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ABSTRACT
The increasing ubiquity of multivariate functional data (MFD)
requires methods that can properly detect outliers within such
data, where a sample corresponds to 𝑝 > 1 parameters observed
with respect to (w.r.t) a continuous variable (e.g. time). We im-
prove the outlier detection in MFD by adopting a geometric view
on the data space while combining the new data representation
with state-of-the-art outlier detection algorithms. The geometric
representation of MFD as paths in the 𝑝-dimensional Euclidean
space enables to implicitly take into account the correlation w.r.t
the continuous variable between the parameters. We experimen-
tally show that our method is robust to various rates of outliers in
the training set when fitting the outlier detection model and can
detect outliers which are not detected by standard algorithms.

1 INTRODUCTION
1.1 Functional data context and taxonomy
In many fields (e.g. engineering, biology or medicine), detecting
atypical behaviors of complex systems enables to better antic-
ipate and understand both undesired and rare situations (e.g.
engine failure, heart disease). Most of the time, detecting atypical
behaviors requires the analysis of 𝑝 system parameters (𝑝 ≥ 1)
measured by high sampling-rate sensors. The raw sensor mea-
surements result in noisy data dependent on a continuous vari-
able (e.g. time, wavelength) being discretized by the sampling
process of the 𝑝 sensors. Such data are referred as univariate or
multivariate functional data depending on whether one (𝑝 = 1)
or several parameters (𝑝 > 1) are analyzed, respectively.

Thus the observation of the parameters along the continuous
variable is seen as the realization of an underlying (unknown)
function that values in R𝑝 . We emphasize that in the functional
data framework, a data set sample is represented as a function
rather than a high-dimensional vector of different dimension
containing the raw measurements. Dimension refers to the num-
ber of measurements which can be different from a sample to
another). We refer to [13] for a comprehensive introduction to
functional data analysis.

Here we adopt the following notations : the dependent continu-
ous variable is denoted by 𝑡 ∈ T ⊂ Rwhere T is a closed interval
of R, the data samples are sub-scripted by 𝑖 ∈ {1...𝑛}, univariate
functional data (UFD) samples are denoted by lower case letter
𝑥𝑖 (𝑡) ∈ R and multivariate functional data (MFD) samples are de-
noted by capital letter 𝑋𝑖 (𝑡) = (𝑥𝑖1 (𝑡), ..., 𝑥𝑖𝑘 (𝑡), .., 𝑥𝑖𝑝 (𝑡)) ∈ R𝑝 .
Thus a MFD is made up of 𝑝 UFDwhich are potentially correlated.
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Figure 1: Example of 21 MFD (𝑝 = 2) with one shape
persistent outlier in red. (a) (𝑡, 𝑥𝑖1, 𝑥𝑖2) representation. (b)
(𝑥𝑖1, 𝑥𝑖2) representation i.e. projection along 𝑡-axis.

Detecting atypical behaviors is referred as outlier or anomaly
detection. An outlier is defined as a sample which is rare and very
different from the rest of the data set based on some measure
[1]. A taxonomy of functional outliers into two classes has been
proposed by Hubert et al. [8]. First, an isolated outlier is defined as
a sample which exhibits an extreme behavior for very few points
𝑡 . For instance a narrow vertical peak in the curve depicted by a
parameter 𝑥𝑖𝑘 w.r.t 𝑡 is named a magnitude isolated outlyingness
and a high horizontal translation in the curve is referred as shift
isolated outlyingness. Second, a persistent outlier is a sample
which never exhibits extreme behavior but deviates from inliers
for many points 𝑡 , an example of shape persistent outliers is given
in Fig.1. Persistent outliers can be divided into other sub-classes,
see [8] for detailed examples. Note that an outlier can be of mixed
type, i.e. a sample entailing several outlier classes. For an instance,
one parameter has a shape persistent outlyingness and another
one has an isolated outlyingness.

