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ABSTRACT
Data is routinely being shared online by peers, for instance in
business transactions, social activities and others. This data, in
turn, is often transferred, processed and combined through com-
plex querying and analytics. This raises questions such as the
following: who owns the derived data? With whom and for what
purpose may it be published? If consent is required for its dis-
semination, whose consent should be obtained?

The related topics of data sharing, privacy and access control
have been extensively studied, but uniquely our focus here is
not on data management with known policies but rather on the
active probing of peers to ask for their consent. Active probing
has the potential to allow finer-grained access control, where it is
unreasonable to expect data owners to publish their full policies,
defined for all possible sharing scenarios. They may not even
have a clear view of their own policies, before asked whether
they are willing to share data with a specific third party.

This short paper informally introduces and motivates this
new problem. It further identifies interesting connections to two
distinct areas: data provenance, which captures the way output
data are derived from inputs, and Boolean evaluation, which
focuses on effective strategies to probe hidden Boolean values for
evaluating a formula. As we shall demonstrate, the composition
of these two areas in the context of this problem yields intriguing
avenues for further research.

1 INTRODUCTION
When peers share data – on social networks, for event plan-
ning or in business collaborations – access control is often a
concern. Data may be re-shared and used in analysis that com-
bines input from multiple sources, thereby making it difficult
to correctly decide access permissions. For example, the data
of Alice’s recruitment agency may consist of personal data of
job seekers, confidential data on companies and internal infor-
mation on collaborators. Now assume Alice wants to re-share
parts of this data with a collaborating agency. In common data
sharing platforms, peers that have originally contributed data to
Alice either have no control over the re-sharing of their data, or
give a broad consent to re-sharing within some group (e.g., for
non-commercial purposes), or disallow re-sharing altogether [1].
However, a finer-grained approach may allow re-sharing more
data without compromising the preferences of data owners. For
instance, Bob, a collaborating agent, may not have agreed that
his data is shared with every third party; but if Alice actively asks
for his permission to share data with Carol, a specific mutual
collaborator, he may agree. Next, Alice may compute statistics
based on combining and analyzing the data provided from many
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sources. May she share the derived data (analysis results) with a
third party? Who should be probed for permissions in this case?

The related topics of data sharing, privacy and access control
have been extensively studied (see a brief discussion below), but
uniquely our focus here is not on data management with known
policies but rather on the active probing of peers to ask for their
consent, to achieve fine-grained access control. The peer answers
may either be given manually (by one of Bob’s employees), or
(semi)-automatically (by Bob’s servers). In either case, probing
requires resources and reveals parts of Bob’s proprietary policy,
and therefore should be minimized. As we shall demonstrate, this
active setting, coupled with reasoning performed over the data,
leads to novel computational problems. Informally, we introduce
the following high-level problem:

We are given a database whose tuples have been contributed by
multiple peers, and a query (in some language) over the database.
Access control policies with respect to the input tuples are (com-
pletely or partially) unknown, but we may probe data owners to ask
about them. Our goal is to decide whether the query output (or a
subset thereof) may be shared with a third party, while minimizing
the number of probes (or otherwise optimizing with respect to a
related target).

To continue our above example, assume that an agency owned
by Carol seeks information on companies in Pennsylvania in
which positions were successfully found for graduates of envi-
ronmental studies. The agency of Alice, a collaborator of Carol,
may have such data at hand, and the information needs of Carol
may be captured by an SPJU query on this data – but may the
query results be shared? For instance, an output value “PennSolar-
Experts Inc.” may be the result of joining several tuples involving
data on (1) the PennSolarExperts company; (2) three environ-
mental studies graduates who found positions in this company,
and (3) the agency owned by Bob who collaborated with Alice
in finding positions for some of the candidates (and then pro-
jecting on the company name). In this case, to share the query
result with Carol, Alice may need the consent of the company, at
least one of the assigned workers, and Bob. Importantly, Alice
may not know in advance whether the company, workers or Bob
agree that computation results based on their data are shared
with Carol; they could have shared their data with Alice without
giving her permissions to share it with a third party. In this case,
Alice would need to actively probe the peers, but what is her best
“strategy” for probing (i.e. who should she probe and in what
order)?

