
Chronos: The Swiss Army Knife for Database Evaluations
Marco Vogt Alexander Stiemer Sein Coray Heiko Schuldt

{firstname.lastname}@unibas.ch

Databases and Information Systems Research Group

Department of Mathematics and Computer Science

University of Basel, Switzerland

ABSTRACT
Systems evaluations are an important part of empirical research

in computer science. Such evaluations encompass the systematic

assessment of the run-time characteristics of systems based on

one or several parameters. Considering all possible parameter

settings is often a very tedious and time-consuming task with

many manual activities, or at least the manual creation of eval-

uation scripts. Ideally, the thorough evaluation of a complete

evaluation space can be fully automated. This includes the set-up

of the evaluation, its execution, and the subsequent analysis of

the results. In this paper, we introduce Chronos, a system for the

automation of the entire evaluation workflow.While Chronos has

originally been built for database systems evaluations, its generic

approach also allows its usage in other domains. We show how

Chronos can be deployed for a concrete database evaluation, the

comparative performance analysis of different storage engines

in MongoDB.

1 INTRODUCTION
Scientific practice considers the development of novel theories

and their empirical evaluation. In computer science, empirical

evidence is to a large extent obtained by the systematic evaluation

of systems. Essentially, such a systematic evaluation includes the

thorough assessment of the quantitative behavior of a system

based on one or several parameters. This means that systems need

to be run over and over again with a modified set of parameters.

This is a tedious and highly repetitive task, but essential for

obtaining insights into the run-time characteristics of the system

under evaluation (SuE).

In the database community, systems evaluations are mostly

based on benchmarks that combine test data and certain access

characteristics (queries). Systems evaluations need to be tailored

to the characteristics of an SuE and to the parameters of the

latter that determine their behavior. Nevertheless, the overall

evaluation workflows, seen from a high-level perspective, show

quite some commonalities even across systems. First, the SuE

needs to be set up with the exact parameters of a particular

evaluation run. This also contains the configuration of the SuE —

in the database world, this includes the generation of benchmark

data and their ingestion into the system. Second, the SuE needs

to undergo a warm-up phase, for instance filling internal buffers,

to make sure that the behavior of the SuE reflects a realistic

use. Third, the actual evaluation is run. In the case of a database

benchmark, this is the execution of the predefined queries in a

given query mix. The evaluation finally generates data which at

the end needs to be analyzed.

In most cases, these steps are implemented to a large extent

by means of manual activities and are highly repetitive. Even in

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

cases of (semi-)automated evaluations, they need to be re-started

over and over again with varying parameters.

Ideally, a complete set of evaluation runs that systematically

and thoroughly assess a given parameter space of an SuE can be

fully automated. The only requirement on an SuE is that its evalu-

ation workflow does not require any human interaction, allowing

such SuEs to be evaluated using a generic evaluation toolkit. In

order to provide systems Evaluations-as-a-Service (EaaS), such
a toolkit, once linked to the SuE, has to fulfill the following re-

quirements: (i) It has to feature an easy to use UI for defining

new experiments, for scheduling their execution, for monitoring

their progress, and for analyzing their results. (ii) The toolkit

has to support different SuEs at the same time and in particu-

lar parallel executions of benchmarks of these systems. (iii) To

allow SuEs to be considered in long-running evaluations, the

toolkit has to exhibit a high level of reliability. This includes an

automated failure handling and the recovery of failed evaluation

runs. (iv) The toolkit has to provide mechanisms for archiving

the results of the evaluations as well as of all parameter settings

which have led to these results. (v) Already existing evaluation

clients should be easily integrable into the toolkit which also has

to support developers in building new clients. (vi) The toolkit

has to offer a large set of basic analysis functions (e.g., different

types of diagrams), support the extension by custom ones, and

provide standard metrics for measurements (e.g., execution time).

Finally, (vii) it should be easy to apply the toolkit to new SUEs.

In this paper, we introduce Chronos, a generic evaluation

toolkit for systematic systems evaluations. The contribution of

this paper is twofold: First, we describe the functionality of Chro-

nos which automates the entire evaluation workflow and assists

users in the analysis and visualization of the evaluation results.

