
PrefDiv: Efficient Algorithms for
Effective Top-k Result Diversification
Xiaoyu Ge

University of Pittsburgh

xiaoyu@cs.pitt.edu

Panos K. Chrysanthis

University of Pittsburgh

panos@cs.pitt.edu

ABSTRACT
The ever-increasing supply of data is bringing renewed atten-

tion to result diversification, a technique usually studied with

result relevance for a given task. Together, they produce a sub-

set of results that are relevant to the user query and contain

less redundant information. In this work, we formulate an ex-

tended version of the result diversification problem, considering

three objectives—relevance, diversity, and coverage—and present

a novel approach and algorithms that produce better-diversified

results. Our approach takes a large set of possible answers gen-

erated from a user query and outputs a representative subset

of results that are highly ranked according to the preference

of the user. The data items contained in the representative set

are diverse, such that each item is different from the rest and

provides good coverage of the underlying aspects of the orig-

inal results. Our approach also suggests a set of appropriate

parameters for each user query to achieve a balance between our

conflicting objectives and is efficient enough to ensure an interac-

tive experience. We study the complexity of our algorithms and

experimentally evaluate them in terms of normalized relevance,

coverage, and execution time. Our evaluation indicates a speedup

of up to 159x , and outperforms the state-of-the-art algorithms

on multiple fronts.

1 INTRODUCTION
Motivation With the exponential increase in the amount of

data being generated every second, the term "Big Data" that is

adopted to represent the challenge of large-scale data processing

is currently mentioned frequently in everyday life [20]. This

reflects the fact that people are increasingly reliant on using data

as an integral part of their daily activities (e.g., decisions and

collaborations).

The challenge of scalable data processing can be examined

from two viewpoints. Traditionally, scalability has been seen from

a systems point of view, where challenges can be attributed to an

increasing rate of data on the one hand, and network bandwidth,

processing power, and storage limitation on the other hand. Scal-

ability can also be viewed from a human point of view [23]. Given

the expornential volume of data, the challenge here is how to

avoid overwhelming users with irrelevant results.

Query personalization is a well-known technique for dealing

with scalability challenges from a human point of view, which

often happens at two different levels:

• Ranking – Ranking techniques utilize user preferences with
the aim of providing themost relevant results to the users (e.g.,

[33]). These techniques can be distinguished as quantitative-
based, qualitative-based, or hybrid, based on the type of user

preferences that they can support.

• Diversification – Diversification techniques aim to reduce the

amount of redundant information in the results. These tech-

niques typically group data in sets that are most "dissimilar"

with each other (e.g., [3, 12]).

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Since highly-ranked items can be similar, result diversification

[31] has recently drawn significant attention as a technique to

facilitate applications such as keyword search, recommendation

systems, and online shopping. The key idea of result diversifi-

cation is to output a subset of representative results from the

original in an informative way, since the user most probably

will not view results beyond a small number. This requires the

representative top-k results to be relevant, diverse, and maintain

good coverage of the original answers (i.e., able to cover different

underlying aspects of the original results). One thing to note is

that the definitions of both relevance and diversity are subjective;

thus, they can vary depending on the query and the user.

Goal In this paper, we present an approach to efficiently compute

the representative result set for arbitrary top-k queries under

user-definable relevance and diversity definitions. We name this

as the Diversified Top-k (DT-k) problem.

Challenges Below, we will illustrate the challenges to our pro-

posed approach by means of three examples.

Example 1.1. Assume a tourist who is currently visiting Athens

wants to find an affordable restaurant with great taste. So she

visits a publicly available database that contains the relation

RESTAURANT (Name, Food Type, Cost, Score), where Name in-
dicates the official name of the restaurant; Food Type indicates the
type of food (e.g., Greek, Japanese, Chinese); Cost is the average
expense per person, and Score is a numeric number between 1

and 10 that indicates the quality of the food and services offered

at the restaurant. To find the ideal place for dinner, she, therefore,

enters the following SQL-like query:

SELECT * FROM RESTAURANT
WHERE Score ≥ 6 AND Cost ≤ 20

ORDER BY Cost ASC;
However, these kinds of queries may produce thousands of

results, among which the top 5 and bottom 5 results are listed in

Table 1. The problem is that users are typically only interested in

seeing a small portion of these results, not to mention many of

these results are, in fact, redundant (e.g., differ only in the name).

Simply fetching a certain top number (e.g., top 5) of results does

not help improve their usefulness. Instead, the user might be bet-

ter served with the right amount of diverse (i.e., dissimilar) items

from the original answer with good coverage of different aspects

(e.g., Food Type, Cost, Score). Furthermore, among those repre-

sentative subsets with good diversity and coverage, the one that

is most relevant to the user’s interest should be preferred, such

that the relevance refers to criteria that can be used to rank the

answers. These may be obtained by interoperating the SQL-like

query itself (e.g., through the "Order By" predicates), or derived

from external user profiles (e.g., query histories, crowdsourcing).

One immediate challenge raised is how to define diversity,

which clearly changes based on the user and the query being

performed. In our work, we associate diversity with the similar-

ity between pairs of answers (i.e., data items). To address this

challenge, we propose a tunable definition that can be adjusted

with a set of diversity thresholds DIV . Each threshold div in DIV
is a real number between [0,1], which specifies the threshold

between “similar” and “dissimilar” data items with respect to the

normalized distance given by the specified distance measure (e.g.,

Euclidean, Manhattan, and Hamming) and attributes. |DIV | = 0

results in the traditional top-k query, while more diversity thresh-

olds with higher values increase the diversity of the result set.

Series ISSN: 2367-2005 335 10.5441/002/edbt.2020.30

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.30

Name Food Type Cost Score

McDonald Fast Food 8 7

KFC Fast Food 8 7

Burger King Fast Food 8 7

Arby’s Fast Food 8 7

Oinomageireio H Epirus Greek 8 9

......

Scala Vinoteca Greek 20 9

Ta Karamanlidika tou Fani Greek 20 10

A Little Taste of Home Greek 20 9

Liondi Traditional Greek Greek 20 9

Dio Dekares i Oka Greek 20 9

Table 1: Top-5 and bottom-5 tupleswith respect to the cost.

Name Food Type Cost Score

McDonald Fast Food 8 7

Beer Garden Ritterburg German 8 9

Nolan Japanese 9 8

Oinomageireio H Epirus Greek 10 10

Dosirak Korean 12 6

Table 2: Top-5 tuples based on cost that are diversified re-
spect to attributes “Food Type" and “Score".

Example 1.2. With the above diversity parameter, the previous

sample query in Example 1.1 could be expanded accordingly:

SELECT * FROM RESTAURANT

WHERE Score ≥ 6 AND (Cost ≤ 20)
ORDER BY Cost DESC
DIVERSE BY div = 0.2 ON ‘Food Type’ (Hamming)

AND div = 0.3 ON ‘Score’ (Euclidean) LIMIT 5;

where Food Type and Score are the attributes on which the di-

versity is calculated, and Hamming and Euclidean are the cor-

responding distance measures. The idea here is to generate a

set of results that follow the diversity constraints DIV specified

within the query
1
. The result of the above query is illustrated in

Table 2. Although the above example produces some compelling

results with its information representative subset, it could be

difficult to see how the coverage is contributing differently to the

results than the dissimilarity. To illustrate the importance of the

coverage, let us consider a simple example:

Example 1.3. Consider the nodes in Figures 1 and 2. In these

two figures, each node represents an item in the dataset, and an

edge exists between a pair of nodes iff the similarity between

these two nodes are close enough according to some pre-defined

threshold. On the one hand, in Figure 2, a set of dissimilar items

{v5,v4} is selected. However, only {v1,v5,v4} are considered to

be covered by {v5,v4}, as {v2,v3} are not connected with either

v5 or v4. On the other hand, in Figure 1, a single vertex v1 is

connected to all four vertices, hence achieving 100% coverage. In

this case, one can see that vertex v1 better represents the entire
graph when compared with {v5,v4}, thus indicating coverage

is another valuable aspect to the quality of the representative

results.

The above two examples (i.e., Example 1.2 and 1.3) illustrate the

key advantages and desired features of an effective approach that

provides a meaningful and representative subset of the original

query results. First, the representative subset is relevant to the

intention of the query and contains items that would be ranked

1
Note that our PrefDiv algorithms take the set of diversity constraints DIV as one

of their inputs, and it is up to the design of the actual system that integrates the

PrefDiv to determine how DIV will be integrated with its user query.

Figure 1: Single vertex v1
with 100% coverage.

Figure 2: A set of vertices
{v4,v5} with 60% coverage.

highly in the original results. Second, the chosen representative

items are diverse, each contributing additional novelty to the

answer. Third, the representative items are selected in a way that

most items in the original answers are reachable with a small

distance (i.e., change) from one of the representative answers.

Clearly, simply applying ranking, diversification, or clustering

on the original result sets could not achieve the above properties.

Thus, techniques that clearly consider multiple aspects of the

representative results are needed to address this challenge.

