
A Learning Based Approach to Predict Shortest-Path Distances
Jianzhong Qi1, Wei Wang2, Rui Zhang1, Zhuowei Zhao1∗

1The University of Melbourne, Melbourne, Australia
2The University of New South Wales, Sydney, Australia

1{jianzhong.qi@, rui.zhang@, zhuoweiz1@student.}unimelb.edu.au, 2weiw@cse.unsw.edu.au

ABSTRACT
Shortest-path distances on road networks have many applica-
tions such as finding nearest places of interest (POI) for travel
recommendations. To compute a shortest-path distance, tradi-
tional approaches traverse the road network to find the shortest
path and return the path length. When the distances are needed
first (e.g., to rank POIs) while the shortest paths may be computed
later (e.g., after a POI is chosen), one may precompute and store
the distances, and answer distance queries by simple lookups.
This approach, however, falls short in the worst-cast space cost –
O (n2) for n vertices even with various optimizations. To address
these limitations, we propose to learn an embedding for every
vertex that preserves its distances to the other vertices. We then
train a multi-layer perceptron (MLP) to predict the distance be-
tween two vertices given their embeddings. We thus achieve fast
distance predictions without a high space cost. Experimental re-
sults on real road networks confirm these advantages. Meanwhile,
our approach is up to 97%more accurate than the state-of-the-art
approaches for distance predictions.

1 INTRODUCTION
Computing shortest-path distances on road networks with a high
efficiency is fundamental for applications such as “finding restau-
rants within 5 km distance” or “ranking restaurant search results
by distance”. Real road networks (e.g., Florida road network [8])
may contain millions of vertices, while thousands of users may
issue distance queries at the same time (e.g., Google Maps has
over a billion active users [1]). Answering distance queries under
such settings poses significant challenges in both space and time
costs. We aim to address such challenges in this paper.

Problem formulation. We consider a road network graph
G = ⟨V ,E⟩, whereV is a set of n vertices (road intersections) and
E is a set ofm edges (roads). A vertex vi ∈ V has a pair of geo-
coordinates. An edge ei, j ∈ E connects two vertices vi and vj ,
and has a weight ei, j .w , which represents the distance to travel
across the edge. Fig. 1a shows an example, wherev1,v2, ...,v5 are
the vertices, and the numbers on the edges are the weights. For
simplicity, in what follows, our discussions assume undirected
edges, although our techniques also work for directed edges.

A path pi, j between vertices vi and vj consists of a sequence
of vertices vi → v1 → v2 → ... → vx → vj such that there
is an edge between any two adjacent vertices in the sequence.
The length of pi, j , denoted by |pi, j |, is the sum of the weights of
the edges between adjacent vertices in pi, j , i.e., |pi, j | = ei,1.w +
e1,2.w + ...+ex, j .w .We are interested in the path p∗i, j betweenvi
and vj with the smallest length, i.e., the shortest path. Its length
is the (shortest-path) distance d (vi ,vj) between vi and vj , i.e.,
d (vi ,vj) = |p

∗
i, j |. Consider vertices v1 and v5 in Fig. 1a. Their

∗The authors are ordered alphabetically.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

v2 (l1)

v1 v4 v5

v3 (l2)

3 4 6
1 3

3 5 5

(a) A road network example

v1
v2
v3
v4
v5

v1 v2 v3 v4 v5
0 3 3 1 4
3 0 6 4 6
3 6 0 4 5
1 4 4 0 3
4 6 5 3 0

(b) Distance labeling

v1
v2
v3
v4
v5

v2 (l1) v3 (l2)

3 3
0 6
6 0
4 4
6 5

(c) Landmark labeling
Figure 1: Shortest-path distance problem

distance d (v1,v5) = 4 is the length of path v1 → v4 → v5. We
aim to predict d (vi ,vj) given vi and vj with a high accuracy and
efficiency, which is defined as the shortest-path distance query.