Second, we demonstrate how Chronos can be configured for the

evaluation of different SuEs and for the systematic analysis of a

complete evaluation space by using two different storage engines

in MongoDB
1
as running example.

Since its first version, Chronos has been used for the evalu-

ation of several research prototypes, including ADAMpro [6],

Beowulf [9], Icarus [10], and Polypheny-DB [11] as well as in

various student evaluation activities. It has been released on

GitHub
2
under the MIT open source license.

The remainder of this paper is structured as follows: In Sec-

tion 2 we introduce Chronos and Section 3 shows Chronos at

work. Section 4 discusses related work and Section 5 concludes.

2 CHRONOS
Chronos is a toolkit for defining, monitoring, and analyzing the

results of evaluations. It consists out of two main building blocks

(see Figure 1): First, Chronos Control (in green), the heart of the

evaluation toolkit that provides a web UI and a RESTful API

for managing evaluations; second, the Chronos Agents (in red)

1
https://www.mongodb.com

2
https://github.com/Chronos-EaaS

Demonstration

 

 

Series ISSN: 2367-2005 583 10.5441/002/edbt.2020.69

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.69


Users

Chronos Control

REST API

Web UI

…Evaluation Client 
for System 𝒜

Custom 
implementation of 
a Chronos Agent

Evaluation Client 
for System 𝒵

Chronos Agent
(Java Library)

System under
Evaluation 𝒜

System under
Evaluation 𝒵

Figure 1: Chronos Toolkit Architecture Overview

which interact with the (existing) evaluation clients and which

leverage the REST API to get the required information to perform

the evaluations. While it is possible to write a custom Chronos

Agent, there is also a generic Chronos Agent available for Java.

This allows to easily integrate Chronos into existing projects. In

this section, we present the implementation of Chronos and how

to integrate it into existing projects.

2.1 Data Model
The data model of Chronos contains projects, experiments, eval-

uations, jobs, systems, and deployments.

Project. A project is an organizational unit which groups ex-

periments and allows multiple users to collaborate on a specific

evaluation. Access permissions are handled at the level of projects

so that every member of a project has access to all experiments,

evaluations, and their results. Users can archive entire projects,

i.e., make their evaluation settings and the results persistent.

Experiment. An experiment is the definition of an evaluation

with all its parameters; when executed, it results in the creation

of an evaluation. Like projects, experiments can be archived.

Evaluation. An evaluation is the run of an experiment and

consists of one or multiple jobs. If the objective of an evaluation is,

for example, to compare the performance of two storage engines

of a database system for different numbers of threads, every job

would execute the benchmark for a specific number of threads for

each engine. Depending on the evaluation, the execution of jobs

can be parallelized if there are multiple identical deployments of

the SuE.

Job. A job is a subset of an evaluation, e.g., the run of a bench-

mark for a specific set of parameters and a given DB storage

engine. The result of every job is stored together with its log

output. A job can be in one of the following states: scheduled,
running, finished, aborted, or failed. Jobs which are in the status

scheduled or running can be aborted and those which are failed
can be re-scheduled.

Result. A result belongs to a job and consists of a JSON and a

zip file. Every data item which is required for the analysis within

Chronos Control is stored in the JSON file. Additional results

can be stored in the zip file (e.g., for further analysis outside of

Chronos).

System. A system is the internal representation of an SuE. For

every SuE, it is defined which parameters the SuE expects, how

the results are structured, and how they should be visualized.

Deployment. A deployment is an instance of an SuE in a spe-

cific environment. There can be multiple deployments of an SuE

at the same time. Deployments serve two purposes: First, they

allow to simultaneously execute evaluations in different (hard-

ware) environments or different versions of the SuE; second, they

allow to parallelize the evaluation in case of multiple identical

deployments.

2.2 Implementation
In the following section, we give details on the implementation

of Chronos’ architecture as depicted in Figure 1.