Unfortunately, as we will discuss in more detail in Section 2.2.3,

finding the optimal solution that maximizes both the “relevance”

and “diversity” is an NP-Hard problem by itself, let alone with

the addition of the other aspect “coverage” that should also be

considered when producing the representative results.

Our Approach To overcome these challenges, we propose an

extremely efficient online algorithm, called Preferential Diver-
sity (PrefDiv) [13] , for producing representative result sets with

sufficient relevance, diversity, and coverage of the original an-

swers. PrefDiv is a top-k bounded general diversification ap-

proach that can be applied to any existing relevance ranking

model and datasets to retrieve a diversity-aware top-k represen-

tative subset of results. PrefDiv starts to construct the represen-

tative result set with the k most relevant results (according to the

ranking method), then gradually refine this representative set

by eliminating pairs of items that do not satisfy the constraints

specified by the set of diversity thresholds DIV . This is achieved

by identifying pairs of items in the representative result set that

violate one or more diversity thresholds, and then, among the

two items contained in the pair, one with lower relevance will

be replaced with an item from the database that improves diver-

sity and coverage. In the end, PrefDiv produces k representative

results balanced between relevance, diversity, and coverage.

To the best of our knowledge, PrefDiv is the first general

approach to deliver representative results that explicitly consider

relevance, diversity, and coverage with an interactive speed that

is independent of the underlying database and data set.

However, in order to optimize multiple conflicting objectives

such as relevance and diversity, a common approach taken by

most diversification algorithms, including our PrefDiv, is to utilize

a number of tunable parameters. This could be a major drawback

for an algorithm, because with the increase of the number of

required parameters, the complexity of the algorithm increases

as well, making it more difficult to use in real-world scenarios.

In this paper, we extend and present a family of PrefDiv algo-

rithms based on the vanilla PrefDiv. These includes two novel

algorithms that automatically determine: 1) the corresponding

diversity thresholds DIV = {div1,div2, ...,divn } given the set of

diversity constraints Ψ, and 2) the tunable parameters A that

balance the trade-off between the relevance and diversity, respec-

tively.

Contributions To achieve the solution as described above, this

paper makes the following contributions.

• We formulate the Diversified Top-k (DT-k) problem, provide a

theoretical analysis of its complexity, and show NP-hardness

results. (Section 2)

• We provide a detailed description of the design of PrefDiv,

which is an efficient online result diversification algorithm.

336

Table 3: LIST OF NOTATIONS USED IN THE PAPER

Symbol Explanation

RQ a set of initial query results

R a set of representative results

k the number of item in the result-set

L the number of iterations to obtain R with PrefDiv

Ψ a set of diversity constraints

ψ the diversity constraint

div a diversity threshold

divopt an optimal diversity threshold

∆ a set of dimensions

A a relevance parameter

υ a self-adjustable relevance parameter

Ix the intensity value of item x
U (x) a utility function that produces the Ix
simΨ (xi , x j) xi and x j are similar w.r.t Ψ

dissimΨ (xi , x j) xi and x j are dissimilar w.r.t Ψ

• We introduce the concept of Relevance Proportionality (RP),

that dynamically balances the trade-off between relevance

and diversity during the retrieval of the top-k representative

results based on the given query and dataset.

• We propose a novel greedy algorithm that automatically finds

the optimal diversity threshold, which maximizes the cover-

age of the representative result set produced by the PrefDiv.

• We perform extensive experimental evaluations with two

real-world datasets, Cameras [10] and Foursquare [7]. Our

experimental results show that PrefDiv and its optimizations

outperform the most similar state-of-the-art competitors, as

suggested in [34], by a significant margin. Compared to other

alternatives (discussed in Section 5), our algorithm achieves

up to 159x speedup and produces a representative subset that

better covers the original answers with a negligible perfor-

mance decrease in relevance. (Section 4)

2 PROBLEM FORMULATION
In our work, we assume that the database DB is composed of

N data items over a D-dimensional space (d1,d2, ...,dD), where
each dimension d ∈ D can be either numerical or categorical

attributes. Note that the above assumption enables us to handle

any data type (e.g., structured, semi-structured, unstructured) as

long as they are vectorized. The user specifies a queryQ that aims

to retrieve a set of k representative items from DB over a subset

of dimensions S , such that S ≤ D. The goal here is to produce a

set of k items that maximizes the relevance while ensuring the

diversity (i.e., ensuring each item is diverse with respect to one

another). Below, we will first provide the necessary background

and basic concepts of our problem, and then present our problem

definition and analyze its complexity. The list of symbols used in

the following sections of the paper is shown in Table 3.

2.1 Background
2.1.1 Relevance. The relevance of R represents the degree of

the relevancy of each data item x ∈ R and is typically represented

with a utility functionU (x) that measures the “goodness” of each

data item with respect to certain metrics.

Definition 1. Relevance – Given a database DB and a utility

functionU (x), the relevance is measured as the outcome ofU (x),
which is an intensity value Ix ∈ (0,1) ⊂ R for item x ∈ DB that

is used to express the degree of benefit from retrieving x .

A higher intensity value indicates that a data item is more

desired than those items with a lower intensity value.

The intensity value (i.e., relevance score) enables database

systems to produce a total order of each data item in a given

data set and thus allow the extraction of top-k data items. This

Figure 3: Illustration of similarity and dissimilarity.

is simply achieved by retrieving k data items with the highest

intensity value.

2.1.2 Diversity. In our work, the diversity of a set of data

items R is achieved by enforcing each pair of data items in R to be

dissimilar with respect to each other, such that two data items xi ,
and x j are said to be dissimilar if for a given set of user-specified

diversity constraints Ψ, xi and x j satisfy all constraints ψ ∈ Ψ.
Formally, we can define a diversity constraint as follows:

Definition 2. Diversity Constraint – For a given pair of items

xi and x j , a set of attributes ∆, a distance threshold div , and a

distance function dist (xi ,x j ,∆) that measures the distance be-

tween xi and x j with respect to the set of dimensions specified

in ∆. A diversity constraintψ is satisfied iff dist (xi ,x j ,∆) > div .

Based on the above definition of diversity constraints, we now

define dissimilarity as:

Definition 3. Dissimilarity – Let X be a set of data items. For

a given set of diversity constraints Ψ, two items xi and x j ∈ X
are dissimilar to each other, denoted as dissimΨ (xi ,x j), if they
satisfy each diversity constraintψ in Ψ.

Consequently, the similarity can simply be defined as the

opposite of the dissimilarity, such that:

Definition 4. Similarity – Let X be a set of data items. For

a given set of diversity constraints Ψ, two items xi and x j ∈ X
are similar to each other, denoted as simΨ (xi ,x j), if they fail to

satisfy at least one diversity constraint in Ψ.

Figure 3 illustrates the concept of similarity and dissimilarity

with four 2-dimensional data items x1, ..,x4, and a single diver-

sity constraint that requires the Euclidean distance between each

data object with respect to both dimensions (i.e., ∆ = d1,d2) to
be at least div apart. Let us take point x1 as an example. Ac-

cording to Definition 4, points {x2,x3} are similar to x1, since
dist (x2,x1,∆) ≤ div and dist (x3,x1,∆) ≤ div . In contrast, x4 is
dissimilar with respect to x1, as dist (x4,x1,∆) > div .

2.1.3 Coverage. As pointed out in the previous literature [11],

the coverage is another aspect that is important to the quality

of the representative results. Since the size of the representative

results is very restricted compared to the original answers, hav-

ing a set of representative results with good coverage increases

the chance for the user to get meaningful information from the

selected representation items. Furthermore, coverage enables the

system to organize all the answers in a cluster-like fashion, where

each original answer of query Q can still be retrieved by “zoom-

in" into one of the representative items. Such that the “zoom-in"

operation will reveal all answers that are “similar” to the selected

representative item. The actual implementation of this “zoom-in"

operation has been well discussed in [11], thus it is omitted from

the discussion of this paper.

Clearly, the coverage is defined completely based on the defi-

nition of the similarity and thus related heavily to the diversity

constraints when the number of representative results is fixed

337

to a certain number k . When k is fixed, a set of more relaxed

diversity constraints (i.e., with higher diversity threshold) will

help the representative set include more original answers into its

coverage, and a set of stricter diversity constraints will certainly

decrease the coverage of the representative set. In particular,

given the definition of similarity, if item x j satisfies simΨ (xi ,x j),
x j is said to be covered by the item xi . Consequently, we can
define the coverage of a set of items as follows:

Definition 5. Coverage – Given a set of original answers RQ
and a representative result set R, where R ⊆ RQ , the coverage
of R corresponds to the percentage of items in RQ that satisfies

simΨ (xi ,x j), such that xi ∈ R and x j ∈ RQ .

2.2 Diversified Top-k (DT-k) Problem
Based on the above discussions and definitions, we name our

problem the Diversified Top-k (DT-k) problem.

2.2.1 Problem Formulation. Consider a database DB that con-

sists of N data items distributed over a multi-dimensional space

with mixed numeric and categorical dimensions. Given a query

Q and its corresponding initial results set RQ over DB, the de-
sired result cardinality of k , a utility functionU (x), and a set of

diversity constraints Ψ, the solution of DT-k produces a k-sized

representative subset R from the original results RQ , whose rele-
vance, according toU (x) is maximum, while satisfying the set of

diversity constraints Ψ.
We name the above k-sized subset of representative results as

Diversified Top-k (DT-k) set.