In this paper we focus on a geometric representation for out-
lier detection in MFD and highlight the situation of outliers of
mixed type. The MFD case is more challenging than the UFD one
since the potential correlation between the 𝑝 parameters (i.e. how
𝑥𝑖𝑘 and 𝑥𝑖𝑘′ are correlated w.r.t 𝑡 ) has to be taken into account
additionally to the individual variations of the single parameters
w.r.t to 𝑡 [8]. Indeed contrary to outliers in UFD, where the outly-
ingness of a sample only consists of an atypical variation w.r.t 𝑡
of a single parameter, in MFD the outlyingness of sample might
be hidden in an atypical variation of the relationship between
some parameters [8, 11] as well as an atypical variation of one
of the 𝑝 parameters. Note that the representation of MFD we
propose can also be used for other tasks than outlier detection
(e.g. classification) as well as other geometric representations of
2D and 3D shapes which can be applied for the 𝑝 = 2 and 𝑝 = 3
(respectively) MFD cases [16].

1.2 Related work
The outlier detection in MFD is recent and has been addressed
by statistical depth functions [18] originally proposed to provide
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an outward-center ranking score, also named a depth score (e.g.
in the interval [0, 1]), of multivariate data which are basically
sample points in R𝑑 . In this general multivariate data context,
where each sample is regarded as a point in a𝑑-dimensional point
cloud, the first ranked samples are the most central ones within
such point cloud and are seen as most representative, whereas
the last ranked samples are the least central ones and thus they
are likely to be outliers. Such ranking is ensured through the
monotonicity property of the depth function (see [18] for the-
oretical understanding of a depth function). Hence, the depth
score can be viewed as an outlyingness score which reflects the
degree of outlyingness at the sample level.

Some statistical depth functions have been extended first to
handle UFD [3] and then MFD [2, 8]. The UFD extension consists
in computing a depth function on 𝑥𝑖 (𝑡),∀𝑖 at each 𝑡 and then to
compute the integral over 𝑡 ∈ T of the resulting depth scores
[3, 6] which in turn provides an average sample depth score for all
𝑖 . Note that this extension is an aggregation of the depth function
applied in a univariate manner since, for a given 𝑡 , {𝑥𝑖 (𝑡)}𝑖≤𝑛 is a
point cloud in R. Since {𝑋𝑖 (𝑡)}𝑖≤𝑛 forms a point cloud in R𝑝 , the
MFD extension relies on the application of a depth function in
a multivariate manner and integrates the depth scores as in the
UFD case [2]. Such an extension suffers from important issues :

(1) First, it is not sensitive enough to persistent outliers be-
cause their point-wise depth scores (i.e. for each 𝑡 ) do not
differ from those of inliers. One can augment the MFD
samples by adding some derivatives functions of the pa-
rameters as supplementary (unobserved) parameters but
it increases both computations and the complexity of the
data analysis.

(2) Second, even if the point-wise depth scores of an isolated
outlier are different from those of an inlier, its sample
depth score will be mixed with inliers because the integra-
tion of the point-wise depth scores acts as an average.

(3) Furthermore, since the capacity of the depth function to
capture different types of outlier is fundamental, outliers
caused by abnormal correlation between the parameters
(i.e. outliers of mixed type) are hard to detect. Such an
abnormal correlation can result in outliers of mixed type.

To address the first issue (1), and especially to detect shape
persistent outliers, several depth functions have been proposed.
Khunt and Rehage (𝐹𝑈𝑁𝑇𝐴) [9] proposed a depth function based
on the intersection angles between a curve sample depicted by
𝑥𝑖𝑘 and {𝑥 𝑗𝑘 }𝑗≤𝑛,𝑗≠𝑖 and then average these angles over both
their number and the parameters. Such method is not able to
detect outliers caused by an abnormal correlation between the
parameters and also isolated outliers because their depth function
is only focused on shape persistent outliers.

To address the second issue (2) the integral can be replaced by
the infimum as the aggregation of the point-wise depth scores,
which avoids the masking of outliers having few different point-
wise depth scores.

To address the third issue (3), Dai and Genton [4] proposed the
directional outlyingness (𝐷𝑖𝑟 .𝑜𝑢𝑡 ), a point-wise depth function
based on the direction of𝑋𝑖 (𝑡) inR𝑝 toward the projection-depth
[17] of {𝑋𝑖 (𝑡)}𝑖≤𝑛 . To compute the sample depth score, the point-
wise depth scores are aggregated through an integral over T
which is further decomposed into an average component and a
variance-like component. Such sample depth score decomposi-
tion enables to detect multiple outliers and also to identify their
class by analyzing how the two depth components are distributed

according the other sample depth scores (e.g. samples with high
variance-like component value are likely persistent shape out-
liers and samples with high average component value are likely
isolated outliers). However, to detect persistent shape outliers,
the direction of 𝑋𝑖 (𝑡) is not a sufficient feature and further geo-
metrical representation has to be considered.