Definition 1.1 (Shortest-path distance query). Given two query
vertices vi and vj in graph G, a shortest-path distance query re-
turns the shortest-path distance between vi and vj , i.e., d (vi ,vj).

For simplicity, we use distance to refer to shortest-path dis-
tance hereafter as long as the context is clear.

Related work. A simple solution is to use shortest path al-
gorithms (e.g., Dijkstra’s algorithm) to compute the shortest
paths and then return the path lengths. In applications such
as those mentioned above, the distances are needed first (e.g.,
to rank restaurants by distance) while the shortest paths may
be computed later (e.g., after a restaurant is chosen). Studies
(e.g., [3, 7, 12]) thus build data structures to enable fast distance
queries without online shortest path computations. Distance la-
beling is commonly used. Its basic idea is to precompute a vector
of (distance) values for each vertex as its distance label. In an
extreme case, the distance label of a vertex contains its distances
to all other vertices (cf. Fig. 1b). A distance query is answered by a
lookup inO (1) time, but this requiresO (n2) storage space for the
distance labels. Techniques (e.g., 2-hop labeling [7] and highway
labeling [12]) are proposed to reduce the label size. However, for
general graphs, the worst-case space costs are still O (n2) [11].

To avoid theO (n2) space cost, approximate techniques are pro-
posed [6, 18, 21], among which landmark labeling [10, 16, 20] is a
representative approach. This approach uses a subset of k (k ≪
n) vertices as the landmarks. Every vertexvi stores its distances to
these landmarks as its distance label, i.e., a k-dimensional vector
⟨d (vi , l1),d (vi , l2), . . . ,d (vi , lk)⟩, where l1, l2, . . . , lk ∈ L repre-
sent the landmarks and d (·) represents the distance. At query
time, the distance labels of the two query vertices vi and vj are
scanned, where the distances to the same landmark are summed
up. The smallest distance sum, i.e., min{d (vi , l) + d (vj , l) |l ∈ L},

Short paper

Series ISSN: 2367-2005 367 10.5441/002/edbt.2020.34

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.34

is returned. In Fig. 1, v2 and v3 are chosen as the landmarks
(denoted by l1 and l2, respectively), and the distance labels are
shown in Fig. 1c. The distance between v1 and v5 is computed as
min{d (v1, l1)+d (v5, l1),d (v1, l2)+d (v5, l2)} = min{3+6, 3+5} =
8, which is twice as large as the actual distance betweenv1 andv5
(i.e., 4). Even though landmark labeling reduces the space cost to
O (kn), it may not return the exact distance. How the landmarks
are chosen plays a critical role in the distance accuracy. Since
finding the k optimal landmarks is NP-hard [16], heuristics are
proposed [16, 19] such as choosing the vertices that are on more
shortest paths as the landmarks. Theoretical results (e.g., [6, 15])
are offered to bound the relationship between the label size and
the distance accuracy. On undirected graphs, it is shown [21]
that any algorithm with an approximation ratio of α < 2c + 1
(c ∈ N+) must use Ω(n1+

1
c) space. A structure is proposed [21]

using O (cn1+
1
c) space and O (cmn

1
c) time to obtain an approxi-

mation ratio of α = 2c − 1 and an O (c) query time. Chechik [6]
improves the space cost to O (n1+

1
c) and the query time to O (1),

with anO (n2+mn
1
2) prepossessing time. These studies aremainly

of theoretical interest. They do not offer empirical results.
Our contributions. To preserve more information in the dis-

tance labels and obtain higher distance accuracy, we propose to
learn an embedding for every vertex as its distance label. Our idea
is motivated by recent advances in graph embeddings [4, 5, 9],
which show that vertices can be mapped into a latent space where
their structural similarity (e.g., the number of common neigh-
boring vertices) can be computed. This motivates us to map the
vertices into a latent space to compute their spatial similarity, i.e.,
shortest-path distances. We make the following contributions:

(i) We propose a learning based model vdist2vec to predict
vertex distances. This model learns vertex embeddings while
jointly trains a multi-layer perceptron (MLP) to predict vertex
distances. It has an O (k) distance prediction time and an O (kn)
storage space, where k is a small constant denoting the vertex
embedding dimensionality. Our model is highly accurate, since
the embeddings are guided by distance predictions directly.