2.2.2 Problem Complexity. Finding the optimal DT-k Set for

the Diversified Top-k problem is computationally hard, which

can be shown by mapping it to the well-knownMaximum-weight
Independent Set problem [1]. We can achieve the mapping by

forming a graph ofG that corresponds to the original results RQ .

Each data item xi in RQ maps to a vertex vi in G. An edge e is
added between two vertices vi and vj if the distance between
these two vertices is close enough such that not all diversity

constraints are satisfied, and the intensity value Ixi of an item xi
represents the weights of the corresponding vertex in G. Some

tractable solutions have been proposed in the literature [18, 21],

but these solutions require either a very specific type of graph

(e.g., Outerstring graphs) or have strict restrictions (e.g., sparsity,

outcome degree of each vertex). Thus, they are not practical in

our environment.

2.2.3 Secondary Objective. As discussed above, coverage is

another important aspect of result diversification, which is de-

pendent completely on the diversity threshold specified inside

each diversity constraint. Given that diversity constraints are

typically defined by the user, this may lead to sub-optimal results

if the user fails to define reasonable constraints. Consequently,

our secondary objective is to address this challenge by automati-

cally adapting the diversity constraints based on the type of the

query being performed and the initial result set. Later, in Section

3.4, we will present a general optimization that helps determine

the most suitable diversity constraints for different user queries.

3 PREFDIV ALGORITHMS
In this section, we introduce our solution to the Diversified Top-k

problem. First, we start with the discussion of a naive approach

to the problem and then propose our solution to this problem,

namely, Preferential Diversity (PrefDiv) algorithm. Finally, we

discuss some optimizations that improve the effectiveness of our

proposed PrefDiv algorithm and reduce its number of tunable

parameters.

3.1 Naive Solution
Before we discuss our solutions, one naive solution to the Diver-

sified Top-k problem work as follows: given a new user query

ALGORITHM 1: PrefDiv
Require:
1: Initial result set RQ , result cardinality k , relevance

parameter A, a set of diversity constraints Ψ
Ensure:
2: One subset R of RQ
3: T ← ∅
4: while exists unexamined items in RQ and |R | < k do
5: T ← Pick k items with highest intensity from RQ
6: for all xi ∈ T do
7: if DissimΨ (xi ,x j) : ∀x j ∈ R then
8: R ← R ∪ xi
9: else
10: Mark xi as “redundant"

11: while number of promoted items in R from T < A ∗ k do
12: R ← R ∪ xmax , s.t., xmax is marked &

∀x j ∈ T , Ixmax ≥ Ix j
13: T ← T − xmax

14: A← A/2
15: RQ = RQ −T

16: Return R

Q , a k , a set of initial results RQ = {x1, ...,xt }, a utility function

U (x) and a set of diversity constraints Ψ, for each item in RQ of

q, we first compute and sort each item in RQ according to the

intensity value computed by theU (x). We pick the item xi ∈ RQ
with the highest intensity value; for each remaining items x j in
RQ , we mark them as “Eliminated” if they are similar to the xi
(i.e., simΨ (xi ,x j)). We then add xi into the final result set R and

remove xi from RQ . Afterwards, a new unmarked item with the

highest intensity value will be picked from RQ , and the previous

steps will be repeated until either |R | = k or all remaining items

in |RQ | are marked as “Eliminated”.

This naive solution is a greedy approach that will eventually

produce a set of items that satisfy all diversity constraints with

relatively high-intensity values. Clearly, the naive solution is

computationally expensive, especially when the size of RQ is

large. Furthermore, it does not guarantee the resulting set to

contain at least k items. However, we use this naive solution as a

foundation and propose an efficient online solution that achieves

better performance with much less computational cost.

3.2 Preferential Diversity
Our Preferential Diversity algorithm is an online solution for

the DT-k problem. As discussed in the previous section, finding

the optimal solution to the DT-k problem is computationally

expensive. Thus we chose a greedy approach in the PrefDiv

design. To maximize the efficiency of PrefDiv, we need to develop

it as an online algorithm that accesses database tuples (i.e., items)

incrementally. The main idea underlying PrefDiv is minimizing

as much as possible the number of data items being examined.

PrefDiv builds the DT-k set R by starting with a set of k highest

ranked data item (with respect to the relevance score/intensity

value), and then gradually replacing items that fail the diversity

constraints with slightly less relevant but diverse items outside

of R that satisfy the diversity constraints. This process continues

until all items in R satisfy the specified diversity constraints.

One potential issue is that relevant items in the DT-k set tend

to be similar to each other. Thus strictly enforcing diversity con-

straints may eliminate too many items that are highly beneficial

to the user. To address this issue, we propose a relevance parame-
ter A that allows PrefDiv to produce representative results with

partial diversity. When A = 1, R would simply be the top k items

from the initial set, i.e., the items with the k highest intensity

338

values. WhenA = 0, R contains k dissimilar items from the initial

set. When A is between 0 and 1 and given that PrefDiv is an

iterative algorithm, considering k objectives each iteration, the

final result will have at leastA∗k items from every iteration, and

in each iteration A will be divided by half. For example, when

A = 0.5 and k = 20, the first iteration will select at least 20 ∗ 0.5
items for the final result set, the second iteration will select at

least 20∗ (0.5∗0.5) items, and so on. With this parameter, the user

is able to control the trade-off between relevance vs. diversity by

enabling partial diversity whenever necessary.

As illustrated in Algorithm 1, the basic logic of PrefDiv is as

follows: PrefDiv takes as input, a set of initial results RQ sorted

according to the descending of their intensity value, the desired

result cardinality of k , partial diversity parameter A, and a set

of diversity constraints Ψ. It outputs a DT-k set that represents

the original answers RQ . In each iteration, PrefDiv fetches and

removes k items with the highest intensity value from RQ and

places them in a temporary set T . Each of the items in T is then

compared with items currently in R, such that any item inT that

fails to satisfy all diversity constraints with respect to all items

in R will be marked as “Redundant"; else, it will be added into R
immediately. This process will continue until all items in T are

either moved into R or marked as “Redundant". Once all k items

fetched in the current iteration have been examined, PrefDiv

will check if a sufficient number of items were moved into R
according to parameter A. In case the number is not sufficient,

the difference will be covered by the highest-ranked items (with

respect to intensity value) that are marked as “Redundant" in the

current iteration. Afterward, the above iteration will be repeated

until k representative items are produced (|R | = k).
Time Complexity According to the above discussion, we

can observe that the worst-case complexity of PrefDiv is O (kN),
since each of the N unlabeled items will be compared at most

k − 1 times with the items that are currently in the result set

before being included or discarded from the final result. Fortu-

nately, as the size of k is usually a small number, PrefDiv should

typically behave as a linear algorithm. Furthermore, as we will

show in our empirical studies (Section 4), depending on the diver-

sity constraints, PrefDiv typically does not need to examine all

original items in RQ . That is, a very small set of the item would

be sufficient enough to produce R if Ψ are appropriately defined.

3.3 Relevance Proportionality
From the above discussions, it should be clear that having a good

balance between relevance and diversity is important to the qual-

ity of the representative result set. In PrefDiv, we have introduced

the relevance parameter A to enable the partial diversity, which

helps preserve the relevance of the representative results. Our

empirical study shows that such a parameter does help improve

the quality of the result set R. However, it is up to the user to

define A for any query, and this may increase user efforts when

using our algorithm. This motivated us to introduce a new self-

adjusted parameter υ to replace the manual relevance parameter

A, which led to a new variation of PrefDiv called Preferneral Di-
versity with Proportional Relevance (PrefDiv-PR). As illustrated in
Algorithm 2, the idea here is to automatically compute the right

amount of items that should be promoted into the final result set

based on the proportion of the relevance of each iteration.

In particular, υ adapts to the aggregated intensity value of all

items in each iteration, and can be computed as follows: Assume

a given set of original results RQ , a DT-k subset R ⊆ RQ and a

number of iterationsL needed for PrefDiv to obtain the result set

R. For each iteration ℓ., s.t. ℓ < L, a set of items with the highest

intensity value from the remaining items of RQ are reserved

into a separated set Bℓ , s.t. Bℓ ⊆ RQ and |Bℓ | = k . The υℓ of an

ALGORITHM 2: PrefDiv-PR
Require:
1: Initial result set RQ , result cardinality k , a set of diversity

constraints Ψ
Ensure:
2: One subset R of RQ
3: L ← 0

4: T ← ∅
5: while exists unexamined items in RQ and |R | < k do
6: T ← Pick k items with highest intensity from RQ
7: for all x j ∈ T do
8: if DissimΨ (x j ,xt) : ∀xt ∈ R then
9: R ← R ∪ x j

10: RQ = RQ −T
11: BL ← T − R
12: Increase L by one

13: for ℓ = 1→ L do
14: υℓ ← Compute υℓ according to Equation 1

15: while the number of items in R from Bℓ < υℓ ∗ |R | do
16: R ← R − x j , s.t. x j ∈ R, Ix j < Ixk : ∀xk ∈ R
17: R ← R ∪ xi , s.t. xi ∈ Bℓ , Ixi ≥ Ixt : ∀xt ∈ Bℓ
18: Bℓ ← Bℓ − xi

19: Return R

iteration ℓ is calculated through the following equation:

υℓ =

∑
x ∈Bℓ

Ix∑L
j=1
∑
xc ∈Bj Ixc

(1)

Recall from Section 2.1.1, Ix is the intensity value of data item

x . The idea here is that at least υℓ proportion (i.e., percent) of

the item in the final representative result set should be extracted

from iteration ℓ, as early iterations would always have a higher

aggregated intensity value, and thus, would occupy a bigger

portion of the final representative set R. Our empirical results

show that by employing υ to compensate for the loss of relevance,

we can prevent too many relevant results from being dropped.