1.3 Contribution
In this paper, we propose a different framework than the sta-
tistical depth to remedy these issues by treating MFD as trajec-
tories in R𝑝 from which we extract geometrical features such
as the curvature. Such geometrical features are computed by
interpretable (from a geometric standpoint) aggregation func-
tions, named mapping functions in the sequel, which combine
some derived functions (e.g. derivatives, integral) from the MFD.
We then apply a state-of-the-art algorithm on the geometrical
MFD representation to achieve the outlier detection. Considering
MFD in a geometric manner enables to implicitly capture the
correlation between the 𝑝 parameters w.r.t 𝑡 and thus to detect
different classes of outliers as well as mixed types. Moreover, such
combination results in a more robust outlier detection method
e.g. when there are more than 5% of outliers in the training set.
Thus, we both take benefit from outlier detection algorithm for
multivariate data as well as the geometry of the curve (i.e. the
geometry of 𝑋𝑖 in R𝑝 and the geometry of each parameter 𝑥𝑖𝑘
w.r.t 𝑡 ).

2 FUNCTIONAL DATA REPRESENTATION
The first step in functional data analysis is to approximate the
unknown function, 𝑋𝑖 : T → R𝑝 , underlying the noisy measure-
ment samples 𝑋𝑖 (𝑡1), ..., 𝑋𝑖 (𝑡𝑚𝑖

) where𝑚𝑖 is the number of mea-
surements for each parameter of the sample 𝑖 , by an approxima-
tion function 𝑋̃𝑖 defined as 𝑋𝑖 . Note that no assumption is made
on the distribution of the measurement points {𝑡1 ...𝑡𝑚𝑖

} = 𝑡𝑖• ,
thus the functional data representation can deal with sparse mea-
surements as well as uniform ones.

The functional approximation step aims at removing the noise
and thus enables to achieve accurate evaluations of some derived
functions that we need for the mapping function computation.
This section introduces how 𝑋̃𝑖 = (𝑥𝑖1, ..., 𝑥𝑖𝑘 , ..., 𝑥𝑖𝑝 ) is specified
as well as it is inferred from the data.

2.1 Functions as a basis expansion
First, we specify the functional form of the approximation func-
tion as a finite linear combination of basis functions, where each
basis function depends on 𝑡 ∈ T . Suppose we want to approxi-
mate 𝑥𝑖𝑘 . Intuitively, it aims to represent 𝑥𝑖𝑘 with a small number
of "specific functions", each one being able to capture some local
features of 𝑋𝑖 in hopes to recover it with a small approximation
error. Hence, the following form is given for 𝑥𝑖𝑘 [13],

∀𝑡 ∈ T , 𝑥𝑖𝑘 (𝑡) =
𝐿𝑖𝑘∑
𝑙=1

𝛼𝑖𝑘𝑙𝜙𝑙 (𝑡) = 𝜶⊤
𝑖𝑘
𝝓 (𝑡) (1)

where 𝝓 (𝑡) = {𝜙𝑙 (𝑡)}1≤𝑙≤𝐿𝑖𝑘 is a vector of orthonormal basis
functions at 𝑡 for some 𝐿𝑖𝑘 ∈ N∗ (referred as the basis size) with
fewer basis functions than sampled observation points (𝐿𝑖𝑘 ≪
𝑚𝑖 ), and 𝜶⊤

𝑖𝑘
= {𝛼𝑖𝑘𝑙 }1≤𝑙≤𝐿𝑖𝑘 is the coefficient vector which

element 𝛼𝑖𝑘𝑙 is the importance of the 𝑙-th basis function. The
choice of the basis of functions is data dependent.
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Here we consider that 𝑥𝑖𝑘 are smooth and so we choose the
B-spline basis of functions which are basically piece-wise polyno-
mial functions. If the data were periodic data, one could choose
the Fourier basis. We refer to [13] for a discussion on the choice
of basis functions. Note that from the functional approximation
Eq.1, one can easily compute some derivatives or integral based
functional data since by linearity,

𝐷𝑞𝑥𝑖𝑘 =

𝐿𝑖𝑘∑
𝑙=1

𝛼𝑖𝑘𝑙𝐷
𝑞𝜙𝑙 (𝑡) (2)

where 𝐷𝑞 = d𝑞
d𝑡𝑞 is the 𝑞−th derivative operator, provided that

the basis functions 𝜙𝑙 are differentiable at the 𝑞-th order.