(ii) We further propose two models vdist2vec-L and vdist2vec-S
with an improved loss function and an improved model structure
to optimize the embeddings for different types of vertices.

(iii) We perform experiments on real road networks. The re-
sults show that, comparing with state-of-the-art approaches, our
models reduce the distance prediction errors by up to 97%.
2 PROPOSED MODEL
2 |V |-dimensional
one-hot layer

k-dimensional
embedding
layer

MLP
input layer

MLP hidden
and output
layershi

(vi)

hj
(vj)

vi

vj

Fully
connected

d̂i, j

Figure 2: Vdist2vec model structure
Vdist2vec. As Fig. 2 shows, our vdist2vec model takes two

vertices vi and vj as the input, which are represented as two
size-|V | one-hot vectors hi and hj. The next layer is an embedding
layer for representation learning. This layer has k nodes, and its
weight matrix is a |V | × k (2|V | × k for directed graphs) matrix

to be used as the vertex vectors for all vertices, denoted by V =
[v1T , v2T , ..., v |V |T]T . Multiplying hi (hj) by V yields vi (vj):

vi = hiV (1)
Vectors vi and vj are then fed into a distance prediction network
(i.e., an MLP) to predict the distance between vi and vj . The
loss function Ld is the mean square error on the actual vertex
distances d (vi ,vj) and the predicted distances d̂i, j :

Ld = EP
[
(d (vi ,vj) − d̂i, j)

2] (2)
At training, the vertex representationmatrixV is randomly initial-
ized. Vertex pairs are fed into the network in batches to train the
MLP. The training loss Ld will be propagated back to optimize
the MLP and the vertex representations in V.

At query time, the query vertex vectors vi and vj are fetched
from V and fed into the MLP to make a distance prediction.

(a) Error distribution (DG)

100

hidden

the last

before

vdist2vec

di,j

maxd

MLP

MLP

MLP

MLP

−10000

9000

900

layer

(b) vdist2vec-S

Figure 3: Prediction error distribution and vdist2vec-S

Next, we optimize the prediction accuracy further. Our motiva-
tion comes from an observation on the distance prediction error
distributions. In Fig. 3a, we plot the normalized absolute distance
prediction errors of vdist2vec on a real dataset (DG, cf. Section 3).
The x-axis represents vertex pairs (sorted by the prediction er-
rors) and the y-axis represents their corresponding prediction
errors. We see that a very small portion (e.g., less than 1%) of the
vertex pairs have much larger prediction errors (see the spike to
the right of the figure) than the other vertex pairs. Such vertex
pairs dominate the training error and force the model to focus
on them. To optimize the overall prediction accuracy, we need to
guide the model to attend more to the other vertex pairs.

Vdist2vec-L. Our first optimization is a novel loss function
denoted by Ln to shrink the larger errors:

Ln = EP
[
fδ (d (vi ,vj) − d̂i, j)

]
(3)

fδ (x) =

δ |x |, if |x | ≤ δ
1
2 (x

2 + δ2), otherwise
Function fδ (·) is motivated by the Huber loss and is continuously
differentiable at x = δ . We set δ as the top 1% largest prediction
error after each epoch. If |x | > δ , 12 (x

2 + δ2) ≤ x2 which shrinks
the error. Replacing Ld with Ln results in vdist2vec-L.

Vdist2vec-S. Our second optimization is motivated by ensem-
ble learning. As Fig. 3b shows, we replace the last hidden layer of
vdist2vec with four separate MLPs, each focusing on producing
distance predictions in the ranges of (0, 100), (0, 900), (0, 9000),
and (0, dmax−10000), where dmax is the road network diameter.
This is done by multiplying (“

⊙
”) the sigmoid output of each

MLP with 100, 900, 9000, and dmax − 10000, respectively. The
output of the MLPs are summed up to produce the final predic-
tions. We name this model vdist2vec-S. Its advantage is in that
each MLP can focus on vertex pairs in different distance ranges,
making it easier to learn more accurate predictions.