To actually generate the final representative results according

to υℓ , PrefDiv-PR needs to first run PrefDiv to obtain the initial

representative set R, as well as records the number of iterations

L taken to obtained R. During each iteration of PrefDiv, the

items that are initially extracted from RQ (before applying the

diversity constraints) will also be recorded into a separate set Bℓ .
Afterward, PrefDiv-PR will examine the set of items in R that are

extracted from each Bℓ with the corresponding υℓ to determine

if additional items need to be extracted from Bℓ and added into

R. Note that if such extraction is necessary, depending on the

number of items needed to be extracted, the set of items with

the highest intensity value in Bℓ that have not been included in

R will be chosen from Bℓ and placed in R. Finally, once all υ are
satisfied for each iteration, the set of k items with the highest

intensity value in R will be retrieved as the final results.

3.4 Optimize Diversity Constraints for
Coverage

As discussed previously in Section 2.1.3, coverage is yet another

important property of the representative set. It gives us twomajor

benefits. First, it helps to ensure that the underlying data space

(i.e., the original set) has been well represented by the selected

representative items. Second, it enables the possibility for the

user to retrieve items that are not in the representative result

set by performing “zoom-in” operations—each representative

item can be seen as the leader of a set of similar items, and by

339

Figure 4: Illustration of the optimal radius, when k = 2

“zooming-in” to one of the leaders, similar items around the leader

can be revealed.

Since the definition of coverage depends on the similarity

between data objects, it is defined by the set of diversity con-

straints. In order to boost coverage, a set of appropriate diversity

constraints must be defined. Below, we will discuss a general

approach to determine such diversity constraints through an

example.

Example 3.1. Consider a set of initial results RQ that contains

100 items, each with two dimensions, k = 30, a single diversity

constraintψ that considers both dimensions, and the Euclidean

distance as the diversity measure. Furthermore, assume that no

partial diversity is allowed, meaning the final representative set

produced must be a strict DT-k set. Obviously, whether it is

possible to produce a DT-k set with 30 items is dependent on

the definition of diversity constraints, such that if the diversity

constraint consists of a diversity threshold that is beyond the

maximum pair-wise distance between any pair of items in the

original result set, then only a single item can be included in R, as
the rest of the data items would be discarded due to the violation

of the diversity constraint. Clearly, returning a result set with

a single item when k = 30 is not ideal, and thus, the diversity

threshold should be adjusted lower. In contrast, a minimum pos-

sible diversity threshold (i.e., 0) would lead to an arbitrary set of

k items, which gives no guarantee of either diversity or coverage.

Clearly, from the example, an optimal diversity constraint should
include a diversity threshold that exhibits the following proper-

ties: (1) be as large as possible to improve the coverage; and (2)
be small enough to allow a strictly diverse representative set (i.e.,

DT-k set) with k mutually dissimilar items being formed.

With the above observations, we define the optimal diversity

constraint as:

Definition 6. Optimal Diversity Constraint. For a given set of

item R, an integer number k , and a distance function dist (x1,x2),
an optimal diversity constraint must contain the largest possible

distance threshold, denoted as divopt , that exists between a pair

of items in R that can be used to generate a DT-k subset RQ
from R, such that |RQ | >= k and no two item in RQ are similar

according to dist (x1,x2) and divopt .

As illustrated in Figure 4, assume we have a set of points

P = {x1, ...,x4}, such that each point consists of a 2-D coordinate

and a diversity constraintψ that consist of both dimensions and

uses Euclidean distance. In such case, if k = 2, then div = 3

will be the divopt (i.e., optimal diversity threshold) forψ . If any
value less than 3 is chosen to be the divopt , then at least three

points will remain after removing all similar points because only

p2 and p3 are considered to be similar with respect to a diversity

threshold of 2. If any value larger than 3 is chosen to be the

divopt , then only one point will remain in P after removing all

similar points. Thus, 3 is the only option for divopt , as no other

ALGORITHM 3: SearchOptimalDiversityThreshold

Require:
1: A set of items RQ , a size k , a set of attribute ∆, and a

distance function dist (x1,x2,∆)
Ensure:
2: A diversity threshold divopt
3: S ← an initial item x ∈ RQ
4: divopt ← ∅
5: while |S | < k do
6: x∗ ← argmaxx ∈(RQ−S) (min(dist (x ,x j ,∆) : ∀x j ∈ S))

7: S ← S ∪ x∗

8: Θ← minimum distance between any pair of items in S

9: xR ← argmaxx ∈(RQ−S) (min(dist (x ,x j ,∆) : ∀x j ∈

S ,s .t .dist (x ,x j ,∆) < Θ))

10: divopt ← min(dist (xR ,x j ,∆) : ∀x j ∈ RQ)
11: Return divopt

distance threshold would be able to produce a result with three

items. Unfortunately, finding the optimal diversity threshold for

a given distance measure and a set of attributes is NP-hard.

According to Definition 3, two items xi ,x j are dissimilar iff

they fail to satisfy a diversity constant Ψ with a diversity thresh-

old div and distance function dist (x1,x2). Since an item, xi can
be included in a DT-k subset R if and only if xi satisfies all diver-
sity constraints with respect to other items in R, the maximum

distance d between any pair of items in R increases along with

the diversity thresholds inside each diversity constraints. Based

on the Definition 6 of the optimal diversity constraint, the prob-

lem of finding the optimal diversity thresholds (i.e., divopt) for
a given diversity constraint can be mapped to the MaxMin Di-

versity Problem, which aims to select a representative subset

R ⊆ RQ , such that |R | = k , and the minimum distance between

any pair of items in R is maximized. As the MaxMin Diversity

problem has been previously proven to be an NP-hard problem

[4], finding the optimal diversity threshold is also an NP-hard

problem.

Inspired by the MaxMin Diversity problem, we adopt a greedy

heuristic (Algorithm 3), which automatically computes an ap-

proximation of the optimal diversity thresholds for a given set of

diversity constraints. As illustrated in Algorithm 3, we first find

a subset S ⊆ RQ that maximize the minimum distance between

items in R (Lines 5 - 7). Then, we generate the optimal diversity

threshold by comparing the pair-wise distance of all items that

are in RQ but not in S (Lines 8 - 11). The optimal diversity thresh-

old is defined as the largest distance between a pair of items

in RQ that is smaller than the minimum distance between any

pair of items in R. As proven in [30], the result produced by this

greedy heuristic has a

1

2

approximation of the optimal solution

and a quadratic complexity, and no other polynomial algorithm

can provide a better guarantee.

4 EXPERIMENTAL EVALUATION
To study the effectiveness of our PrefDiv and PrefDiv-PR algo-

rithms, we compare them to the two most effective diversified

top-k algorithms, namely Swap [37] andMMR [5], as suggested in

[34]. We also compare them to four diversity-focused algorithms,

MaxSum, MaxMin, K-Medoids, and DisC Diversity, to assess how

well diversity has been preserved when relevance is taken into

account. All the algorithms in our evaluation are discussed in

Section 5.

340

4.1 Experimental Testbed
We implemented all of the algorithms with JDK 8.0 on an Intel

machine with Core i7 2.5Ghz CPUs, 16GB RAM, and 512GB SSD.

Algorithms. We implemented MMR and Swap based on their

published descriptions [5] and [37], respectively. The MaxMin

and MaxSum algorithms used in our experiments are based on

Definitions 8 and 9 (in Section 5), respectively, and DisC Diversity

is taken directly from the original author [10]. However, DisC

Diversity is not top-k bounded algorithms, and the size of the

result set that DisC Diversity produces is heavily dependent on

the radius. To allow for a comparison, we modified the DisC

Diversity to stop when the size of the result set equals k . We also

included one well-known clustering algorithm, K-Medoids [26],

which aims to group a set of data objects into clusters through

some distance measure, so objects within a cluster are close to

each other and objects outside of the cluster are unrelated to the

objects inside the cluster.

In our experiment, we implemented K-Medoids based on [26].

