
Manually Detecting Errors for Data Cleaning
Using Adaptive Crowdsourcing Strategies

Haojun Zhang

University of Wisconsin-Madison

hzhang0418@cs.wisc.edu

Chengliang Chai

Tsinghua University

chaicl15@mails.tsinghua.edu.cn

AnHai Doan

University of Wisconsin-Madison

anhai@cs.wisc.edu

Paraschos Koutris

University of Wisconsin-Madison

paris@cs.wisc.edu

Esteban Arcaute

Facebook AI

esteban@fb.com

ABSTRACT
Current work to detect data errors often uses (semi-)automatic

solutions. In this paper, however, we argue that there are many

real-world scenarios where users have to detect data errors com-
pletely manually, and that more attention should be devoted to

this problem. We then study one instance of this problem in

depth. Specifically, we focus on the problem of manually verify-
ing the values of a target attribute, and shows that the current best
solution in industry, which uses crowdsourcing, has significant

limitations. We develop a new solution that addresses the above

limitations. Our solution can find a much more accurate ranking

of the data values in terms of their difficulties for crowdsourcing,

can help domain experts debug this ranking, and can handle am-

biguous values for which no golden answers exist. Importantly,

our solution provides a unified framework that allows users to

easily express and solve a broad range of optimization problems

for crowdsourcing, to balance between cost and accuracy. Finally,

we describe extensive experiments with three real-world data

sets that demonstrate the utility and promise of our solution

approach.

1 INTRODUCTION
Data cleaning has received significant recent attention (e.g., [5, 7,

10, 46]), due to the explosion of data science applications, which

often need data cleaning before analysis can be carried out. Most

recent data cleaning works focus on detecting and repairing data

errors [5, 7, 10, 46] (e.g., outliers, incorrect values, duplicate tuples,

and constraint violations). In this paper we focus on detecting
errors.

To detect data errors, currentwork often employs semi-automatic

solutions, which use machine learning or hand-crafted data qual-

ity rules (e.g., “agemust be between 18 and 80” and “any employee

in NYC earns no less than any non-NYC employee at the same

level” [5]). In certain cases the user can be involved, e.g., to pro-

vide feedback to the solutions or verify that the data instances

reported by the solutions are indeed errors.

In practice, however, there are many scenarios where users still
have to detect data errors completely manually. First, to detect data
errors we often need to extract the values of certain attributes.

Such extraction can be very difficult for today algorithms, but

much easier for human users. This often happens when an at-

tribute value is buried in a picture or text.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Figure 1: An example of manual error detection.

Example 1.1. Consider the product in Figure 1. A data quality
rule is “the value of attribute color should be consistent with the
color of the product in the picture”. There is no algorithm today that
can reliably extract the color of the product from the picture. Here
the picture shows not just the product, a bag, but also a woman
wearing a bag, making the extraction of the bag’s color even more
difficult. A human user however can quickly detect that the bag’s
color in the picture is red. This is inconsistent with the value of
attribute color in the text, which is blue, suggesting a data error.

Even if an attribute’s values are present (so no extraction

is required), it can still be difficult for algorithms to judge if

those values are correct. For example, there is no good algorithm

today to detect if a given URL is indeed the correct URL for a

given business (especially where multiple fake URLs exist for

a business). So detecting incorrect business URLs (e.g., to clean

business listings) is still done largely by human users. Another

example is verifying if the category of a product is “athletic

(man)”, which typically requires a human user to read the product

description, examine the picture, etc.

Finally, an algorithmic solution may exist (e.g., extracting a

person’s gender from a picture can be done reliably today using

deep learning [24]), but the business may have no one qualified

to develop, debug, and run it. Or there is someone qualified,

but developing and debugging the algorithm would take weeks,

whereas the cleaning work must be done within days. In such

cases, businesses often resort to detecting data errors completely

manually, using human users.

In this paper we consider manually detecting data errors. As

a first step, we consider the common setting in which users must
manually check the correctness of the values of a target attribute
(e.g., color, category). This problem is often called manual data
validation [5, 7, 10, 46]. It is pervasive, yet no published work has
addressed it in depth, as far as we can tell.

