
DISGD: A Distributed Shared-nothing Matrix Factorization for
Large Scale Online Recommender Systems

Heidy Hazem
∗
, Ahmed Awad

∗∗
, Ahmed Hassan

∗
, Sherif Sakr

∗∗

∗
Nile University, Egypt

∗∗
University of Tartu, Estonia

h.hazem@nu.edu.egy,ahmed.awad@ut.ee,ahassan@nu.edu.egy,sherif.sakr@ut.ee

ABSTRACT
With the web-scale data volumes and high velocity of generation

rates, it has become crucial that the training process for recom-

mender systems be a continuous process which is performed on

live data, i.e., on data streams. In practice, such systems have to

address three main requirements including the ability to adapt

their trained model with each incoming data element, the ability

to handle concept drifts and the ability to scale with the volume

of the data. In principle, matrix factorization is one of the popular

approaches to train a recommender model. Stochastic Gradient

Descent (SGD) has been a successful optimization approach for

matrix factorization. Several approaches have been proposed that

handle the first and second requirements. For the third require-

ment, in the realm of data streams, distributed approaches depend

on a shared memory architecture. This requires obtaining locks

before performing updates.

In general, the success of main-stream big data processing

systems is supported by their shared-nothing architecture. In this

paper, we propose DISGD, a distributed shared-nothing variant of
an incremental SGD. The proposal is motivated by an observation

that with large volumes of data, the overwrite of updates, lock-

free updates, does not affect the result with sparse user-item

matrices. Compared to the baseline incremental approach, our

evaluation on several datasets shows not only improvement in

processing time but also improved recall by 55%.

1 INTRODUCTION
We are living in the era of data abundance whereby good de-

cisions are backed by data-driven approaches. In addition to

business-related decisions, we can use data for our personal daily

lives. For example, what products to buy, where to have lunch,

and best places to spend our vacations are all decisions that we

need to make.

Recommender systems [11] have emerged to predict and sug-

gest objects that could be of interest to the user. In general, rec-

ommender systems receive input in the form of user-item rating.

These ratings are used to update a rating matrix R where the rows

represent the users and columns represent items, where usually R
is sparse. Collaborative filtering (CF) [5] is a successful technique

to guess user preferences based on R. Matrix factorization-based

(MF) CF algorithms have shown to be successful. For example, it

was able to win the Netflix prize [2]. MF works by decomposing

R into two low-dimension vectors of latent factors. Stochastic

Gradient Descent (SGD) is used to optimize the weights of these

latent factors. In general, SGD is an iterative algorithm that works

on a static data set. As data velocity have accelerated, there has

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

become a crucial need to get recommendations with low latency.

Therefore, the need to analyze these data and generate new sug-

gestions moved from an offline task on a finite set of data into an

online task on a possibly infinite stream of data. Thus, a scalable

online recommender system has to address three main require-

ments [3]: 1) The model must be able to produce a result and

be updated after each record has been received without passing

over all the past data (latency). 2)Concept drifts [10] ought to
be taken care of by adjusting the model with each instance. 3)

Online learning from big data must be processed in a distributed

streaming environment (scalability).
Vinagre et al. [12] have proposed ISGD as an incremental

SGD that needs to process each data element once in a stream-

ing fashion. ISGD addresses the first and second requirements

above. Yet, it remains a centralized (one worker) solution. Sev-

eral approaches have introduced parallel (distributed) variants

of (I)SGD [1, 4, 6, 7, 13]. However, the common limitation in

these approaches is the need to access a shared memory to up-

date the weights among parallel workers. In an online-setting,

the overhead to obtain a lock leads to higher latency. An in-

teresting observation by Recht et al. [9] is that with large data,

having a lock-free update mechanism, i.e. lost updates, does not

affect the overall performance and SGD finally converges. The

authors also prove it. Based on this observation, in this paper, we

present DISGD as a distributed shared-nothing variant of ISGD.

By utilizing the shared-nothing architecture, we allow the best

scalability as each worker is independent. In particular, the main

contributions of this paper can be summarized as follows:

• DISGD: A distributed shared-nothing incremental stochas-

tic gradient descent for a distributed online recommender

system (Section 2),

• A comparative evaluation with the baseline ISGD on sev-

eral data sets showing the superiority of our approach not

just in the processing speed but also in the improved recall

(Section 3).

2 DISGD
ISGD [12] is an incremental matrix factorization algorithm that

is based on SGD. ISGD works centrally where training data are

streamed element-by-element. For every received element, ISGD

updates the model. So this algorithm overcomes the first two

challenges we mentioned in Section 1. In this section, we describe

our approach towards addressing the third challenge, scalability.

2.1 Background
In order to reach a scalable ISGD, we depend on the observation

that usually the ratio of items to users is petite. For instance,

Netflix data set has millions of users and only thousands of items.

