimations and derive
proper constraint ranges for the query. The results presented to
the user are ranked based on the distance (e.g., Euclidean) from
the original constraint ranges. There is also the possibility of
using probabilistic [15] and machine learning [16] frameworks
to produce relaxations. These methods, however, still rely on
statistics to provide probabilistic estimations for the relaxation
decision or the learning stage to understand the rules hidden
inside the data. On the other hand, Searchlight targets queries
for which the cardinality is not known beforehand. It would be
also hard to estimate properly due to a large search space and
possible complexity of query constraints. The results are also
not known, and might be expensive to find, which makes the
learning stage or probabilistic estimations infeasible.

The other category includes methods that use indexes to relax
constraints. One such approach [12] is to relax join and selection
predicates, and obtain the relaxation skyline. These methods have
limited applicability for Searchlight, since results cannot be in-
dexed beforehand. Also Searchlight generally works with regions
(subsets) instead of single tuples, and the search space itself de-
pends on the query constraints. Additionally, query constraints
might be more complex than ranges, potentially referencing data
outside of regions (e.g., the neighborhood constraints in the query
from the Introduction). This makes R-trees (or other traditional
index trees) generally ineffective for traversal and pruning.

The too-many-results problem creates the dual problem of
contracting the query. These methods [4, 14] generally use pre-
computed statistics to make fast cardinality estimations and find
suitable ranges for query constraints. The corresponding frame-
works usually handle both relaxation and contraction at the same
time. Another approach is to get rid of excessive answers by rank-
ing and outputting only the best few. The “best” can be based on a
scalar ranking function (top-k queries) or vector domination (sky-
line [5] queries). These methods commonly rely on traditional
precomputed structures, such as views [6, 8] and R-trees [17, 18].
The view-based approaches require advance knowledge of at least
a part of the workload to materialize proper views. The R-tree
approaches traverse the tree and perform MBR-based pruning.
If such structures are not readily available, the only option is to
perform a sequential scan and either build the required struc-
tures or do the processing during the scan (e.g., sorting [3, 7],
batch computation [3] or building structures optimized for par-
ticular queries [17]). For Searchlight, no indexes are available
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beforehand, thus we performed a comprehensive search. This
might seem similar to the sequential scan-based approaches, how-
ever, as we argued, the nature of the constraint-based queries is
different and, thus, requires novel approaches.

7 CONCLUSION

Fast query execution is necessary but not sufficient for effec-
tive interactive data exploration. Users often go through multi-
ple query iterations to identify a reasonable set of results that
matches their goals. It is thus critical for the underlying system
to aid the users, optimizing for human labor, time and attention,
to maximize user productivity.

We introduce dynamic and automatic refinement of constraint-
based search queries, based on user-specified target result car-
dinalities. When relaxing a query, we guarantee optimal results
according to user-specified distance functions. When constrain-
ing, we output the top results according to a ranking function.
Unlike previous solutions, our approach does not require any
pre-computed indexes nor does it require result cardinality esti-
mations, which might be extremely hard to obtain accurately for
queries with complex constraints. Our approach instead alters
the constraints during the run-time. Our techniques naturally fit
in and can effectively leverage the common features of CP plat-
forms and DBMSs. Furthermore, our approach can explore more
promising parts of the search space first, which considerably im-
proves pruning and, consequently, provides better interactivity
and query completion times.

Our approach provides significant performance benefits in
comparison with the tedious and inefficient manual approach. At
the same time, it incurs negligible performance overhead, even
for queries that end up not needing any refinements.
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