Since K-Medoids does not capture the relevance in any regard,

we improved the performance of K-Medoids in balancing the

relevance vs. diversity trade-off by choosing the object with the

highest intensity value as the final recommendation from each

of its k clusters. This improvement significantly enhances the

performance of the K-Medoids with respect to relevance, while

exhibiting the minimum decrease in diversity.

Most of the diversification techniques involved in our experi-

ments require some parameters, since finding the best parameters

for each technique that are optimum under all situations would

be too difficult. For the purpose of comparison, in all of our ex-

periments, there is only one diversity constraintψ for any given

set of experiments, which is used by all algorithms that require a

diversity constraint during its execution. We fixed the diversity

threshold div used inψ for each set of the experiments, which

is computed with the optimal radius by Algorithm 3. All other

parameters except ψ and r are fixed for all runs and adjusted

according to the suggestion of the original authors, or based on

the best overall performance. For MMR, we set λ = 0.3, for Swap,
we set theUB = 0.1, and for PrefDiv, we set A = 0.6.

Datasets. We ran our tests on two real-world datasets: Cam-

eras [10], and Foursquare. We selected these datasets in order

to experiment with two different distance functions, Hamming
with Cameras and Euclidean with Foursquare. The Cameras

dataset consists of 579 records and 7 attributes per record. The

Foursquare dataset is collected from the major location-based so-

cial network, Foursquare. We obtained real-life user preferences,

used Foursquare’s public venue API, and queried information

for 14,011,045 venues. In order to build realistic user profiles

for our evaluations, we used a dataset collected by Cheng et al.

[7] that includes geo-tagged user-generated content from a vari-

ety of social media between September 2010 and January 2011.

This dataset includes 11,726,632 check-ins generated by 188,450

users. Accordingly, each reading in our Foursquare dataset has

the following tuple format: <ID, latitude, longitude, # check-ins,

unique users>. In our experiments, we consider only data items

(i.e., venues) from New York City (NYC), which consists of 10912

items and San Francisco (SF), which consists of 7859 items.

User Preferences. The intensity values (I) for each individual
dataset is generated as follows:

For the Cameras dataset, we generated 100 different sets of

user preferences, such that in each profile the preference intensity

value for each individual camera is generated based on a uniform

distribution, and each individual user preference is represented

as one unique query.

For the Foursquare dataset, we obtained the real-life user pref-
erences based on the hierarchy of the Foursquare dataset, such

that every individual venue v in the dataset is associated with a

type Tv . For example, an Italian restaurant belongs to the cate-

gory “Italian restaurant”, which can belong to the higher level

category “Restaurants”, which can itself belong to the category

“Food”, and so on. In order to build highly personalized and spe-

cific profiles, we use the bottom layer of the hierarchy, as well as

the specific venues visited. In particular, given the set of check-

ins Cu of user u, we build a hierarchical profile P where at the

top level, the preferences of the user are expressed in terms of the

(normalized) frequencies of this user’s visitations with respect to

the types of venues. The second layer of the user profiles further

provides the normalized frequencies of venues for the different

types of locations visited by u. Since our user profile is sparsely
gathered during a short period of time, to resemble a real-world

user profile, we merged the 1000 sparse Foursquare user profiles

to create one superuser profile. We performed our experiments

by randomly selecting 50 query points from each city (100 query

points in total). For each query point, we considered all venues

located within a 1.5 kilometer radius of the query location.

4.2 Evaluation Metrics
In our experimental evaluation, we evaluate the performance

of all models based on three well-known and commonly used

metrics: Normalized Relevance [35], Coverage [10] (Definition

5), and Execution Time. Note, there are two other commonly

used metrics for evaluating ranking algorithms such as DCG and

Spearman rho. However, both metrics focus on measuring the

correctness of the order of the results produced by the ranking

algorithm. Thus, they are not the ideal evaluation metrics for

evaluating the effectiveness of result diversification algorithms.

As stated in previous sections, our proposed PrefDiv algorithms

are post-processing steps of initial query results, which does not

impact the relative order of the original result set. In other words,

the produced representative result set of PrefDiv algorithms es-

sentially follows the original order of the initial results. Thus,

metrics that focus on the correctness of the ranking order do not

fit the context of this evaluation.

Definition 7. Normalized Relevance. Let S be a set of items

and S∗k ⊆ S such that |S∗k | = k . The Normalized Relevance of a

subset S∗k is defined as the sum of the intensity value of items in

S∗k over the sum of k items with highest intensity value in S .

nRev (S∗k) =

∑
x ∈S∗k

Ix

maxSk ⊆S, |Sk |=k
∑
x ∈Sk Ix

(2)

In order to calculate the coverage for the Foursquare dataset,

given that it is difficult to find a fixed radius that would work

with any query location, we calculate the coverage with respect

to the optimal radius generated by Algorithms 3 for every output

size k . In the case of a Camera dataset, where the hamming

distance is employed, the coverage is calculated with a fixed

diversity threshold/radius div = 3 (which is the mid-point of the

maximum distance allowed). For a fair comparison, all algorithms

are evaluated with respect to the same diversity threshold/radius.

Note that Normalized Relevance and Normalized Intensity Value

would be used interchangeably in the following sections.

4.3 Experimental Results
Here we report the findings of our experimental evaluation.

4.3.1 Normalized Relevance. As demonstrated in Figures 5,

8, and 11, we can see a clear separation between two groups

of algorithms for all datasets, where PrefDiv, PrefDiv-PR, Swap,

MMR, and K-Medoids tend to group together, and MaxMin, Max-

Sum, and DisC Diversity form another group. The reason for this

is that the second group does not take relevance into account;

hence, it would be unlikely for them to retrieve a representative

subset that has a high total intensity value. In contrast, the first

group of algorithms takes relevance into account, and, as such, it

341

Size of Result Set
10 20 30 40 50

N
o
rm

a
liz

e
d
 I
n
te

n
s
it
y
 V

a
lu

e

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Cameras

PrefDiv
PrefDiv-PR
MMR

Swap
K-Medoids
MaxMin

MaxSum
Disc

Figure 5: Normalized IntensityValue
of Cameras

Size of Result Set
10 20 30 40 50

C
o
v
e
ra

g
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cameras

PrefDiv
PrefDiv-PR
MMR

Swap
K-Medoids
MaxMin

MaxSum
Disc

Figure 6: Coverage of Cameras.

Size of Result Set
10 20 30 40 50

E
x
e

c
u

ti
o

n
T

im
e

(m
s
)

0

50

100

150

200

250

300

350

Cameras

PrefDiv
PrefDiv-PR
MMR

Swap
K-Medoids
MaxMin

MaxSum
Disc

Figure 7: Execution Time of Cam-
eras.

Size of Result Set
10 20 30 40 50

N
o
rm

a
liz

e
d
 I
n
te

n
s
it
y
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

New York City

PrefDiv
PrefDiv-PR
MMR

Swap
K-Medoids
MaxMin

MaxSum
DisC

Figure 8: Normalized IntensityValue
for the Foursquare, NYC

Size of Result Set
10 20 30 40 50

C
o
v
e
ra

g
e

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

New York City

PrefDiv
PrefDiv-PR
MMR

Swap
K-Medoids
MaxMin

MaxSum
DisC

Figure 9: Coverage of Foursquare,
NYC

Size of Result Set
10 20 30 40 50

E
x
e
c
u
ti
o
n
T

im
e
(m

s
)

-10

0

10

20

30

40

50

60

70

80

90

New York City

PrefDiv
PrefDiv-PR
MMR

Swap
K-Medoids
MaxMin

MaxSum
DisC

Figure 10: Execution Time for the
Foursquare, NYC

Size of Result Set
10 20 30 40 50

N
o
rm

a
liz

e
d
 I
n
te

n
s
it
y
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

San Francisco

PrefDiv
PrefDiv-PR
MMR

Swap
K-Medoids
MaxMin

MaxSum
DisC

Figure 11: Normalized Intensity
Value of Foursquare, SF

Size of Result Set
10 20 30 40 50

C
o
v
e
ra

g
e

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

San Francisco

PrefDiv
PrefDiv-PR
MMR

Swap
K-Medoids
MaxMin

MaxSum
DisC

Figure 12: Coverage of Foursquare,
SF

Size of Result Set
10 20 30 40 50

E
x
e

c
u

ti
o

n
T

im
e

(m
s
)

0

5

10

15

20

San Francisco

PrefDiv
PrefDiv-PR
MMR

Swap
K-Medoids
MaxMin

MaxSum
DisC

Figure 13: Execution Time of
Foursquare, SF

achieves a significantly higher performance in terms of retrieving

relevant items.

4.3.2 Coverage. Figures 6, 9, and 12 show that our PrefDiv and

PrefDiv-PR exhibit better coverage on average when compared

with MMR and Swap by 20% and 42%, respectively. The reason

could be because both MMR and Swap optimize dissimilarity as

their definition of diversity. In contrast, both PrefDiv and PrefDiv-

PR are coverage-aware algorithms, which seek an optimal radius

that directly improves the coverage of the representative result

set. Therefore, both PrefDiv and PrefDiv-PR can perform much

better than Swap and MMR. We also observed that on average

PrefDiv is able to outperform MaxSum in terms of coverage

by 160%, which could be explained because MaxSum as pure

dissimilarity-based algorithm fails to cover the entire space of

the dataset. K-Medoids demonstrates good coverages for both

datasets. However, both PrefDiv and PrefDiv-PR still exhibit

slightly better coverage in general.