Using in-house experts to do manual data validation is not

practical for large amounts of data: it takes too long and is not

a good use of their limited time. So companies often use crowd-
sourcing, where the crowd can be for instance contractors or

Series ISSN: 2367-2005 311 10.5441/002/edbt.2020.28

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.28

Mechanical Turk workers. A common solution formulates each

error detection as a question, sends it to the crowd, solicits k
answers (e.g., k = 5), then takes a majority vote. For example, if

three out of five workers answer “no” to the question “is the color

of this product indeed blue?” for the product in Figure 1, then we

can report that product as potentially having a data error.

The above solution is conceptually simple, but inefficient. In-

tuitively, different data values pose different levels of difficulties

to human users. For example, most people know the color “blue”,

and so can answer questions about this color with high accuracy.

But fewer people know the color “chartreuse”. So we may want

to solicit fewer answers for questions involving “blue” (e.g., 3

answers per question), but more answers for questions involving

“chartreuse” (e.g., 7). Such crowdsourcing strategies, which are

sensitive to the difficulties of different data regions, can signifi-

cantly reduce the crowdsourcing cost while achieving the same

level of error detection accuracy.

Indeed many companies have now employed such adaptive
crowdsourcing strategies. A very common solution (e.g., employed

at WalmartLabs, Facebook, Johnson Controls, and elsewhere)

works as follows:

(1) Compute a ranking K of the data values (in decreasingly

order of their difficulties),

(2) Examine K to assign to each data value v a number of

answers nv (such that a data value placed higher in K is

assigned a higher number of answers), then

(3) Solicit nv answers for each question with value v .

Obtaining the ranking K is important for many purposes. For

example, after crowdsourcing to obtain answers for all questions,

companies often take a sample andmanually check the accuracies

of the questions in the sample, for quality assurance purposes.

The ranking K allows them to bias the sample, e.g., intentionally

sample more items with values in the top-10 of K , to check how

well crowdsourcing works for these difficult values. Example 4.1

lists other usages of ranking K .
While the above solution has been quite popular in industry, it

has several important limitations. In this paper we address those

and significantly advance this line of research in several ways.

First, obtaining a good ranking of the data values in terms of

their difficulties is critical. To do so, the above solution estimates

the difficulty score of a data value to be the average worker accu-
racy for a sample set S of questions with that value. To estimate

these scores accurately, the size of sample set S must be quite

large. But this incurs a lot of domain expert’s effort, because he

or she must label all data instances in S (as having data errors or

not).

Here we show that we do not need a large sample S . Our key
idea is that if the average time it takes for a worker to answer

questions is high, or if the disagreement among workers is high,

then those also indicate that a data value is likely to be difficult.

Consequently, we use all three factors (i.e., worker accuracy, av-
erage answer time, and worker disagreement) to directly rank the
data values, using a machine learning approach. We show how

to minimize the domain expert’s effort, by iteratively expanding

sample S and stopping when a convergence condition is met.

Second, once the ranking has been created, domain experts

often want to examine, debug, and modify it. To address this

problem, we develop a solution to help a domain expert debug the
ranking. Specifically, he or she can request explanations on why

a data value v is considered difficult. Among others, our solution

can explain thatv is not difficult, but appears so due to spammers,

low-quality workers, or careless mistakes from the workers; or

that v is indeed difficult, because the value is hard to understand

(e.g., “chartreuse”), or the item description is incomplete, or the

description has confusing/conflict information, etc.

Third, the existing solution considers only the problem ofmin-
imizing the crowdsourcing cost while achieving the same detection
accuracy (as the baseline solution of soliciting the same number

of answers regardless of the data value). We show that in practice,

users want to consider a far broader range of problems. Examples

include minimizing cost given that the accuracy exceeds a thresh-

old, maximizing accuracy given a budget on the cost, improving

the overall accuracy of a set of data items having difficult values,

and more.We develop a unified framework that allows users to eas-
ily express and solve a broad range of such optimization problems,
all of which find crowdsourcing strategies that adapt to the data

value difficulties.