2.2 Inference
Assuming the data were sampled with a white noise 𝜖𝑖 𝑗 , i.e.
𝑥𝑖𝑘 (𝑡𝑖 𝑗 ) = 𝑥𝑖𝑘 (𝑡𝑖 𝑗 ) + 𝜖𝑖 𝑗 where 𝜖𝑖 𝑗 is independent from 𝑥𝑖𝑘 (𝑡𝑖 𝑗 ),
we can compute the coefficient vector 𝜶 𝑖𝑘 by minimizing the
following penalized least-squares criteria:

𝑱 𝜆𝑘 (𝜶 𝑖𝑘 ) = ∥𝑥𝑖𝑘 (𝑡𝑖• ) − Φ𝑖𝑘𝜶 𝑖𝑘 ∥2 + 𝜆𝑘𝜶
⊤
𝑖𝑘

R𝑖𝑘𝜶 𝑖𝑘 (3)

where ∥·∥ stands for the 𝑙2-norm, Φ𝑖𝑘 = {𝜙𝑙 (𝑡𝑖 𝑗 )}1≤ 𝑗≤𝑚𝑖 ,1≤𝑙≤𝐿𝑖𝑘
is the𝑚𝑖 ×𝐿𝑖𝑘 matrix containing all the 𝐿𝑖𝑘 basis functions evalu-
ated at the measurement points 𝑡𝑖• and
R𝑖𝑘 = {

∫
T 𝐷𝑞𝝓 𝑗 (𝑡)𝐷𝑞𝝓𝑚 (𝑡)d𝑡)}1≤ 𝑗,𝑚≤𝐿𝑖𝑘 is a 𝐿𝑖𝑘 ×𝐿𝑖𝑘 positive

semi-definite matrix containing the inner products of the 𝑞-th
derivative of the basis functions which enforces the approxima-
tion function to have a small 𝑞-th derivative i.e. to vary smoothly;
𝜆𝑘 > 0 is a hyper-parameter controlling the weight of the penalty
and can be set to 0 for no penalization. In practice it is common
to choose 𝑞 = 1 or 𝑞 = 2 (i.e to penalize the velocity or the
acceleration) and to compute 𝜆𝑘 by cross-validation.

Equaling the gradient of 𝑱 𝜆𝑘 to 0 w.r.t 𝜶 𝑖𝑘 leads to the mini-
mizer in Eq.4 [13] which is a special case of the ridge regression
solution:

𝜶 ∗
𝑖𝑘,𝜆

= (Φ⊤
𝑖𝑘

Φ𝑖𝑘 + 𝜆𝑘R𝑖𝑘 )−1Φ⊤
𝑖𝑘
𝑥𝑖𝑘 (𝑡𝑖• ) (4)

The estimated coefficient vector 𝜶 ∗
𝑖𝑘,𝜆

can then be plugged in
Eq.1 to evaluate 𝑥𝑖𝑘 over an arbitrary discretization of T .

3 MAPPING FUNCTION
We propose to regard MFD as paths in R𝑝 to highlight some un-
derlying shape outlyingness features corresponding to a change
in the relationship between the parameters. We feature this
change with a mapping function that we define as a geometric
aggregation of the 𝑝 parameters. We refer to [15] for an intro-
duction to shape analysis from functional data.