TheMaxMin algorithm performswell in terms of the Foursquare

dataset, although the performance dropped significantly for the

cameras dataset. The reason could be because in the Foursquare

dataset the average number of venues around each query point

is about 90 venues. In contrast, the Cameras dataset consists

of 579 tuples. This shows that MaxMin is able to obtain good

coverage with a relatively small dataset and Euclidean distance

that takes a wide range of values as distance, but fails to cover

the space with large datasets and hamming distance that only

takes the number of attributes + 1 distinct values as distance. In

both datasets, DisC Diversity demonstrated the highest coverage,

which is to be expected since DisC Diversity is the only algorithm

in the experiment that directly optimizes coverage as the only

objective.

Another interesting observation is that, in the Foursquare

dataset, except PrefDiv, PrefDiv-PR, and DisC Diversity, other

algorithms appear to have a drop in coverage when the value of k
increases, although, in general, with the increase in result size the

coverage should increase as well. The reason for such behavior is

that in the Foursquare dataset, we employed the optimal radius

as the criterion for determining the similarity between items.

Therefore, with the increase in result size, the optimal radius

becomes smaller, thus leading to a decrease of coverage for some

algorithms.

342

Value of A
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
v
e
ra

g
e

0.625

0.63

0.635

0.64

0.645

0.65

0.655

0.66

0.665

0.67 PrefDiv
PrefDiv-PR

Figure 14: Coverage of different set-
tings of A, with optimal radius and
k = 30.

Value of A
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o

rm
a

liz
e

d
 I

n
te

n
s
it
y

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04
PrefDiv
PrefDiv-PR

Figure 15: Normalized Relevance of
different settings of A, with optimal
radius and k = 30.

Value of A
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
e
c
u
ti
o
n
T

im
e
(m

s
)

-2

0

2

4

6

8

10

12

14
PrefDiv
PrefDiv-PR

Figure 16: Execution Time of differ-
ent settings of A, with optimal ra-
dius and k = 30.

4.3.3 Execution Time. We have measured the execution time

required by all algorithms. As shown in Figures 7, 10, and 13,

our PrefDiv and PrefDiv-PR appears to be the overall fastest

algorithm when compared to all other alternatives. In general,

PrefDiv and PrefDiv-PR perform near identically in terms of run-

time, which is expected as the additional computation overhead

introduced in PrefDiv-PR is negligible. To illustrate the efficiency

of our proposed greedy heuristic for searching the optimal diver-

sity threshold, we have included its runtime in the PrefDiv-PR, so

the runtime difference between PrefDiv and PrefDiv-PR reflects

the runtime of the search optimal diversity threshold algorithm.

With that in mind, PrefDiv-PR is still on average faster than both

MMR and Swap by up to 72% and 116%, respectively. Specifi-

cally, in the Camera dataset, PrefDiv is able to execute 57 times

faster than K-Medoid, 127 times faster than MMR, and 159 times

faster than Swap. In the Foursquare dataset, most algorithms

tend to be faster when compared with Cameras, because the

number of venues near each query point in Foursquare is much

smaller than in the Cameras dataset. However, we still observed

that, on average, PrefDiv is able to outperform MMR and Swap

by 30 and 36 times, respectively. When compared to K-Medoid,

which is also very efficient when dealing with this type of dataset,

PrefDiv still appears to be 2.7 times faster than K-Medoid on av-

erage. As mentioned previously, if the optimal radius for most

frequent queries is stored, PrefDiv-PR would not need to cal-

culate the optimal radius for these queries again. Furthermore,

for the fairness of the comparison, all of the algorithms run in

a single-threaded mode. Since the optimal radius computation

method that we adopted is fully parallelizable, it can take advan-

tage of the modern multi-threaded CPU architecture to speed up

the computations. In fact, we have observed linear speed up with

respect to the number of CPU cores in the system up to 16 cores

(the highest we have experimented). One interesting remark here

is that, in the Foursquare dataset, the execution time of DisC

Diversity drops when k increases from 10 to 20. The reason is

that the runtime of DisC Diversity is also affected by the length

of the radius, therefore, with smaller output sizes, the optimal

radius will become larger, which leads to the relativity longer

execution time of DisC.

4.3.4 Parameter A of PrefDiv. As illustrated in Figures 6 to

11, a performance difference between PrefDiv and PrefDiv-PR

exists due to the existence of the accuracy parameter A in the

PrefDiv algorithm. In this section, we conducted an experiment

to study the effect of parameter A in PrefDiv with the Camera

dataset and k = 30. As shown in Figures 14, 15, and 16, when A

increases from 0 to 1, we observed an improvement of normalized

relevance, albeit with a decrease in coverage. This is as expected

since, with higher values of A, PrefDiv will select more relevant

items, and with lower values of A, more diverse items will be

selected that lead to an increase in coverage. However, this would

be at the expense of lower relevance. The execution time appears

to be stable regardless of the value of A. This is because, for each

iteration, PrefDiv only requires a tiny amount of execution time.

Therefore, the additional iterations introduced by the low value

of A would not have a large impact on the overall runtime.

4.3.5 Relevancy vs. Diversity. Lastly, as a summary, we present

three scatterplots that capture the trade-off between relevance

and diversity. Each point in Figures 17 and 18 are correspond-

ing to the average of over 50 different query locations with one

value of k , and each point in Figures 19 are corresponding to the

average of over 100 different user profiles with one value of k .
As shown in the figures, we have Normalized Intensity Value as

the y-axis and Coverage as the x-axis. Algorithms located in the

upper left corner of the figure exhibit the best coverage result,

while those in the lower right corner have the highest relevance

scores. As we can observe, both PrefDiv and PrefDiv-PR are lo-

cated towards the upper right corner (circled) for all three scatter

plots, which indicates that both PrefDiv and PrefDiv-PR exhibit

better ability to handle the trade-off between relevance and di-

versity with respect to both datasets and distance measures. One

may notice that in the Camera dataset, the advantage of PrefDiv

and PrefDiv-PR with respect to other alternatives is relatively

smaller compared to that in the Foursquare dataset. This is be-

cause the Cameras dataset uses the Hamming distance as the

distance measure, which has a much smaller domain than the

Euclidean distance used in the Foursquare dataset, thus weaken-

ing the benefit of the optimal diversity threshold. These results

also indicate that the relational proportionality introduced in

PrefDiv-PR does effectively improve the quality of the result,

since PrefDiv-PR is able to outperform (although slightly) the

PrefDiv with manually configured relevance parameter A.

4.3.6 Additional Observations. Despite the fact that both Pref-

Div and PrefDiv-PR run up to 159 times faster than other al-

ternatives, the greedy heuristic (Algorithm 3) that we proposed

for finding the optimal diversity threshold/radius runs at a qua-

dratic time complexity, and thus, it is much slower. Although it

is not required to run this heuristic before each execution of the

PrefDiv/PrefDiv-PR, it certainly helps improve its performance.

However, this is not an issue with our PrefDiv/PrefDiv-PR algo-

rithm because other algorithms (e.g., DisC Diversity) also benefit

from the optimal diversity threshold as much as PrefDiv/PrefDiv-

PR.

Fortunately, this greedy heuristic only needs to run once for

each query, and thus, it can simply be cached to boost the runtime

of frequent queries significantly.

5 RELATEDWORKS
In this section, we discuss works that are closely related to ours

from multiple aspects.

343

Figure 17: Relevance VS. Diversity (NYC).

Figure 18: Relevance VS. Diversity (SF).

Figure 19: Relevance VS. Diversity (Cameras).

5.1 Relevance Ranking Techniques
Many ranking techniques using preference have been proposed.

These are comprehensively surveyed in Stefanidis et al. [33]. As

mentioned above, these techniques can be distinguished based

on the type of preferences they support for filtering and order-

ing data. These techniques primarily handle only one type of

preference, either quantitative or qualitative. However, each pref-

erence type has its own advantages and disadvantages. Hybrid

schemes that support both qualitative and quantitative prefer-

ences have been proposed in an attempt to exploit the advantages

of both types of preferences while eliminating their disadvan-

tages [17, 22]. In this work, our proposed algorithms can work

with any existing relevance ranking model that returns a set of

sorted tuples/objects along with their scores/intensity values.

More recently, in [6], the author studied the problem of produc-

ing rankings while preserving a given set of fairness constraints.

In particular, the proposed algorithm takes as input, a utility func-

tion, a collection of sensitive attributes (e.g., gender, race), and a

collection of fairness constraints that restrict the number of items

with each sensitive attribute that are allowed to appear in the

final results. It outputs a ranking that maximizes the relevance

with respect to the given utility function while respecting the fair-

ness constraints. As mentioned previously, our proposed PrefDiv

algorithms can leverage any existing relevance ranking model.

Therefore, in the case where the required sensitive attributes and

fairness constraints can be provided by the user, PrefDiv can be

used in conjunction with the ranking produced in [6].