We start from the observation that the rating matrix Rn×m is

sparse. So, we decompose the rating matrix into two matrices,

Short paper

 

 

Series ISSN: 2367-2005 359 10.5441/002/edbt.2020.32

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.32


the users’ matrix U n×k
and the items’ matrix Im×k with low-

dimension k , where k << n and k << m, latent features that

underlie the items’ rating by users. So, we can predict the rating of

user u to item i in Rn×m , by calculating the dot product between

their vectors as in Formula 1.

ˆrui = Un .I
T
m =

k∑
k=1

unk .imk (1)

The two matrices U and I are initialized with Gaussian ran-

dom values. Then, iteratively, SGD calculates how different their

product is from the rating matrix R and then makes an effort to

minimize this difference. ISGD is dealing with positive feedback

only so the error can be calculated by errui = 1 − ˆRui and we

are following that in our algorithm. Furthermore, the gradient

descent algorithm iterates many times and updates the vectors

which are the rows of the matrices U and I with the purpose

of finding a local minimum of the difference following the loss

function formulated in 2 where λ is the regularization parameter.

minU ., I .
∑
(u,i)∈D

(Rui −Uu .I
T
i )

2 + λ(∥Uu ∥
2 + ∥Ii ∥

2) (2)

To parallelize ISGD by distributing the workload among nc pro-
cessors, the rating matrix R has to be divided into several blocks

and the blocks get assigned to different processors. The issue

here is that two processors working on different blocks may need

to update the same column ofU and/or I . The blocks must be dis-

tributed in a way that avoids conflicting updates. Our proposal to

solve this problem, and thus addressing the scalability challenge,

is by utilizing a splitting and replication mechanism of users and

items vectors.

2.2 Splitting and Replication Mechanism
Receiving the rating interactions fromusers formulated as<u, i, r>,
Algorithm 1 will distribute the received streamed data of tuples

by hashing each record where the user vector and item vector

reside over the nodes. For each received tuple < u, i, r>, ISGD
updates the user vector and the item vector according to the two

equations below, where η is the gradient step size.

Uu = Uu + η(errui .Ii − λUu ) (3)

Ii = Ii + η(errui .Uu − λIi ) (4)

The aim behind our splitting and replication mechanism is

to guarantee that the vectors of users and items are divided

over the nodes as it would grow larger than the capacity of one

node (central solution). It is assumed that the items are known

beforehand. Hence, starting by the item matrix, it is divided into

ni splits (partitions) and each split is replicated over nc/ni of the
nodes -where nc is number of nodes in the cluster- while each

user vector should exist in ni of the nodes to always guarantee

that a tuple <u, i, r> hits one nodewhere its user and item vectors

reside. As a requirement, the number of nodes in the cluster nc
should be equal to n2i + w .ni where w ∈ N0. The distribution
technique in Algorithm 1 offloads the storage of vectors to around

ni/nc of the nodes. For example, when ni = 2, the item matrix

I is divided into two halves, each half is stored on half of the

nodes. The user matrixU is divided over nc/2 of the nodes and
each user vector should exist in two nodes, given ni = 2, over the

cluster. Hence, any received tuple is always distributed, in such

a way that its user and item vectors are always represented in

only one node. Thus, the entire rating matrix will not be needed

at any point of time for any single processing task.

Algorithm 1: Parallel ISGD algorithm

Data: data stream of {< u, i, r >} ∈ D
Input: N , λ, η, ni ,k
Output: Top N recommended list.

1: function distributingFn(u,i,ni )
2: nc = n

2

i +w .ni
3: iList←Map hashing of item id to its nc/nio f nodes
4: uList←Map hashing of user id to its ninodes
5: key← Get the common node from uList and iList

6: outStream < key,u, i, rate >
7: end function

while receiving {< u,i,r >} ∈ D on each node do
distributingFn(u,i,ni )
if u < Rows(U) then

Uu ← Vector(size : k);

Uu ∼ N (0,0.1);

end
if i < Rows(I) then

Ii ← Vector(size : k));

Ii ∼ N (0,0.1);

end
errui ←1 −Uu .I

T
i ;

Uu ←Uu+η(errui .Ii - λUu );
Ii ←Ii+η(errui .Uu - λIi )

end

Algorithm 1 describes how we scale ISGD by means of splitting

and replication of the users and items vector. A new top N recom-

mendations list is generated every time a tuple is received. Based

on the distributing mechanism shown in Figure 1. This function

accords a key to the tuple for maintaining that the pair of user

and item vector exists in one node while the single item vector

should be in nc/ni nodes and the single-user vector should reside
in ni of nodes. This key is produced by hashing the user and item
then mapping the hashing output to a predefined list of ni nodes
and nc/ni nodes and get the common node number to be the key

whereby this key is used for distributing. This node processes the

received data and outputs top N recommendations. This particu-

lar node only processes 1/ni of the items matrix I that is received
in the hashing process described earlier. This does not mean that

this particular user will always get his recommendation from

this node based on the same items.