In this short paper we introduce and motivate this new prob-
lem in a high-level manner, through an example. We further
outline a promising approach for a solution, based on two seem-
ingly disjoint areas of research: Data Provenance and Boolean
Evaluation. We believe that the problem, and our line of attack,
are worthy of in-depth investigation.

RelatedWork. We conclude this Introduction with an overview
of related work. The theory and practice of Access control have
been extensively studied in different contexts, including social
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Companies

cid name

11 PennSolarExperts Ltd.

Vacancies

vid cid position amount

111 11 analyst 3
112 11 supervisor 1

JobSeekers

sid name education agency

1 David Env. studies Bob
2 Ellen Env. studies Bob
3 Frank Env. studies Alice
4 Georgia Env. studies Bob

Assignment

sid vid status agency

1 111 hired Bob
2 112 rejected Alice
2 111 hired Bob
3 111 rejected Alice
4 112 hired Alice

Table 1: Example database of Alice’s recruitment agency.

networks (e.g., [1–7]), distributed systems (e.g., [8, 9]) cloud ser-
vices (e.g., [10–12]), Web applications (e.g., [13, 14]) , databases
(e.g., [15–17]), and many other areas. With respect to these works,
our novelty is in focusing on a setting where access policies may
be unknown or undetermined in advance, which requires active
probing of involved peers to obtain permissions. Fine-grained
access control policies may be too large or complex to be spec-
ified by a client, if, e.g., the permission for every peer and ac-
tion must be specified. To assist clients in specifying policies,
previous work has considered (semi-)automatic computation of
access control policies. This includes the computation of policies
based on example permissions [18]; evaluating the credibility
of peers [5]; mining or interactively defining user roles [19, 20];
using semantically-rich languages to compactly capture real-
life factors on policy definition [21]; and using game-theoretic
considerations in defining policies with respect to risk minimiza-
tion [22]. These works are complementary to ours, in the sense
that we probe peers as a “black box”: peer answers may be ob-
tained manually or predefined using methods such as above.

2 MODEL, VIA AN EXAMPLE
We next outline a preliminary model for the problem, illustrated
informally via an example.

We are given a Relational Database1 where each tuple is an-
notated with a label which we refer to as concept, taken from a
set of concepts C. Each concept “belongs” to a single owner out
of a set of peers P. We will refer to such annotated database as a
shared database.

Example 2.1. Table 1 outlines a simple DB for the recruitment
agency example described above, consisting of details of com-
panies and job vacancies in these companies, with the type of
position and the number of open positions; job seekers with their
name, education and agency to which they have applied; and
the assignment of seekers to vacancies, including the status of
the assignment and the agency responsible for matching. The
annotations here can be set to reflect the row (table+key) and
the owner of the data. In this case, we assume for simplicity
that company and vacancy data is owned by the company, and
job seeker and vacancy data is owned by the relevant agency as
the seekers’ representatives. The annotation for the first row in
Companies could for instance be Companies11PennSolar and
the first row of Assignment could be Assignment1-111Bob.

The premise is that there is a hidden truth value to whether
or not we are allowed to share each concept with a specific third
1For brevity, we demonstrate the problem and our approach in a relational setting
and for tuple-level access control; it applies similarly, with some extensions, to
semi-structured data and value-level access control.

party (or publish it in public, etc.); this truth value is known only
to the concept owner.