As shown in Fig. 3a, the error distributions of vdist2vec-L and
vdist2vec-S are less skewed than that of vdist2vec.

368

Handling large road networks.Ourmodels compute a |V |×
k embedding matrix. This is cheaper than a |V |2 matrix for all
vertex distances. However, we still need to train over |V |2 pairs
of vertices. Next, we reduce the number of training pairs.

We cluster (e.g., using k-means) the vertices into |Vc | clusters
based on their geo-coordinates, where |Vc | is a small constant.
The vertex nearest to each cluster center is chosen as a center
vertex. We train our models over the center vertices. Given query
vertices vi and vj , their distance d̃i, j is approximated by their
distances to their cluster center vertices vic and vjc (which are
precomputed) plus the predicted distance d̂ic, jc of vic and vjc :

d̃i, j = λ1 · d (vi ,vic) + d̂ic, jc + λ2 · d (vjc ,vj) (4)
There are two coefficients λ1 and λ2 to weight the contribu-

tions ofd (vi ,vic) andd (vjc ,vj) based on the relative positions of
the vertices (cf. Fig. 4a). To learn λ1 and λ2, we build another neu-
ral network as shown in Fig. 4b, where dla (·) and dlo (·) return
the difference in latitude and longitude between two vertices,
respectively. This neural network feeds the coordinate difference
betweenvi andvic and the coordinate difference betweenvj and
vjc into two MLPs to predict λ1 and λ2, respectively. The last
layer of each MLP uses a tanh activation function, which maps λ1
and λ2 into the range of (−1, 1). The output of these two MLPs is
multiplied (“

⊙
”) with d (vi ,vic) and d (vjc ,vj), and the products

are added (“
⊕

”) with d̂ic, jc to produce d̃i, j , which implements
Equation 4. For training, we use loss function Ld but with only
a sampled subset of non-center vertices (e.g., |Vc | |V | pairs), since
the input space (i.e., coordinate difference) is now much smaller.

vi vj

vi vj

vic vjc

di, j

d̂ic, jc

d (vi ,vic) d (vjc ,vj)

(a) Distance computation

MLP

MLP

d (vi ,vic)

dla (vi ,vic)

dlo (vi ,vic)

dla (vjc ,vj)

dlo (vjc ,vj)

d (vjc ,vj)

d̂ic, jc
d̂i, j

(b) Network structure
Figure 4: Distance prediction for large road networks

Handling updates. Our models can be rebuilt in 13 hours
for road networks with over a million vertices (Section 3). This
allows us to handle a low update frequency by periodic rebuilds.
Our models can also provide distance predictions upon vertex
or edge updates without rebuilding, although the accuracy may
drop. We leave more robust update handling for future study.

Cost analysis. We consider an MLP to have an O(1) space
cost for its parameters and an O(1) time cost for inference. Such
costs depend mainly on the model size rather than the input
size. Also, the inference can be done by GPUs efficiently. Then,
our models can be trained in O (|V |2) time (O (|Vc | |V |) for large
road networks). Our models take O (k |V |) space for the embed-
dings. They take O (k) time to read and feed the query vertex
embeddings into the MLP for distance prediction in O (1) time.

3 EXPERIMENTS
We run experiments on a Linux PC with an Intel(R) Xeon(R)
E5-2630 V3 CPU (2.40GHZ), a GeForce GTX TITAN X GPU, and
32GB memory. All models are implemented with Python 2.7.12.
The neural networks are implemented with Tensorflow 1.13.1.

Datasets.We use six road network datasets as summarized in
Table 1, where dдr denotes the average degree and dmax denotes
the diameter. All datasets are undirected except for MB.