It is a random process, based on which 1/ni of the items stored

in which node that tuple hits. Moreover, the repetition of the

user vector helps offload the storage, making it possible for the

algorithm to recommend items for user from different ni pools
of candidates which boosts our recommendation algorithm by

giving a wide view for all the items. Algorithm 1 does not need

to synchronize between the ni same user’s vectors or nc/ni same

item’s vectors repeatedly stored in the nodes, as Figure 1 shows.

It has been proved by Recht et al. [9] that SGD algorithm run-

ning over parallel processors with shared memory can converge

when the threads overwrite each other and calculate gradient

using the outdated current solution which leads to asynchronous

machine learning algorithms. Keeping the vectors asynchronous

accomplishes two important things, first, it makes DISGD faster

and avoids any synchronization or need for lock management.

360



Tuples with keys
generation

<u1,ia>

<u2,ib>

<u3,ia>

Stream of new records

<nodeNo2.,u1,ia>

<nodeNo0,u3,ia>

<nodeNo3.,u2,ib>

Update vectors
state  then get the
predicted rating 

Update vectors
state  then get the
predicted rating 

Update vectors
state  then get the
predicted rating 

Update vectors
state  then get the
predicted rating 

 <u4,Generated Top
k recommended list

for u4>

<u3, Generated Top
k recommended list

for u3>

<u1,Generated Top
k recommended list

for u1>

<u2, Generated Top
k recommended list

for u2>

parallel Generating
Recommendation list 

Hash user and
item then get the

common key

Hash user and
item then get the

common key

Hash user and
item then get the

common key

<u1,ib>

Hash user and
item and get the

common key
<nodeNo1,u4,ia> nc of nodes in the cluster

Figure 1: Overview of DISGD collaborative filtering

Algorithm 2: Prequential online evaluator using recall

(1) Recommend top-N recommendation list for the user’s coming

interaction if the user is known otherwise move to step 3.

(2) score top-N recommendation list based on the coming item i

using recall.

Recall@N =

{
1, i ∈ topN recommendationlist

0, i < top − Nrecommendationlist

(3) Updated the vectors with the coming instance

3 EVALUATION
We evaluate DISGD against ISGD as a baseline. The evalua-

tion experiments are done without handling cold start problem

as it is not our concern in this paper. We follow prequential

evaluation[8] which is suitable and mostly used for streaming

algorithms. Prequential evaluation works as follows: for every

received instance; it is used first for testing then feed the model

with it for training. Specifically, we are following prequential

evaluation for streaming recommender systems proposed by

Vinagre et al. [12] using the recall evaluation metric which gives

indication of how many true positive hits from the user side to

the recommendation list by measuring the ratio of relevant items

recommended to the total. We compute recall as per Algorithm 2.

The hyperparameter values of equations 3 and 4 used in our

experiments are λ = 0.01, µ = 0.05. We compute the recall

with N = 10 and set the number of latent features to k = 10.

DISGD has been implemented on top of Apache Flink version

1.8.1 deployed in a standalone cluster mode with 64 workers.

Each worker is a single core running at 2.3 GHz with 30 GB of

main memory. To run the baseline ISGD, we implemented it also

as a Flink application and force it to run on a single worker. All

the code of our experiments are available for reproducibility
1
.

1
https://github.com/DataSystemsGroupUT/DISGD

(a) Recall@10 for Moveilens 1M

(b) Recall@10 for Netflix

Figure 2: Development of recall@10 testing different nc .
The plotted lines relate to a moving average of the re-
call@10 got for every recommendation with window size
w=5000 with replication factor ni = 2

Data Sets. For our experimntal evaluation, we have used

three popular datasets: Movielens 1M2
, Netflix3 and last.FM4.

2
https://grouplens.org/datasets/movielens/1m/

3
https://www.kaggle.com/netflix-inc/netflix-prize-data

4
https://www.last.fm/

361



(a) Moveilens 1M (b) Netflix (c) LastFM

Figure 3: Development of recall@10 testing different ni . The plotted lines relate to a moving average of the recall@10 got
for every recommendation with window size w=5000 with different replication factor

Figure 4: Comparison between the processing time for
ISGD and DISGD with different ni applied on Movielens,
Netflix and lastFM datasets.
Movielens and Netflix are notable datasets of rating films and

they are sparse. Both the dataset’s schema consists of user, item,

rating (from 1 to 5) and time-stamp. The same preprocessing is

done for both datasets. The datasets have been ordered chrono-

logically as indicated by the timestamp for capturing the pattern

of how the user interacts with the items consecutively and as

our algorithm depends on positive feedback the datasets have

been filtered out from any records with a rating under 5. LastFM

dataset contains records of listening tomusic tracks.We extracted

the tuples of <user,trackID> assuming that the occurrence of the

pair as positive feedback and the dataset has been ordered by

timestamp.