Example 2.2. Recall the database in Table 1, and assume that
Alice wishes to share the JobSeekers table with Carol. In this
case, Alice’s agency is the owner of the third tuple, and thus
can check whether she can share the data - e.g., if Frank agreed
in his contract with the agency to share data with third parties.
The yes/no answer would translate to a valuation of true/false
respectively to the Boolean variable captured by the annotation
JobSeekers3Alice. The other tuples correspond to job seekers
recruited by Bob’s agency, hence we assume that when asked by
Alice, Bob’s agency can answer yes/no to the sharing request,
again translated to a Boolean valuation.

Some concepts may be associated with a semantic interpreta-
tion, in which case the hidden truth values are constrained. For
instance, in the database from Figure 1, we can assume that ac-
cess permission to a row in Vacancies implies access permission
to the relevant company’s row in Companies. To capture such
constraints, we use taxonomies.

Next, instead of sharing the data as-is, we consider a query
executed on the database to perform some analytics and the shar-
ing of its results. We consider “query” as a broad term here, and
variants of the problem will focus on different query languages
(e.g., relational SPJU, Datalog, etc.).

1 SELECT DISTINCT c.name
2 FROM Companies c,
3 JobSeekers j,
4 Vacancies v,
5 Assignments a
6 WHERE c.cid = v.cid AND
7 v.vid = a.vid AND
8 a.status = `hired' AND
9 a.sid = s.sid AND
10 s.education = `Env. studies'

Figure 1: Query over the example database

Example 2.3. Recall our running example and now assume
that Alice wishes to share with Carol the names of companies
where environmental studies graduates have successfully found
jobs. To this end, she runs the query in Figure 1 on the database
in Table 1. In this simplified example the answer is the single
company in the database - “PennSolarExperts Ltd.”, where David,
Ellen and Georgia have been hired.

The question is then: given an (annotated) database and a
query, are we allowed to share the result?

Example 2.4. Sharing the single result value returned by the
example query, “PennSolarExperts Ltd.”, requires the company’s
consent, as the owner of the relevant tuple. Furthermore, sharing
the result may reveal information about other tuples participating
in the derivation. For instance, if there are few environmental
studies graduates who work in PennSolarExperts, sharing the
result with Carol would reveal personal information about them,
including that at least one of themwas recruited by Alice’s agency
or her collaborators (and in turn, that this person belongs to the
type of job applications at which Alice and her collaborators
specialize, e.g., interns, part-time positions, etc.). Beyond our
example, peers can ask queries, e.g. Boolean, whose result does
not contain any tuple cell, and yet may reveal the existence of
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other tuples. We shall therefore consider to which tuples used in
the derivation permissions are needed. In our case, intuitively, it is
sufficient to have permissions to the data involved in one relevant
job assignment, since the existence of additional assignments
does not change the result. To share e.g., Georgia’s assignment
details, Alice needs permission to share all the tuples jointly
involved in it in addition to the company’s tuple – tuple 4 in
JobSeekers, vacancy 112 and the relevant assignment. To obtain
these permissions, Alice needs to probe Bob Bob, the owner
of the relevant JobSeekers tuple, and PennSolarExperts for the
Companies andVacancies tuples. The owner of the assignment
itself is Alice’s agency, which means she has the information of
whether this tuple can be shared or not. If only one of the four
aforementioned tuples cannot be shared, Georgia’s assignment
cannot be shared.

Since access control policies with respect to the individual
concepts are “hidden”, namely known only to owners, the tool
that we have for deciding whether or not a result may be shared
is to pose questions or probes to the owners of relevant data items.
The goal is then to optimally select probes in order to discover
whether sharing is permitted.

Example 2.5. In our running example, 9 tuples contributed in
some way (to be formalized below through the notion of prove-
nance) to the result of the example query. If the only tuple owned
by Alice (the assignment of job seeker 4) can be shared, we are
left with 8 tuples. If we ask PennSolarExperts whether their com-
pany’s details can be shared and get a negative answer, we know
that the data cannot be shared and there is no need to ask fur-
ther questions. As another example, recall that we assumed that
vacancies data can only be shared if the company’s data can be
shared. Then assume we get PennSolarSystem’s permission to
share data about vacancy 112 (and hence also the company de-
tails) and Bob’s permissions to share Georgia’s details – we obtain
that the query result can be shared having used only 2 probes.