5.2 Diversity Techniques
Result diversification has been studied in many different contexts

and with various definitions [10], such as similarity, semantic

coverage [2], and novelty [8]. In our work, we focus on the simi-

larity definition and use MaxMin and MaxSum, which are two

widely used diversification models, as baselines.

The goal of these two diversification models is to select a

subset S from the object space R, so that the minimum or the

total pairwise distances of objects in S is maximized. Recently, a

number of variations of the MaxMin and MaxSum diversification

models have also been proposed (e.g., [9, 25]) to address the

problem of diversifying continuous data. Formally, MaxMin and

MaxSum are defined as follows:

Definition 8. MaxMin generates a subset ofR withmaximum

f = minpi ,pj ∈Sdt (pi ,pj) where dt is some distance function

pi , pj for all subsets with the same size.

Definition 9. MaxSum generates a subset of R with maxi-

mum f = Σoi ,oj ∈Sdt (oi ,oj) where dt is some distance function

oi , oj for all subsets with the same size.

DisC Diversity [10] is the most recently proposed diversity

framework and solves the diversification problem from a different

perspective. In DisC Diversity, the number of retrieved diverse

results is not an input parameter. Instead, users define the desired

degree of diversification in terms of a tuning parameter r (radius).
DisC Diversity considers two objects oi and oj in the query result

R to be similar objects if the distance between oi and oj is less
than or equal to a tuning parameter r (radius). It selects the

representative subset S ∈ R according to the following conditions:

(1) For any objects in R, there should be at least one similar

object in S ; and (2) All objects in S should be dissimilar to each

other. These two conditions ensure both the coverage and the

dissimilarity property of a diverse result set.

In addition, DisC Diversity also introduces two problems, Cov-
ering and CoveredBy [11]. These can be used to model the issue

of generating a representative result set that is both diverse and

relevant to a user’s individual preference (without using prefer-

ences). The Covering problem is used to model the case where

users want highly relevant items to cover a large area around

them. In order to achieve this goal, a relatively larger radius is

assigned to items with larger weights. The CoveredBy problem is

used to model a case where a user wants to see more relevant ob-

jects. In that case, a smaller radius is assigned to items with larger

weights. These two problems together illustrate the possibility

of using DisC to handle relevance together with diversity.

344

The key differences between PrefDiv algorithms and DisC

Diversity are: (1) PrefDiv algorithms follow the Top-k paradigm,

which provides users with the option to specify the size of the

final result set by assigning a value to parameter k , whereas
DisC Diversity adjusts the size of the result set by changing its

radius parameter r . (2) The PrefDiv algorithms focus on both the

relevance of the result set with respect to the users’ preference

and the diversity of the result set. DisC Diversity focuses mainly

on the most diverse representative subset with two scenarios that

only illustrate the possibility of using DisC Diversity to handle

such relevance-aware diversity requests; however, they do not

mention any specific strategies on how one can dynamically

change r with respect to Covering or CoveredBy. In addition, our

implementation of PrefDiv-PR eliminates the need for identifying

r (i.e., diversity threshold) manually by automatically finding the

most suitable diversity threshold under any given situation.

Another way to generate a diverse, representative set of results

is through clustering. One example of this would be k-Medoids,
which is a well-known clustering algorithm that attempts to

minimize the distance between points in a cluster and the center

point (medoid element) of that cluster. The k-Medoids algorithm

can be classified into two stages: In its first stage, it generates

a set of k clusters C = {c1, c2, ..., ck} based on some distance

function dt . In the second stage, one element from each cluster

is selected to be part of the result set R. Several strategies for
selecting an element from each cluster could be employed. For

instance, one strategy is to choose the center point of each cluster

that is expected to deliver high diversity, and another strategy

would be to choose the point that has the highest intensity value

for each cluster. However, since there is no parameter that can be

tuned, either manually or automatically, to balance the trade-off

between relevance and diversity, k-Medoids is unable to balance

such a trade-off in fine granularity.

5.3 Multi-Criteria Objective Optimization
In the past, diversification and retrieval of relevant results have

often been studied together as a multi-objective optimization

problem with two objectives, where the first objective is rele-

vance, and the second objective is dissimilarity [38]. The follow-

ing are some representative techniques that are related to our

work.

In [27], the authors considered the optimization of the diversi-

fied Top-K problem as finding the optimal solution for the maxi-

mum weight independent set problem, which has been proven

to be an NP-hard problem. The authors proposed an approach,

called div-astar, which uses a diversity graph that consists of N

nodes, where each node corresponds to one item in the original

data. This diversity graph is sorted according to the relevance

score, and an a∗ algorithm is used to find the optimal solution

for diversifying Top-K Results. In addition to the div-astar solu-

tion, two enhancements have also been proposed, called div-dp
and div-cut: div-dp takes advantage of dynamic programming to

divide the initial graph into disconnected components, and div-

cut is a cutpoint-based approach that further decomposes each

disconnected component based on loosely connected sub-graphs.

PrefDiv algorithms are different from div-astar [27] (Section 5.3),

in that the main objective of div-astar is to find the exact solution

for the maximum weight independent set; hence, even with all

the enhancements and decompositions, each sub-problem is still

NP-hard. On the other hand, although PrefDiv algorithms also

consider the maximumweight independent set problem as part of

the algorithm, they take advantage of greedy approximation with

a relaxed constraint, which allows similar items to be included in

the result set if the relevance distribution of the original data can

be better reflected in the resulting set. Furthermore, such relaxed

constraints allow PrefDiv to be more practical for border usage,

especially for tasks that require a short response time.

One widely used approach that was targeted directly at opti-

mizing the trade-off between diversity and relevance was intro-

duced by [5]. In this work, the authors proposed the famous twin-

objective function called Maximal Marginal Relevance (MMR),

which combines both relevance and diversity aspects in a single,

comprehensive objective function. Formally, MMR defines its

objective function as:

argmax

Di ∈R\S
[λ(Sim1 (Di ,Q) − (1 − λ) max

D j ∈S
Sim2 (Di ,D j))] (3)

Where λ is a scaling factor that specifies the preference between

relevance and diversity. When λ = 1, the MMR function equals a

standard relevance ranking function. When λ = 0, it computes

a maximal diversity ranking. Comparing PrefDiv to MMR [5]

approach, one can clearly see the difference: there are no compre-

hensive objective functions being used in the PrefDiv algorithms.

Our approach addresses the combined problem of relevance and

diversity through a combination of multiple steps, rather than

solving it in one single function.

Recently, a new bi-criteria objective optimization approach

based on MMR has been proposed [19]. This approach integrates

regret minimization with traditional MMR to generate a new rele-

vance score that takes into consideration the case of minimizing

the disappointment of users when they see k representative tu-

ples rather than the whole database. In this work, the authors

proposed two approximation algorithms called ReDi-Greedy and

ReDi-SWAP, which find the set of items consisting of k items

having the highest score with respect to their MMR function.

In [32], the author has conducted a study on personalized,

keyword-based search over relational databases, which includes

the notion of diversity and coverage. Specifically, the author

provided good discussions on modeling the relevance, user pref-

erences, diversity, and coverage for keyword-based searches over

relational databases by means of Join Tree of Tuples. Join Tree

are trees of tuples connected through primary to foreign key

dependencies. However, PrefDiv algorithms assume that a utility

function F is given in advance to reflect the relevance and user

preference, and thus does not focus on modeling the relevance

and user preferences. Furthermore, PrefDiv algorithms are gen-

eral, post-processing techniques for result diversification, and

hence, do not restrict themselves to the keyword-based search

over relational database settings. As long as proper utility func-

tions and distance measures are given, PrefDiv algorithms can

be applied to any data types (e.g., structured, unstructured, semi-

structured). Consequently, the definition of coverage in [32] is

also different than the definition of coverage in this work.Wheres

[32] focuses on covering more user intents based on user pro-

files, PrefDiv algorithms focus on the proximity between the

representative results and original results.

Swap is another recent Top-K diversification technique that is

related to ours [37]; Swap starts with K items with the highest

relevance scores. Among these K items, Swap picks an item with

the lowest contribution to the diversity of the entire set, then

swaps this item with the item that has the next highest relevance

score. A candidate is successfully swapped with one of the items

in the Top-K set if and only if it can contribute more in terms

of the overall diversity of the result set. In order to preserve

the relevance aspect, Swap introduces an optional pre-defined

threshold called UB that specifies how much decrease in rele-

vance can be tolerated.UB can serve as a terminal condition that

stops the algorithm when the item with the highest relevance

among the remaining set is no longer high enough for the algo-

rithm to perform a swap operation. Our PrefDiv is different from

the Swap, as Swap seeks diversity through pairwise distances of

items among the result set, filters out items that contribute less

to diversity, and ensures relevance by throwing out items that

cause the relevance to drop below the pre-defined threshold. In

contrast, PrefDiv algorithms seek diversity by eliminating simi-

lar items and ensuring relevance by using a relevance-focused

345

greedy algorithm along with proportionality, which can reflect

the relevance distribution of the original domain.