Table 1: Datasets

Dataset |V | |E | dдr dmax
Dongguan, China (DG) [14] 8K 11K 2.76 96km
Florida, USA (FL) [8] 1.07M 1.35M 2.36 1,200km
Melbourne, Australia (MB) [2] 3.6K 4.1K 1.14 6km
New York City, USA (NY) [8] 264K 366K 2.80 160km
Shanghai, China (SH) [14] 74K 100k 2.70 127km
Surat, India (SU) [14] 2.5K 3.6K 2.88 50km

Baselines.We comparewith five baselines: landmark-bt [19]:
it uses the top-k vertices passed by the largest numbers of short-
est paths between the vertex pairs as the landmarks; landmark-
km: it uses the k vertices that are the closest to the vertex k-
means centroids (computed in Euclidean space) as the landmarks;
ado [18]: it recursively partitions the vertices into subsets of
well separated vertices and stores the distance between subsets to
approximate the distance between vertices (we tune its approxi-
mation parameter ϵ such that it has a similar space cost to ours);
geodnn [13]: it trains an MLP to predict the distance of two
vertices given their geo-coordinates (we use its recommended
settings); node2vec [17]: it uses node2vec [9] to learn vertex
embeddings and trains an MLP to predict vertex distances given
the learned embeddings (we use its recommended settings).

Hyperparameters. For our models, the MLP distance pre-
diction component has two hidden layers of 100 and 20 nodes,
respectively. We use ReLU as the activation function for the hid-
den layers and sigmoid for the output layer. We set the batch size
to be |V | (we find that a large batch size helps the training effi-
ciency without impacting the prediction accuracy). We initialize
the MLP parameters using the truncated normal distribution with
0 as the mean and 0.01 as the standard deviation. The training
data is randomly shuffled. We train our model in 20 epochs with
early stopping using AdamOptimizer and a learning rate of 0.01.
Each ensemble MLP of vdist2vec-S has a layer of 20 nodes.

In all approaches except node2vec, we use k = 2%|V | for DG,
MB, and SU, k = 0.05%|V | for SH, and k = 0.005%|V | for FL and
NY. For node2vec, we use k = 128 as suggested by [17].

Evaluation metrics. We predict the distance between ev-
ery two vertices in each dataset and measure the mean absolute
error (MAE, in meters), mean relative error (MRE), precomputa-
tion/training time (PT), and average distance prediction (query)
time (QT). The ground truth distances are precomputed using
the contraction hierarchy algorithm.

Overall results. Table 2 shows the prediction errors. Our
models outperform the baseline models across all six datasets
and reduce the MAE and MRE by up to 97% and 99% (5 vs. 192
and 0.006 vs. 0.488 for vdist2vec-S and landmark-bt on MB). On
NY, landmark-km has a slightly lower MAE than ours, while our
MRE is still lower (by more than 50%).

The advantage of our models comes from their capability to
learn the vertex distances and preserve them in the embeddings.
Landmark-bt and landmark-km rely on the landmarks and may
not preserve the distance for all vertices. Ado is designed to
control the relative error. It yields the lowest MRE among the
baselines on most datasets, but its MAE may be large. Geodnn
uses Euclidean distance to approximate shortest-path distance.
It suffers on large road networks (e.g., FL and NY) with rivers
and large detours. Node2vec focuses on the neighborhood of the
vertices. It also suffers on large road networks such as NY (it
cannot train on FL in 48 hours which is marked as “OT”).