Naturally, the number of questions that will be asked in prac-
tice depends on the answers received, which are unknown in
advance. The goal is to design a strategy for choosing which
questions to pose and in what order, where multiple variants of
the problem could be of interest. These variants may be based on
axes such as the query language expressiveness (e.g. Conjunctive
Queries, Datalog, etc.); the optimization goal (e.g. minimizing the
number of questions or maximizing the number of shareable re-
sults for a given “budget” of questions); optimizing for the worst
or expected case (with respect to the peer answers); selecting
probes in advance or incrementally; and restricting the per-peer
probes or optimizing the overall number of probes.

3 TOWARDS A SOLUTION
Having informally introduced the problem, we next outline a
preliminary approach for a solution, combining multiple areas
of previous work.

Provenance. We are interested in whether or not we may share
derived data, whereas (hidden) access control policies are defined
with respect to the original, atomic data items. The propagation
of meta-data from atomic data items to the query results related
to them has been studied under the prism of provenance [15,
16, 23] (and previously, c-tables [24]). In our case, we may use
provenance to compute expressions capturing the access control
of derived data, in terms of the concepts annotating the input.

Example 3.1. Recall the query in our running example from
Figure 1. Using c-tables [24] (or alternatively Boolean prove-
nance [15, 23]), we can compute a Boolean expression reflecting
the dependencies of access control credentials to the output on
permissions to view relevant input tuples.

Companies11PennSolar∧

(Vacancies111PennSolar∧((Assignment1-111Bob ∧ JobSeekers1Bob)

∨ (Assignment2-111Bob ∧ JobSeekers2Bob))

∨(Vacancies112PennSolar∧Assignment4-112Alice ∧ JobSeekers4Bob))

The formula uses the access control concepts of the relevant
tuples as variables. Indeed, it matches the intuition of Exam-
ple 2.5 on how probe answers may affect the final decision:
if PennSolarExperts refuse sharing their company details with
Carol, Companies11PennSolarwill be evaluated to false, and the
truth value of the entire formula will be false. Alternatively, if we
know that Vacancies112PennSolar, Companies11PennSolar,
Assignment4-112Alice and JobSeekers4Bob evaluate to true,
the entire expression evaluates to true.

(Boolean) provenance constructions such as the one exempli-
fied above have been developed for different query languages
and formalisms, and the shape of the resulting Boolean expres-
sion depends on the formalism for which provenance is tracked,
which in turn may affect the probe selection process. For instance,
if we restrict attention to Union of Conjunctive Queries, then
provenance of each output tuple may be represented in Disjunc-
tive Normal Form of polynomial size with respect to the input
database size [24]; negation is needed for queries with relational
difference [25]; for Datalog, a polynomial size representation
is possible in the worst case only if we resort to Boolean cir-
cuits [26]; etc.

(Incremental) Boolean Evaluation. Given Boolean provenance
formulas over data items, had we known whether they are au-
thorized for publication, we could simply assign true/false to the
corresponding variables in the formulas and decide whether the
derived data could be shared. However, policies of peers may be
unknown or undetermined, therefore we probe peers to obtain
them. We now consider the optimization problem of selecting
the best variables to observe next.

To illustrate, we next outline our preliminary solution for the
following setting:

• Relational SPJUD queries (select-project-join-union-difference),
• Minimizing the number of questions
• Optimizing the expected case
• Selecting questions incrementally
• Considering either the number of questions overall or per
peer

• Assuming an equal cost for all the questions/peers and
given answer prior probabilities.