In this section, we present the curvature as an example of
mapping function. The curvature is a measure of how much
bended a curve is, more formally how the curve locally deviates
from the tangent line, see Fig.2. It is defined as:

𝜅 (𝑡) =
∥𝐷1 ( 𝐷1𝑋 (𝑡 )

∥𝐷1𝑋 (𝑡 ) ∥ )∥

∥𝐷1𝑋 (𝑡)∥
(5)

where ∥·∥ denotes the Euclidean norm in R𝑝 . One can interpret
𝜅 in Eq.(5) as follows: 𝐷1𝑋 (𝑡 )

∥𝐷1𝑋 (𝑡 ) ∥ gives the direction vector (i.e

the normalized tangent vector), therefore 𝐷1 𝐷1𝑋 (𝑡 )
∥𝐷1𝑋 (𝑡 ) ∥ gives the

change direction vector and the denominator ∥𝐷1𝑋 (𝑡)∥ aims to
relate the change of direction w.r.t the tangent vector, i.e. how
the direction vector varies w.r.t a tangent line. Consequently, the

𝑫𝟏𝑿(𝒕𝟏)

𝑫𝟏𝑿(𝒕)

𝒙𝟐

𝒙𝟏

= 𝒙𝟏 𝒕 , 𝒙𝟐 𝒕
= 𝒙𝟏 𝒕𝟏 , 𝒙𝟐 𝒕𝟏

𝒓 𝒕𝟏

Figure 2: Curvature mapping 𝜅. The curvature measures
how large the radius of the tangent circle is. Here, in the
neighbourhood of the curve at 𝑡1 (dark-grey dot), the tan-
gent vector 𝐷1𝑋 (𝑡1) keeps the same direction, hence the
tangent circle has a large radius (𝑟 (𝑡1) = 1

𝜅 (𝑡1) ) resulting in
a small curvature. In the neighbourhood of the curve at 𝑡
(white dot), the tangent vector 𝐷1𝑋 (𝑡) quickly changes di-
rection, hence the tangent circle has a lower radius i.e. a
higher curvature than at 𝑡1.

curvature mapping can highlight functional outliers which curve
exhibits a different bended shape than the other samples.

Thus if a curve abnormally changes direction (i.e. it deviates
from a tangent line) w.r.t most of the data set, then the curvature
mapping can highlight outliers. As a result, if the curve𝑋𝑖 depicts
a line (i.e. the parameters are linearly correlated w.r.t 𝑡 ), then the
curvature is constant w.r.t 𝑡 since the directions do not vary in
R𝑝 . Clearly, this is a geometric characterization of MFD.

From the reconstructed samples {𝑋̃𝑖 }𝑖≤𝑛 , transformed to UFD
by the mapping function, we detect the outliers with state-of-
the-art algorithms initially proposed to deal with multivariate
data (not functional). Here we use Isolation-Forest (𝑖𝐹𝑜𝑟 ) [10]
and One-class SVM (𝑂𝐶𝑆𝑉𝑀) [14] which are both unsupervised.

4 NUMERICAL EXPERIMENTS
We conducted an experimental study on real data. We com-
pare our approach with state-of-the-art depth-based methods,
𝐹𝑈𝑁𝑇𝐴 and 𝐷𝑖𝑟 .𝑜𝑢𝑡 [4, 9] (Sec.1.2) which take the MFD as input.

4.1 Experimental procedure
We experiment our method on a well-known real data set of
electrocardiogram (ECG) time series [7] also used in outlier de-
tection in [4]. Such data set correspond to time series of electrical
activity and can reveal abnormal heartbeat. The time series are
UFD (with number of measurements𝑚𝑖 = 85,∀𝑖) and in order
to show the applicability of our approach in the MFD case, we
augment the original UFD data to MFD (𝑝 = 2, bivariate) by
adding the square of the initial time series. We did not add some
derivatives-based functions as supplementary parameters since
it is already considered by our mapping function (see Eq.5).

We evaluate our approach through multiple random splittings.
We randomly split the data into a training and a test set. We
generate the training set by setting the ratio of outliers (referred
as the contamination level 𝑐) to 5, 10, 15, 20 and 25%. For each
value of 𝑐 , we repeat the random splitting 50 times, we fit 𝑖𝐹𝑜𝑟
and 𝑂𝐶𝑆𝑉𝑀 on the training set and compute the average and
standard deviation Area Under (AUC) the Receive Operating
Curve (ROC) on the corresponding test set. We present the results
in Fig.3 and discuss them in Sec.4.3.