In Table 2, we also show the space required to store the learned
embeddings and model parameters on the FL dataset. Geodnn
has the smallest space requirement, as it only stores the MLP

369

Table 2: Mean Absolute and Relative Errors

DG MB SU FL NY SH
MAE MRE MAE MRE MAE MRE MAE MRE Size MAE MRE MAE MRE

baseline

landmark-bt 2,234 0.442 192 0.488 468 0.281 OT OT OT 24,851 0.167 6,144 0.554
landmark-km 74 0.028 15 0.040 142 0.090 58,869 0.113 428 MB 13,431 0.105 1,314 0.159
ado 2,108 0.057 75 0.072 642 0.074 175,571 0.052 431 MB 31,737 0.064 4,539 0.147
geodnn 1,566 0.092 95 0.097 442 0.108 363,661 0.317 17 MB 207,694 0.862 14,842 0.990
node2vec 2,329 0.199 118 0.161 658 0.175 OT OT OT 217,400 0.703 19,465 1.276

proposed
vdist2vec 135 0.015 12 0.014 83 0.027 34,757 0.027 30 MB 16,805 0.052 1,290 0.068
vdist2vec-L 75 0.015 6 0.014 50 0.024 34,860 0.027 30 MB 16,793 0.052 1,290 0.068
vdist2vec-S 71 0.011 5 0.006 49 0.014 34,329 0.026 33 MB 16,649 0.052 1,287 0.068

Table 3: Preprocessing and Query Times

DG MB SU FL NY SH
PT QT PT QT PT QT PT QT PT QT PT QT

baseline

landmark-bt 0.1h 5.832µs 62.7s 4.579µs 32.6s 4.463µs OT OT 39.6h 11.712µs 14.7h 8.423µs
landmark-km 2.2s 6.024µs 0.7s 4.439µs 0.4s 4.322µs 145.1s 63.718µs 66.3s 15.343µs 9.5s 8.930µs
ado 1.0h 1.080ms 0.2h 0.490ms 195.7s 0.356ms 1.5h 0.110ms 0.8h 0.148ms 138s 0.053ms
geodnn 0.9h 0.366µs 0.2h 0.396µs 0.2h 0.375µs 0.1h 0.444µs 0.1h 0.458µs 0.1h 0.432µs
node2vec 2.2h 0.829µs 0.9h 0.820µs 0.5h 0.809µs OT OT 26.3h 0.751µs 2.8h 0.781µs

proposed
vdist2vec 2.3h 1.039µs 0.9h 0.644µs 0.4h 0.589µs 12.5h 3.981µs 6.1h 1.215µs 0.2h 0.797µs
vdist2vec-L 2.3h 1.039µs 0.9h 0.644µs 0.5h 0.589µs 12.5h 3.981µs 6.1h 1.215µs 0.2h 0.797µs
vdist2vec-S 2.8h 1.366µs 1.1h 1.005µs 0.6h 0.921 µs 12.5h 3.981µs 6.1h 1.215µs 0.2h 0.797µs

parameters. Our models store MLP parameters and center vertex
embeddings, which require more space than geodnn but less
than landmark-km and ado. Note that, if our models learn vertex
embeddings for a full graph, we expect a slightly higher space
requirement than landmark-km and ado.

Table 3 shows the preprocesing (training) time PT and dis-
tance prediction (query) time QT. In terms of PT, the landmark
approaches are much faster on the small road networks DG,
MB, and SU. Their precomputation is simpler than the training
of the learning based models. On large road networks FL, NY,
and SH, our models use the proposed clustering based strategy
(|Vc | = 0.4%|V | and 100,000 random vertex pairs to learn λ1
and λ2), which reduces the training time significantly. Ado and
node2vec need to run on the full road networks. Their PT grows
with the road network size. For geodnn, we randomly sample
100,000 vertex pairs for training on the large road networks. It
does not learn vertex embeddings and hence has a lower PT.

In terms of QT, the learning based approaches are highly ef-
ficient because their distance prediction is a simple forward
propagation, which can be done by GPUs efficiently. Geodnn
is the fastest, as its input layer only has four nodes (i.e., two
geo-coordinates). The other learning based approaches including
ours have very similar MLP structures and input sizes which are
larger than that of geodnn. Thus, their QT are similar and are
larger than that of geodnn. Ado has the largest QT because it
needs to first locate the subsets containing the query vertices.