Finally, the existing solution assumes golden answers exist for
the questions with each data value (otherwise the worker accu-

racy for that value cannot be computed). In practice, surprisingly,

we found that there are many cases where there are no such

golden answers. For example, a product description may show

the picture of a bag in sand color, with the value for attribute

“color” being “desert sand”. So the question for the crowd is “is

the color of this product ’desert sand’?”. But nobody knows what

“desert sand” means. There is no such color. Or more accurately,

this is an ambiguous color invented by the marketing team. As

such, there is no correct, i.e., golden answer to the above ques-

tion. (In our experiments, 2/3 of workers answer yes, and the

rest answer no.) Clearly, this problem of ambiguous values must

be addressed, before the above adaptive crowdsourcing solution

can be applied. In this paper we develop a simple but effective

solution to this problem.

Contributions: To summarize, in this paper we make several

fundamental contributions to the problem of manually detecting

errors for data cleaning:

• We argue that the above problem is pervasive, and needs

more attention. As far as we can tell, this is the first work

that studies this problem in depth.

• We focus on the problem of manually verifying the val-

ues of a target attribute, and shows that the current best

solution has significant limitations.

• We develop a new solution that addresses the above limi-

tations and significantly advances the state of the art. Our

solution can find a much more accurate ranking of the

data values, can help domain experts debug this ranking by

providing explanations on why a data value is considered

difficult, and can handle ambiguous values for which no

golden answers exist. Importantly, our solution provides a

unified framework that allows users to easily express and

solve a broad range of optimization problems.

• We describe extensive experiments with three real-world

data sets that demonstrate the utility and promise of our

solution approach.

2 PROBLEM DEFINITION
We now describe the problem of manual detection of data errors

considered in this paper.

Data Items, Attributes, and Values: For manually detecting

data errors, many problem types exist. As a start, in this paper we

will consider the problem of manually verifying the correctness

312

of the categorical values of a target attribute. Specifically, let

D = {d1, . . . ,dn } be a set of data items, such as books, papers,

products, etc. We assume that each item is encoded as a tuple of

attribute-value pairs, i.e., di = ⟨a1 = vi1, . . . ,am = vim⟩. For ex-
ample, a product may be encoded as ⟨cateдory = shirt,дender =
male, color = blue⟩. We will use aj (di) to refer to the attribute

aj of di .
We assume that each attribute aj (di) has a set of correct val-

ues V ∗j (di). For example, a course about discrete math is suit-

able for students from both mathematics and computer science

departments, therefore its subject contains at least two values:

mathematics and computer science. We say that aj (di) is correct
if and only if its value vi j is in V

∗
j (di).

Further, we assume that all attributes of each data item di are
correct, except one attribute, which is referred to as the target
attribute and whose values we will need to verify. Without loss of

generality, we assume that the target attribute is the last attribute

am .

Manual Validation of the Target Attribute: Let ci be the
context of di , defined as “all other attributes and their values”:

ci = ⟨a1 = vi1, . . . ,am−1 = vi(m−1)⟩.
Our problem is to verify am (di) for all items di in D. For each

item di , verifying whether the value of am is correct is equiv-

alent to answering the following question qi : “is the value of

am (di) indeed vim , given the context ci and any other back-

ground knowledge B that the worker may have?” (we discuss

examples of background knowledge B below).

Then the problem of verifying the target attribute am for

items in D can be translated into answering the set of questions

Q = {q1, . . . ,qn }, where the answer for each question qi is yes
or no. If the answer is yes, then our confidence that am (di) is
correct is increased. If the answer is no, then it is likely that there

is a data error in di (in practice, the error may not be in am , but

the error must exist because am (di) is inconsistent with ci). In
this case, di is sent for further verification by an expert.

Suppose we have golden answers for all questions in Q , then
for any solution to the above validation problem, we can define

its overall accuracy to be the fraction of questions whose answers

are correct, i.e., n0/n, where n0 is the number of questions whose

answers match the golden answers, and n = |Q |.