Chronos Control. It is designed as a web application allowing

the management and analysis of evaluations using common web

browsers. It offers a RESTful web service for clients benchmark-

ing the SuEs. Chronos Control has only a few run-time require-

ments: Apache HTTP Server
3
, PHP

4
, MySQL

5
or MariaDB

6
, and

git
7
. For the SuE extensions, Mercurial

8
is also supported. The

provided installation script handles the complete setup of Chro-

nos including the creation of the necessary database schema and

user account.

User Interface. Chronos’ web UI is based on Bootstrap
9
and

comes with an advanced session and role-based user manage-

ment to support the deployment in a multi-user environment.

A key feature of the Web UI is its modular architecture which

enables the easy integration of different SuEs. For every SuE,

only the available parameters for an experiment and information

on how the results are to be visualized have to be specified. Both

can be done completely UI-based. Chronos Control therefore

provides several parameter and diagram types. Parameter types

include Boolean, check box, and value types as well intervals

and ratios. For the result visualization, Chronos provides bar,

line, and pie diagrams. If more parameter types and diagrams are

required, the built-in set of types can be extended by providing

an external repository containing PHP scripts with additional

implementations.

REST Interface. Chronos’ REST API is used for both the clients

requesting information to perform their benchmarks (e.g., re-

questing job descriptions or submitting results) and for the inte-

gration of the Chronos toolkit into existing evaluation workflows.

For this, the API offers methods to, for example, schedule an eval-

uation which is caused by a successful build of the SuEs build

bot. To support the smooth evolution of Chronos, the API is ver-

sioned. This allows new clients to simultaneously use the newly

developed features while other clients still use older versions of

the REST API.

Chronos Agent. Chronos Agents are clients or client libraries
connecting to Chronos’ REST API that perform or trigger the

actual evaluation workload. Agents are essential to link existing

or newly developed evaluation clients of the SuEs with Chronos.

An agent can be implemented in any language supporting the

3
https://httpd.apache.org/

4
https://secure.php.net/

5
https://mysql.com/

6
https://mariadb.org/

7
https://git-scm.com/

8
https://mercurial-scm.org/

9
https://getbootstrap.com/

584



Figure 2: Configuration of a System in Chronos’ Web UI

access to the RESTful web service. Along with Chronos Control,

we provide a reference implementation of a generic agent library

written in Java (also available on GitHub
2
). This reference imple-

mentation handles all the communication with Chronos Control

including the upload of the results via HTTP or FTP. The latter

allows to use a different server or a NAS for storing the results

which also reduces the load and storage requirements on the

Chronos Control server. During its run, the agent periodically

sends the output of the logger to Chronos Control and the agent

library allows to easily update the progress of the evaluation.

Furthermore, the agent library already measures basic metrics

which are returned to Chronos Control along with the results.

Integrating the Chronos Agent library into an existing evalua-

tion client is the only part which requires programming. All other

steps can be done completely UI-based. However, the required

amount of programming is rather negligible, since the agent li-

brary already provides an interface with all necessary methods

to be implemented. Depending on the existing evaluation client,

this usually narrows down to calling already existing methods of

the evaluation client.

3 CHRONOS ATWORK
In this section, we present the two main workflows supported by

Chronos: First, the registration of an SuE in the Chronos toolkit,

and second, the necessary steps to perform an actual evaluation.

The first workflow demonstrates how easy it is to integrate

the Chronos Agent into an existing evaluation client using the

Java library. After building a Chronos-enabled evaluation client

and setting-up an instance of the SuE, it needs to be registered

in Chronos Control. This can be done by either specifying the

parameters required for the evaluation client and the SuE in

Chronos Control or by providing a path to a git or mercurial

repository. Figure 2 shows the overview page of a system in

the Chronos Web UI. Once the system has been created and its

parameters have been configured, the first workflow is finished

and Chronos is ready for executing evaluations against this SuE.

The second workflow starts with the creation of a project.

Afterwards, one or multiple experiments are defined (Figure 3a).