5.4 Data Summarization
Some recent works [24, 36] have studied the problem of provid-

ing interactive exploration and summarization support for tuples

in a given table. The goal of this type of approach is to produce

an informative hierarchy that organizes the underlying tuples

essentially in k clusters. In order to display tuples as clusters,

each cluster is folded into a single, representative tuple, with

only the common attribute values among all members of the

cluster being displayed. The rest of the attributes are shown as

“?”, which indicates that there are objects with different values

with respect to these attributes inside the cluster. To explore each

cluster, the user can gradually expand each “?” symbol contained

in the current representative tuple of a cluster. Each time the user

expands a “?" symbol, more tuples that contain a different value

with respect to the corresponding attributes will be displayed.

Clearly, these works are different than ours. We focus on produc-

ing a representative subset that is most informative to the user

with adjustable size, rather than summaries of subsets of a table.

5.5 Impacts of PrefDiv
The efficiency of PrefDiv and its ability to balance the trade-

offs between relevance, diversity, and coverage have already

benefited the design of some real-world systems that need to

produce highly informative representative subsets, or require

interactive efficiency in producing the representative results (e.g.,

[14–16, 28, 29]) .

One example is a novel mobile recommendation service that

provides a set of diverse points-of-interest (POI’s) recommenda-

tions [14–16], where the interactive efficiency has been weighted

equally important as the quality of the produced recommenda-

tions.

Another example is in the scientific domain and dimensionality

reduction, which PrefDiv has been employ as a novel way to se-

lect subsets of highly informative dimensions for high-dimensional

gene expression datasets [28, 29]. Those selected dimensions will

then be used to enable effective downstream analysis in a variety

of medical and bioinformatics researche.

6 CONCLUSIONS
Scalability from a human point of view is a very challenging

problem as it consists of finding the perfect balance between

the conflicting objectives of relevance and diversity. Traditional

top-k result diversification approaches focus on producing a

subset of results that balance the trade-off between selecting

highly relevant items and items that are dissimilar with respect

to each other. In order to achieve the above-mentioned objectives,

most algorithms rely on a number of tunable control parameters,

making them harder to configure (and be adopted). Coverage

is another important factor of diversity, which has been mostly

ignored in previous top-k result diversification algorithms.

In this work, we addressed these problems and proposed an

efficient online solution called Preferential Diversity (PrefDiv).

PrefDiv produces a set of high-quality representative items from a

large set of initial answers, where each representative item is cho-

sen to optimize both the relevance and diversity (i.e., dissimilarity,

and coverage). We also proposed a number of optimizations that

further improve PrefDiv’s usability, efficiency, and effectiveness.

We theoretically analyzed and experimentally compared our al-

gorithms to the state-of-the-art, top-k diversification algorithms.

Our evaluation showed that our algorithms achieve similar per-

formance in terms of normalized relevance, but outperforms the

state-of-the-art algorithms in terms of coverage by a noticeable

margin, while achieving a speedup of the runtime up to two

orders of magnitude.

REFERENCES
[1] Independent set (graph theory). https://en.wikipedia.org/wiki/Independent_

set_(graph_theory), 2018.

[2] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search

results. In WSDM, pages 5–14, 2009.

[3] A. Angel and N. Koudas. Efficient diversity-aware search. In ACM SIGMOD,
pages 781–792, 2011.

[4] J. Carbonell and J. Goldstein. The discrete p-dispersion problem. EJOR,
46:48–60, 1990.

[5] J. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking

for reordering documents and producing summaries. In ACM SIGIR, pages
335–336, 1998.

[6] L. E. Celis, D. Straszak, and N. K. Vishnoi. Ranking with fairness constraints.

In ICALP, pages 28:1–28:15, 2018.
[7] Z. Cheng, J. Caverlee, K. Lee, and D. Sui. Exploring millions of footprints in

location sharing services. In ICWSM, 2011.

[8] C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. BÃĳttche,

and I. MacKinnon. Novelty and diversity in information retrieval evaluation.

In ACM SIGIR, pages 659–666, 2008.
[9] M. Drosou and E. Pitoura. Dynamic diversification of continuous data. In

EDBT, pages 216–227, 2012.
[10] M. Drosou and E. Pitoura. Result diversification based on dissimilarity and

coverage. In VLDB, pages 13–24, 2012.
[11] M. Drosou and E. Pitoura. Multiple radii disc diversity: Result diversification

based on dissimilarity and coverage. ACM TODS, 40(1), 2015.
[12] P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Top-k bounded diversifica-

tion. In ACM SIGMOD, pages 421–432, 2012.
[13] X. Ge, P. K. Chrysanthis, and A. Labrinidis. Preferential diversity. In ExploreDB,

2015.

[14] X. Ge, P. K. Chrysanthis, and K. Pelechrinis. Mpg: Not so random exploration

of a city. In IEEE MDM, 2016.

[15] X. Ge, A. Daphalapurkar, M. Shimpi, D. Kohli, K. Pelechrinis, P. K. Chrysanthis,

and D. Zeinalipour-Yazti. Data-driven serendipity navigation in urban places.

In IEEE ICDCS, pages 2501–2504, June 2017.
[16] X. Ge, S. R. Panati, K. Pelechrinis, P. K. Chrysanthis, and M. A. Sharaf. In

search for relevant, diverse and crowd-screen points of interests. In EDBT,
2017.

[17] R. Gheorghiu, A. Labrinidis, and P. K. Chrysanthis. A user-friendly framework

for database preferences. In CollaborativeCom, pages 205–214, 2014.

[18] M. Grohe. Descriptive and parameterized complexity. In Computer Science
Logic, 13th Workshop, number 1683 in LNCS, pages 14–31, 1999.

[19] Z. Hussain, H. A. Khan, and M. A. Sharaf. Diversifying with few regrets, but

too few to mention. In ExploreDB, pages 27–32, 2015.
[20] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel,

R. Ramakrishnan, and C. Shahabi. Big data and its technical challenges.

Commun. ACM, 57(7):86–94, July 2014.

[21] J. M. Keil, J. S. B. Mitchell, D. Pradhan, and M. Vatshelle. An algorithm for the

maximum weight independent set problem on outerstring graphs. In CCCG,
2015.

[22] W. Kiessling and G. Kostler. Preference SQL: design, implementation, experi-

ences. In VLDB, pages 990–1001, 2002.
[23] A. Labrinidis. The big data - same humans problem. In Proc. of Conference of

Innovative Data Systems Research, 2015.
[24] A. P. Manas Joglekar, Hector Garcia-Molina. Interactive data exploration with

smart drill-down. In IEEE ICDE, 2016.
[25] D. Panigrahi, A. D. Sarma, G. Aggarwal, and A. Tomkins. Online selection of

diverse results. In WSDM, pages 263–272, 2012.

[26] H.-S. Park and C.-H. Jun. A simple and fast algorithm for k-medoids clustering.

Expert Systems with Applications, 36(2):3336–3341, 2009.
[27] L. Qin, J. X. Yu, and L. Chang. Diversifying top-k results. In VLDB, pages

1124–1135, 2012.

[28] V. K. Raghu, X. Ge, A. Balajee, D. J. Shirer, I. Das, P. V. Benos, and P. K.

Chrysanthis. A pipeline for integrated theory and data-driven modeling of

genomic and clinical data. In ACM BioKDD, 2019.
[29] V. K. Raghu, X. Ge, P. K. Chrysanthis, and P. V. Benos. Integrated theory-and

data-driven feature selection in gene expression data analysis. In IEEE ICDE,
pages 1525–1532, 2017.

[30] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Facility dispersion problems:

Heuristics and special cases. In WADS, 1991.
[31] R. L. T. Santos, C. Macdonald, and I. Ounis. Search result diversification. In

Foundations and Trends in Inf Retrieval, volume 9, pages 1–90, 2015.

[32] K. Stefanidis, M. Drosou, and E. Pitoura. Perk: personalized keyword search

in relational databases through preferences. In EDBT, 2010.
[33] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation, compo-

sition and application of preferences in database systems. ACM TODS, 36(19),
2011.

[34] D. C. Thang, N. T. Tam, N. Q. V. Hung, and K. Aberer. An evaluation of

diversification techniques. LNCS, 9262:215–231, 2015.
[35] H. Tong, J. He, Z. Wen, R. Konuru, and C.-Y. Lin. Diversified ranking on large

graphs: an optimization viewpoint. In ACM KDD, pages 1028–1036, 2011.
[36] Y. Wen, X. Zhu, S. Roy, and J. Yang. Interactive summarization and exploration

of top aggregate query answers. In VLDB, 2018.
[37] C. Yu, L. Lakshmanan, and S. Amer-Yahia. It takes variety to make a world:

Diversification in recommender systems. In EDBT, pages 368–378, 2009.
[38] C.-N. Ziegler, J. A. K. Sean M. McNee, and G. Lausen. Improving recommen-

dation lists through topic diversification. In WWW, pages 22–32, 2005.

346

	Efficient PrefDiv Algorithms for Effective Top-k Result DiversificationXiaoyu Ge, Panos Chrysanthis