In this case, as explained above, output tuples would be anno-
tated by Boolean expressions (computed via [24]). We then ex-
plore results on Boolean evaluation for such expression, and may
leverage them to show that the problem is NP-hard, via [27, 28].
In contrast, previous work has studied optimal solutions for re-
stricted cases, heuristics and approximations (see, e.g., [27, 29]
for a survey). In particular, in [30] we have adapted and extended
an approximate solution by [31], as we next briefly outline.

Denote the set of output tuple annotations by E. For each
Boolean formula ei ∈ E we define two utility functions дi0,д

i
1 :

{1, 0, ∗} |C |→R+, where C is the set of variables in the Boolean
expressions and each entry represents either a value assignment
to a variable or no assignment (∗). дi0(®c) and д

i
1(®c) are respectively
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the number of terms (conjunctions) set to 0 in the DNF form of ei ,
and the number of clauses (disjunctions) set to 1 in the CNF form
of ei by the partial assignment ®c . Denote bymi and li the number
of terms and clauses in ei respectively. The utility functionдi (®c) =
mi li − (mi − дi0(®c))(li − дi1(®c)) reaches its maximum,mi li , when
дi0(®c) =mi or дi1(®c) = li , i.e., ei is evaluated.

To minimize the overall number of questions a greedy algo-
rithm is then used. The algorithm repeatedly selects the unknown
variable c j whose probe maximizes the expected value (over the
possible answers) of дi . Some properties of дi (monotonicity, sub-
modularity) guarantee that the expected number of questions is
within a factor of ln(mi li ) + 1 from the optimum.

Next, we need to simultaneously evaluate all the formulas
in E, which may be done by defining д(®c) =

∑
ei ∈E д

i (®c). д is
a function that reaches its maximum,

∑
ei ∈Emi li , when all the

expressions are evaluated. By similar analysis to that of дi , we
get that the solution is a ln(

∑
ei ∈Emi li )+ 1 approximation of the

optimum.
The above adaptation is an example of a rather direct combi-

nation of results from the provenance and Boolean evaluation
literature; our setting suggest further novel algorithmic devel-
opments. For instance, in [30] we have extended the solution
to compute batches of probes rather than single probes and to
account for constraints imposed by a taxonomy over the items
(i.e., implication constraints between access rights), showing that
we still achieve the same approximation bound. We also study
an incremental setting where the client is allowed to terminate
the process at any point and share partial results via “safe views”
– views of the results that are known to be safe for sharing.

Another example for a variant that is not accounted for by
previous results is one that targets the minimization of the probes
per peer, in this case, minimizing. For that, we keep track of the
number of probes per peer p ∈ P (denoted by probes(p)). At
each step, let C∗ be the set of variables still unknown. When
selecting the next probe, we consider only variables in {c ∈ C∗ |

probes(owns(c)) = minp′∈P∗ probes(p′) ∧ E[д(®c)] > 0}, i.e., that
are owned by least-probed peers and whose utility is non-zero.

Our preliminary results are encouraging and suggest that the
combination of provenance constructions and Boolean evaluation
methods is a promising direction towards studying our problem
complexity and designing efficient algorithms. There are still
many challenges to be overcome in this space, both theoretical
and practical: for instance, can we achieve better guarantees by
restricting the query language? What guarantees can we obtain
for more expressive languages? For instance, what if we have
aggregates, or recursion and then Boolean circuits rather than
formulas? What if we have a “budget” for the number of probes
to be used? How can we estimate the probe answer probabilities,
in light of constraints defined by the taxonomy, peer trust, and
accumulated probe answers? The interplay between the choice
of query language/provenance model, optimization goal and con-
straints leads to many intriguing computational questions which
will be central to research on this problem.

4 CONCLUSION
This paper has advocated the study of access control management
in a setting where peers are actively probed to ask for their per-
missions. Our main insight is that the problem may be addressed
by computing Boolean provenance for query results, and treating
the Boolean expression as input to active Boolean evaluation
algorithms. We believe that this high-level approach paves the

way to exciting research possibilities at the intersection of these
two seemingly unrelated areas.
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