Experiments and Results. We have run two main experi-

ments. In the first one, we fixed ni = 2; which means that each

item vector exists with two versions each on half of the nodes. As

per condition in our mechanism, the nodes in the cluster should

be nc=4+2w . We have varied the value ofw . The results are re-

ported in Figure 2 showing the results of summing a moving

average recall SMA with window size 5000 elements for data sets

Movielens 1M and Netflix. We can clearly observe that DISGD

achieves significantly a higher recall than the baseline. Obviously,

increasing the number of nodes nc with the same ni results in
higher recall. The recall slightly improves with increasing nc .
The same observation for enhanced recall applies to Netflix.

Regarding the second experiment, DISGD has been tested

using different replication factor ni values with minimum nc =
n2i . In particular we run our experiments with ni ∈ {2, 4, 8, 50}

5
,

for Movielens 1M dataset and with ni ∈ {2, 4, 8} for Netflix.
LastFM is tested with ni ∈ {2, 4, 8, 14}

5
. The model has been

evaluated using SMA recall at N = 10. The results of Figure 3

5
The experiment with ni = 50 and ni = 14 have been applied separately on a

larger cluster

shows that it is obvious that our approach can scale with different

replication factors with enhanced recall in comparison to ISGD.

In general, processing time is a major factor in handling stream-

ing data. The x-axis of the graph in Figure 4 shows the three data

sets while the log processing time in seconds is on the y-axis.

The results show that processing time reduces significantly from

ISGD to DISGD and the time decrease dramatically when nc has

risen. It is observed that DISGD is between 6 − 15 times faster

than ISGD with respect to the data sets and the parallelism factor

nc while keeping a significantly higher recall.

4 CONCLUSION AND FUTUREWORK
In this paper, we presented DISGD, a distributed shared-nothing

variant for stochastic gradient descent for streaming data. Our

solution allows much lower latency in serving for recommender

systems. However, as with other streaming applications, the data

distribution change might lead to skewness in the load on work-

ers. Load rebalancing techniques already exist in literature, how-

ever, the effect of moving/merging state on the performance of

the algorithm is unknown and is an interesting subject for our

future work.

REFERENCES
[1] Muqeet Ali, Christopher C Johnson, and Alex K Tang. 2011. Parallel collabo-

rative filtering for streaming data. Technical Report.
[2] Robert M Bell and Yehuda Koren. 2007. Lessons from the Netflix prize chal-

lenge. SiGKDD Explorations Newsletter 9, 2 (2007), 75–79.
[3] András A Benczúr, Levente Kocsis, and Róbert Pálovics. 2018. Online machine

learning in big data streams. arXiv preprint arXiv:1802.05872 (2018).
[4] Badrish Chandramouli, Justin J Levandoski, Ahmed Eldawy, and Mohamed F

Mokbel. 2011. StreamRec: a real-time recommender system. In SIGMOD.
[5] David Goldberg et al. 1992. Using collaborative filtering to weave an informa-

tion tapestry. Commun. ACM 35, 12 (1992).

[6] Shohei Hido, Seiya Tokui, and Satoshi Oda. 2013. Jubatus: An open source

platform for distributed online machine learning. In NIPS 2013 Workshop on
Big Learning.

[7] Mu Li et al. 2014. Scaling distributed machine learning with the parameter

server. In OSDI.
[8] Robert Nishihara et al. 2017. Real-Time Machine Learning: The Missing Pieces.

In HotOS 2017. ACM, 106–110.

[9] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hog-

wild: A lock-free approach to parallelizing stochastic gradient descent. In

Advances in neural information processing systems. 693–701.
[10] Paul Resnick and Hal R Varian. 1997. Recommender systems. Commun. ACM

40, 3 (1997), 56–59.

[11] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to

recommender systems handbook. In Recommender systems handbook. Springer,
1–35.

[12] João Vinagre, Alípio Mário Jorge, and João Gama. 2014. Fast incremental

matrix factorization for recommendation with positive-only feedback. In

International Conference on User Modeling, Adaptation, and Personalization.
[13] Kais Zaouali et al. 2018. Distributed Collaborative Filtering for Batch and

Stream Processing-Based Recommendations. In OTM.

362


	Short papers
	DISGD: A Distributed Shared-nothing Matrix Factorization for Large Scale Online Recommender SystemsHeidy Hazem, Ahmed Awad, Ahmed Hassan, Sherif Sakr