Current Manual Solutions: Today, such questions are often

answered manually, on a GUI, by an expert or a small set of

experts, e.g., data analysts at an e-retailer, data scientists in an

R&D group. To give the expert the maximal context information,

a question will typically display the entire description of the item,

e.g., all attribute-value pairs (see Figure 1).

If the expert still cannot decide after examining these attribute-

value pairs, he or she may try to find more information, e.g.,

examining the same product at a different e-retailer, looking for

any new information that can help answer the question. For the

question “is the color of this product chartreuse?”, the expert may

have to first look up the meaning of “chartreuse” on the Web,

and so on. We refer to such externally acquired knowledge as the
background knowledge B.

Clearly, this manual solution is tedious and time consuming.

As a result, many real-world applications have turned instead to

crowdsourcing to verify attribute values.

CurrentCrowdsourcing Solutions: The simplest crowdsourc-

ing (CS) solution solicits k answers from crowd workers for each

question q ∈ Q , then combines these answers using majority

voting to obtain a final answer for q.
Note that we can combine worker answers using more so-

phisticated strategies, e.g., estimating each worker’s accuracy,

then taking a weighted sum [19, 22, 27, 39]. Many real-world

applications, however, still use majority voting, which is easy to

understand, debug, and maintain. This is especially important

when there is a high personnel turnover. Further, the application

may need to contract with a crowdsourcing company and this

may be the only solution being offered by that company. Finally,

as far as we know, there is no published conclusive evidence

yet that more sophisticated strategies to combine answers work

much better in practice. Thus, in this paper we will focus on the

above majority-voting solution to verify attribute values, leaving

more sophisticated solutions for future research.

The above CS solution, while faster than manual solutions,

can incur high monetary costs, especially if the application wants

high accuracy for crowdsourcing.

Example 2.1. Suppose an e-retailer A must verify the attributes
of 50K newly arrived products. To ensure that product details on
its Web pages are error-free as much as possible, A wants crowd-
sourcing to have an accuracy of at least 95%. To reach this accuracy,
soliciting 3 answers per question is often insufficient, A would need
to solicit 5, 7, or more answers. Assuming 3 cents per answer, if A
solicits 5, 7, or 9 answers per question, crowdsourcing 5 attributes
of 50K products costs $37.5K, $52.5K, and $67.5K, respectively.

Thus, it is important that we develop solutions to minimize

the crowdsourcing cost, while achieving the same verification

accuracy. As discussed in the introduction, intuitively, different

data regions often have different degrees of difficulty for human

verification. So if we can estimate these difficulty levels, we can

adjust the degree of redundancy (i.e., the number of answers

solicited for each question in a region). For example, a set of

products D can be split into data regions where all products with

the same color form a region. Then for each question in the

region with “red” color, we only need to solicit 3 answers, say;

whereas for each question in the region with the “acid yellow”

color, which is more difficult, we would solicit 7 answers.

Indeed many companies have now employed such adaptive
CS strategies. A very common solution works as follows:

(1) Compute a ranking of the data regions (in decreasingly

order of their difficulties),

(2) Examine the ranking to assign to each region a number of

answers (such that a region placed higher in the ranking

is assigned a higher number of answers), then

(3) Solicit that number of answers for each question in the

region.

It is important that this solution outputs both a ranking and a
crowdsourcing plan (which specifies how many answers to solicit

for each question in a data region). Outputting a ranking serves

many important purposes, as discussed in the introduction (see

also Example 4.1).

The above solution is appealing, but has significant limitations.

(1) The ranking that it computes is often inaccurate, because

the solution uses only the average worker accuracy to find the

ranking. (2) Domain experts often cannot debug the ranking, e.g.,

understand why a data region is considered difficult. (3) The task

of assigning to each data region a number of answers is often

done in an ad-hoc “eyeballing” way, by examining where the data

region is in the ranking. (4) It is difficult to express and solve a

313

broad range of optimization problems regarding crowdsourcing

costs and accuracy, even though users often have such needs. (5)

Finally, this solution cannot handle “ambiguous” data values (e.g.,

“desert sand”), for which there are no golden answers.

In the rest of this paper we introduce our solution, called

VChecker, which addresses the above limitations.