To schedule work for a Chronos Agent, an evaluation needs to

be created which consists of one or multiple jobs as depicted in

Figure 3b. Figure 3c shows the overview page of a job providing

the current status of the job including its progress and the log

output. Furthermore, it allows to abort a scheduled or running

job or to reschedule a failed one. The timeline shows all events

associated with this job. When the Chronos Agent has finished

its work, the evaluation results are visualized (Figure 3d).

The separation of experiments and evaluations comes in handy

if certain evaluations need to be repeated multiple times. This

is the case during the development of an SuE, for example, in

the bug-fixing phase, or for the quality assurance monitoring the

performance of an SuE over subsequent change sets.

A demonstration that has been prepared to show Chronos’

capabilities considers two workflows using the comparative eval-

uation of two storage engines of MongoDB (wiredTiger and

mmapv1) as an example. This demonstration allows to create

short running evaluations for the two MongoDB deployments

and to directly analyze the results in the Chronos Web UI.

The MongoDB Chronos agent is available on GitHub
2
and

the demo that will be presented at the conference is summarized

in a short video
10

that shows how Chronos can be used for the

comparative evaluation of the two storage engines of MongoDB.

4 RELATEDWORK
Like the Chronos toolkit, the PEEL framework introduced in [1]

automates the evaluation process and helps improving the repro-

ducibility of evaluations. PEEL, however, is designed with a focus

on Machine Learning applications running on frameworks like

Hadoop MapReduce, Spark, Flink, and others. In PEEL, the SuE

and the experiments are described using XML or Scala classes.

These documents are compiled into a bundle containing the PEEL

framework, the required configuration, and the evaluation data

sets. The bundle is then deployed on the target machine running

the SuE.

PROVA! [7] is a distributed workflow and system management

tool for benchmarks on HPC systems. It allows to easily bench-

mark applications on different systems and architectures. Similar

to Chronos it visualizes the results. While Chronos is a general-

purpose tool for all kinds of evaluations and benchmarks with a

focus on database evaluations, PROVA! is specifically tailored to

the HPC domain.

OLTP-Bench [5] is a benchmarking framework which pro-

vides implementations for in total 15 different transactional, web-

oriented, and feature testing benchmarks including YCSB [4],

TPC-C
11
, and CH-benCHmark [3]. In contrast to OLTP-Bench,

Chronos addresses the complete evaluation workflow and thus

also includes the definition of the experiments and the analysis of

the results. However, a combination of Chronos (automation of

the evaluation workflow) and OLTP-Bench (definition of various

benchmarks) would even further facilitate the definition, set-up,

execution, and analysis of evaluations. In our future work, we

thus plan to develop a Chronos Agent that wraps the OLTP-Bench

so as to combine both systems.

The TREET testbed [8] allows developers of trust and reputa-

tion systems (e.g., online marketplaces) to evaluate their systems

using standardized test cases. Further, TREET can be flexibly

extended with custom agents and test cases allowing the testing

of the developer’s application. Like Chronos, but for a different

domain, TREET supports the execution of experiments and the

comparison between different trust and reputation systems.

5 CONCLUSION
In this paper, we have presented the evaluation toolkit Chro-

nos, a first step towards the concept of Evaluation-as-a-Service.

Chronos automates the entire evaluation workflow and assists

users in the results analysis. The Chronos toolkit is available on

10
https://youtu.be/fNmsZH4HOl0

11
http://www.tpc.org/tpcc/

585



(a) Creation of an Experiment (b) Details of a Running Evaluation

(c) Details of a Running Job (d) Basic Result Analysis done by Chronos Control

Figure 3: Basic Evaluation Workflow

GitHub
2
. Future releases of Chronos will be extended with the

functionality for setting up the infrastructure of an SuE automat-

ically, for example, in an on-premise cluster or in the Cloud. Also,

we plan to release additional reference implementations of agent

libraries, for instance for Python.