Among our models, vdist2vec-S yields the smallest distance
prediction errors, as it can cope with distances in varying ranges.
This advantage comes with a larger PT. In contrast, vdist2vec-L
has almost the same PT as vdist2vec but achieves smaller distance
prediction errors due to its optimized loss function.
4 CONCLUSIONS
We proposed a representation learning based approach for the
shortest-path distance problem. Our approach learns vertex em-
beddings that preserve the distances between vertices, which
only take an O (kn) storage space. At query time, the vertex em-
beddings are fed into an MLP to predict the distance, which takes
a constant time. Experimental results show that our approach
is highly efficient. It reduces the distance prediction errors by
up to 97% comparing with the state-of-the-art. For future work,
we plan to extend our techniques to more types of (and larger)

graphs such as social networks. We also plan to study real-time
updates for learning based distance prediction models.
ACKNOWLEDGMENTS
This work is partially supported by Australian Research Council
(ARC) Discovery Projects DP180102050 and DP180103332.

REFERENCES
[1] 2017. Google announces over 2 billion monthly active de-

vices on Android. https://www.theverge.com/2017/5/17/15654454/
android-reaches-2-billion-monthly-active-users.

[2] 2017. Planet OSM. https://planet.osm.org.
[3] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In SIGMOD.
[4] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning graph

representations with global structural information. In CIKM.
[5] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep neural networks for

learning graph representations. In AAAI.
[6] Shiri Chechik. 2015. Approximate distance oracles with improved bounds. In

STOC.
[7] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability

and distance queries via 2-hop labels. SIAM J. Comput. 32, 5 (2003), 1338–1355.
[8] Camil Demetrescu, Andrew Goldberg, and David Johnson. 2006. 9th DIMACS

implementation challenge–Shortest Paths. American Math. Society (2006).
[9] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable feature learning

for networks. In KDD.
[10] Andrey Gubichev, Srikanta Bedathur, Stephan Seufert, and Gerhard Weikum.

2010. Fast and accurate estimation of shortest paths in large graphs. In CIKM.
[11] Minhao Jiang, Ada Wai-Chee Fu, Raymond Chi-Wing Wong, and Yanyan Xu.

2014. Hop doubling label indexing for point-to-point distance querying on
scale-free networks. PVLDB 7, 12 (2014), 1203–1214.

[12] Ruoming Jin, Ning Ruan, Yang Xiang, and Victor Lee. 2012. A highway-centric
labeling approach for answering distance queries on large sparse graphs. In
SIGMOD.

[13] Ishan Jindal, Xuewen Chen, Matthew Nokleby, Jieping Ye, et al. 2017. A unified
neural network approach for estimating travel time and distance for a taxi
trip. arXiv preprint arXiv:1710.04350 (2017).

[14] Alireza Karduni, Amirhassan Kermanshah, and Sybil Derrible. 2016. A protocol
to convert spatial polyline data to network formats and applications to world
urban road networks. Scientific Data 3 (2016), 160046.

[15] David Peleg. 2000. Proximity-preserving labeling schemes. Journal of Graph
Theory 33, 3 (2000), 167–176.

[16] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gionis.
2009. Fast shortest path distance estimation in large networks. In CIKM.

[17] Fatemeh Salehi Rizi, Joerg Schloetterer, and Michael Granitzer. 2018. Shortest
path distance approximation using deep learning techniques. In ASONAM.

[18] Jagan Sankaranarayanan and Hanan Samet. 2009. Distance oracles for spatial
networks. In ICDE.

[19] Frank W. Takes and Walter A. Kosters. 2014. Adaptive landmark selection
strategies for fast shortest path computation in large real-world graphs. In
WI-IAT.

[20] Liying Tang and Mark Crovella. 2003. Virtual landmarks for the internet. In
SIGCOMM.

[21] Mikkel Thorup and Uri Zwick. 2005. Approximate distance oracles. J. ACM
52, 1 (2005), 1–24.

370

	A Learning Based Approach to Predict Shortest-Path DistancesJianzhong Qi, Wei Wang, Rui Zhang, Zhuowei Zhao