3 RANKING THE DATA REGIONS
In VChecker, we first obtain a ranking of the data regions, in

decreasing order of their difficulties. In this section we discuss

how we split the data into different regions, then rank them. (The

next two sections describe how to debug the ranking, then how

to use it to formulate and solve a broad range of optimization

problems, to find good crowdsourcing plans.)

3.1 Splitting Data into Regions
We consider scenarios where for each data instance di , the dif-
ficulty in verifying the target attribute am only depends on its

value vim . Such scenarios are common in practice. For instance,

for products such as the one described in Figure 1, the difficulty

of verifying the attribute color only depends on its value (e.g.,

red, blue, acid yellow, etc.).

In such cases, the expert will split the data such that all ques-

tions with the same target attribute value form a region (because

all such questions share the same difficulty level). Formally, let

D = {d1, . . . ,dn } be the set of data instances, am be the target

attribute,Q = {q1, . . . ,qn } be the set of questions “is the value of
attribute am of instance di indeed vim?”, and V = {v1, . . . ,vr }
be the set of all values of am for instances in D. Then we can split

the set of questionsQ into r sets such that all questions (and only

these questions) in a set Qi share the same value for attribute

am . We refer to each such set as a data region. In general, it is

not always possible to so simply split the data into regions. This

raises the interesting problem of how to help the expert do so,

which we leave for future work.

3.2 Learning to Rank the Regions
To rank the data regions, a common solution in industry is to

compute for each region an average worker accuracy, then rank

the regions in increasing worker accuracy (thus in decreasing

difficulties).

Specifically, let Qi be a data region, i.e., the set of questions

(in Q) with the same value vi for the target attribute am . The

current solution assumes that all crowd workers have the same

probability of answering any question in Qi correctly (a reason-

able assumption in many real-world scenarios). It then takes this

probability to be the average worker accuracy for Qi , denoted as

a(Qi).

To estimate a(Qi), the solution randomly takes a set x of ques-

tions in Qi , solicits y answers from the crowd for each question,

then computes a(Qi) as the fraction of xy answers that are cor-

rect. To determine answers’ correctness, the solution uses the

golden answers to the x questions, as provided by an expert. Fi-

nally, the solution ranks the data regions in increasing order of

the computed average worker accuracy a(Qi).

While conceptually simple, this solution is limited in several

important ways. First, it provides no way to determine x and y. If
they are set to large values, then we waste a lot of crowdsourcing

money and expert time (to provide golden answers). If they are

set to small values, then it is difficult to estimate a(Qi) accurately.
Second, it fails to exploit extra information that can help better

V={black, red, iris,
lavender, chartreuse}

G={ ⟨black, f1 ⟩, ⟨red, f2 ⟩,
⟨chartreuse, f5 ⟩ }

(a) (c)

F = {f1 = ⟨1, 2.3, 0⟩,
f2 = ⟨1, 2.4, 0.05⟩,
f3 = ⟨0.7, 5.1, 0.1⟩,
f4 = ⟨0.6, 8.4, 0.1⟩,
f5 = ⟨0.7, 11.2, 0.15⟩ }

(b)

{chartreuse} ≥ {black, red}

(d)

S = {(f5, 1), (f1, 2), (f2, 2)}

(e)

Figure 2: Creating training data for SVM Rank.

rank the data regions. Finally, the solution does not provide any

way to solicit and incorporate knowledge from the expert, even

though he or she often has such knowledge about the difficulties

of the various data regions.

Key Ideas of Our Solution: Our solution exploits three key

ideas. First, we observe that if a value is difficult, it often takes a

worker longer to provide an answer (e.g., for a question involving

the value “acid yellow”, he or she may need to consult the Web to

understand its meaning before being able to answer the question).

It also often causes more disagreement among the workers. As

a result, we capture and exploit these two types of information

and use them together with the worker accuracy to learn to rank

the values in decreasing order of their difficulties.