For each sample and each variable 𝑥𝑖𝑘∀𝑖, 𝑘 we use a B-spline ba-
sis of functions (piece-wise polynomial functions, [13]) to achieve
the functional approximations and we select the basis sizes 𝐿𝑖𝑘
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Figure 3: AUC (vertical axis) and standard deviation (verti-
cal segments’ length equals one standard deviation) from
ECG data set - average results over 50 repetitions consid-
ering five contamination levels 𝑐 (horizontal axis).

trough a leave-one-out cross validation procedure. We evaluate
each 𝑋̃𝑖 on the same regular grid of T with length𝑚𝑖 = 85. We
compute the mapping function by combining the first and second
derivatives, according to Eq.2 and Eq.5, and we apply 𝑖𝐹𝑜𝑟 and
𝑂𝐶𝑆𝑉𝑀 on the resulting UFD.

4.2 Outlier detection step
We use 𝑖𝐹𝑜𝑟 and 𝑂𝐶𝑆𝑉𝑀 as outlier detection algorithms on
the UFD that our mapping function 𝜅 returns (Eq.5). 𝑖𝐹𝑜𝑟 and
𝑂𝐶𝑆𝑉𝑀 are unsupervised and, like the depth-based methods,
output a normalized outlyingness score for each sample. In prac-
tice, in outlier detection one has not necessarily access to labeled
samples, i.e. information depicting whether a sample is an outlier
or not, but if he has, the labels can be combined with their corre-
sponding outlyingness scores to learn an outlyingness threshold
that can best discriminate outliers from inliers. Such a threshold
can be learned from the ROC as well as an imbalanced classifi-
cation algorithm [5, 12] in a one dimensional manner from the
scores. Here, we do not learn any threshold and only consider
the label information for empirical demonstration purpose, i.e.
by computing the AUC on the test set.

4.3 Discussion of the results
From the results in Fig.3, we see that we outperform the two
depth-based methods for all the contamination levels in aver-
age and perform equally in terms of standard deviation. Since
𝐹𝑈𝑁𝑇𝐴 is only able to detect persistent shape outliers and𝐷𝑖𝑟 .𝑜𝑢𝑡
is expected to detect isolated as well as persistent outliers1, we
can deduce that the abnormal class (i.e.outliers) in the ECG data
set not only contains persistent shape outliers but also isolated
ones or outliers of mixed type which are well discriminated by
the curvature mapping function. Thus the curvature mapping
enables to detect mixed type outliers.

Moreover, we note that as 𝑐 increases both 𝑖𝐹𝑜𝑟 (𝐶𝑢𝑟𝑣𝑚𝑎𝑝 )
and𝑂𝐶𝑆𝑉𝑀 (𝐶𝑢𝑟𝑣𝑚𝑎𝑝 ) still outperform the baselines. Hence, we
show that our combination of outlier detection algorithm with
MFD mapped to a geometrical representation is more robust to
the presence of outliers in the training set than the baselines.
We note that OCSVM degrades as 𝑐 increases. It is due to the 𝜈
hyper-parameter (we tune it on the training set with a 5-fold cross
validation) corresponding to an estimate of contamination level in

1Justification can be found in the experiments in [4] which were conducted on
several synthetic data sets where each one contains a unique type of outlier.

the training set. We observed that such hyper-parameter is hard
to tune as 𝑐 increases and thus could decrease the performance
w.r.t 𝑐 .

5 CONCLUSION AND FUTUREWORK
We propose an approach to detect outliers in MFD. It consists
in computing a geometrical representation of MFD followed by
an outlier detection algorithm. We compare our approach with
recent depth-based methods which handle MFD as input.

Through one example of mapping function, we show that
the geometrical representation of MFD is well suited to detect
outliers of mixed type. However, it is hard to interpret what
such mixed type outliers are made up: given a detected outlier,
ideally one would like to access to the amount of the different
outlyingness classes e.g. the amount of shape persistence and shift
isolated outlyingness. As future work, a mean to achieve such an
interpretability is first to detect some specific outliers with depth
functions, second to train outlier detection algorithms (combined
with a mapping function) on training sets containing each one a
unique class of outlier previously detected and then to average
all the models trained to form an ensemble one. As a result, one
could know which model(s) in the ensemble most contribute to
the outlyingness and deduce the outlyingness composition.
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