ACKNOWLEDGMENTS
The work was partly funded by the Swiss National Science Foun-

dation (SNSF) in the context of the project Polypheny-DB (con-

tract no. 200021_172763). The authors would like to thank Filip-

Martin Brinkmann and Ivan Giangreco. Their feedback on the

evaluation of ADAMpro [6] and PolarDBMS [2] on the basis of

Chronos has significantly improved the system. Moreover, the

authors like to thank Dina Sayed for her helpful comments on

an earlier version of this paper.

REFERENCES
[1] Christoph Boden, Alexander Alexandrov, Andreas Kunft, Tilmann Rabl, and

Volker Markl. 2017. PEEL: A Framework for Benchmarking Distributed

Systems and Algorithms. In Performance Evaluation and Benchmarking for
the Analytics Era (TPCTC). Springer, Munich, Germany, 9–24. DOI:http:
//dx.doi.org/10.1007/978-3-319-72401-0_2

[2] Filip-Martin Brinkmann and Heiko Schuldt. 2015. Towards Archiving-as-a-

Service: A Distributed Index for the Cost-effective Access to Replicated Multi-

Version Data. In Proceedings of the 19th International Database Engineering
& Applications Symposium (IDEAS’15). ACM, Yokohama, Japan, 81–89. DOI:
http://dx.doi.org/10.1145/2790755.2790770

[3] Richard Cole, Meikel Poess, Kai-Uwe Sattler, Michael Seibold, Eric Simon,

Florian Waas, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper,

Stefan Krompass, Harumi Kuno, Raghunath Nambiar, and Thomas Neumann.

2011. The Mixed Workload CH-benCHmark. In Proceedings of the Fourth

International Workshop on Testing Database Systems. ACM, Athens, Greece,

1–6. DOI:http://dx.doi.org/10.1145/1988842.1988850
[4] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and

Russell Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proc.
of the 1st ACM Symposium on Cloud Computing. ACM, Indianapolis, Indiana,

USA, 143–154. DOI:http://dx.doi.org/10.1145/1807128.1807152
[5] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-

Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-

lational Databases. Proceedings of the VLDB Endowment 7, 4 (2013), 277–288.
DOI:http://dx.doi.org/10.14778/2732240.2732246

[6] Ivan Giangreco and Heiko Schuldt. 2016. ADAMpro : Database Support for

Big Multimedia Retrieval. Datenbank-Spektrum 16, 1 (2016), 17–26. DOI:
http://dx.doi.org/10.1007/s13222-015-0209-y

[7] Danilo Guerrera, Antonio Maffia, and Helmar Burkhart. 2019. Reproducible

stencil compiler benchmarks using prova! Future Generation Computer Systems
92 (2019), 933–946. DOI:http://dx.doi.org/10.1016/j.future.2018.05.023

[8] Reid Kerr and Robin Cohen. 2010. TREET: the Trust and Reputation Experi-

mentation and Evaluation Testbed. Electronic Commerce Research 10, 3 (2010),

271–290. DOI:http://dx.doi.org/10.1007/s10660-010-9056-y
[9] Alexander Stiemer, Ilir Fetai, and Heiko Schuldt. 2016. Analyzing the Perfor-

mance of Data Replication and Data Partitioning in the Cloud: The BEOWULF

Approach. In IEEE International Conference on Big Data. IEEE, Washington

DC, USA, 2837–2846. DOI:http://dx.doi.org/10.1109/BigData.2016.7840932
[10] Marco Vogt, Alexander Stiemer, and Heiko Schuldt. 2017. Icarus: Towards

a Multistore Database System. In IEEE International Conference on Big Data.
IEEE, Boston, MA, USA, 2490–2499. DOI:http://dx.doi.org/10.1109/BigData.
2017.8258207

[11] Marco Vogt, Alexander Stiemer, and Heiko Schuldt. 2018. Polypheny-

DB: Towards a Distributed and Self-Adaptive Polystore. In IEEE Interna-
tional Conference on Big Data. IEEE, Seattle, WA, USA, 3364–3373. DOI:
http://dx.doi.org/10.1109/BigData.2018.8622353

586


	Chronos: The Swiss Army Knife for Database EvaluationsMarco Vogt, Alexander Stiemer, Sein Coray, Heiko Schuldt