Second, to learn the ranking, we ask the expert to provide

training data in the form of (vi ,vj) such that vi is ranked more

difficult than vj . We also allow the expert to debug the ranking

and manually edit it if necessary (see Section 4). Thus, our so-

lution provides a natural way for the expert to provide domain

knowledge about the difficulties of the data regions.

Finally, to minimize the crowdsourcing and expert cost, we

develop a solution in which we iteratively explore larger values

for x (the number of questions sampled per value) and y (the

number of answers solicited per question), and stop when a

condition is met. We now describe the above ideas in detail.

1. Defining the Problem of Ranking the Values: Let V =
{v1, . . . ,vr } be the set of all values of the target attribute for all
data instances in D. Our goal is to find a total ranking K of the

values inV , such that vi being ranked higher than vj means that

vi is judged more difficult than vj .

2. Learning the Ranking: For each value vi ∈ V , we start by
sampling x questions from the corresponding region Qi , then

solicit y answers for each question from the crowd (we explain

later how to select x and y). This produces a total of xy answers.

Next, we create a feature vector fi = ⟨ai , ti , ei ⟩, where ai is the
worker accuracy for vi , computed as the fraction of xy answers

that are correct. To determine if an answer is correct, the expert

must provide the golden answers for the x questions. ti is the time

it takes for a worker to answer the questions, averaged over the

xy answers. Finally, ei is the disagreement among the workers

in answering the questions, measured as 1 − |Nyes − Nno |/(xy),
where Nyes and Nno are the total numbers of yes/no answers

from the workers, respectively (and Nyes + Nno = xy).

Example 3.1. Consider the five colors in setV in Figure 2.a. Figure
2.b shows five feature vectors created for these colors, after sampling
x questions from each color region and soliciting y answers from
the crowd for each question.

314

At this point, we have obtained a set of feature vectors F =
{ f1, . . . , fr }, one for each value. We now learn to rank the values,

using these feature vectors. To do so, we use SVM Rank, a well-

known ML algorithm that can be used to rank examples [38].

To use SVM Rank, we create training data as follows. First, we

randomly sample a set G of feature vectors (FVs) from F . Next,
we need to rank the FVs in G (in terms of the difficulty of their

corresponding values). Abusing notation, we use “fi ≥ fj ” to
indicate that FV fi is ranked the same or higher than FV fj (i.e.,
the value corresponding to fi is the same or more difficult than

that of fj).
Ideally, we want to create a total ranking on G, i.e., for any

pair (fi , fj) ∈ G × G, either fi ≥ fj or fj ≥ fi , then use this

total ranking as training data. However, creating a total ranking

is very expensive and often quite difficult for the expert, so we

ask him or her to create only a partial ranking. Specifically, the

expert merely divides G into two groupsU and V based on his

or her domain knowledge such that for any fi ∈ U and fj ∈ V ,
fi ≥ fj .

Then for each fi ∈ U , we create a training example (fi , 1).
Similarly, for each fj ∈ V , we create a training example (fj , 2).
Here we assume that an example associated with rank 1 is more

difficult than any example associated with rank 2. We output the

set S of all these examples as the training data for SVM Rank.

Example 3.2. Continuing with Example 3.1, suppose we have
selected the three colors black, red, and chartreuse for creating the
training data (see Figure 2.c). Suppose the expert specifies that
chartreuse is considered more difficult than both black and red
(Figure 2.d). Then we can create the training set S in Figure 2.e for
SVM Rank.

SVM Rank then uses S to learn a regression model that assigns

a score to each example, such that the higher the score, the higher

the example is ranked. Finally, we apply SVM Rank to FVs in F
to compute for each FV a score and use these scores to rank the

FVs. This produces a total ranking K for the values in V , such
that a higher ranked value is said to be more difficult than a

lower-ranked one.

The expert can then optionally examine, debug, and edit the

ranking K , as we discuss later in Section 4.

3. Determining Parameters x and y: Recall that for each

value vi we take x questions from the set of questions with that

valueQi , then solicit y answers per question from the crowd. We

now discuss how to set x and y. Our solution is to start with the

smallest x and y, iteratively increase them, computing rankings

along the way, then stop when these rankings have “converged”.

This way, we hope to minimize the cost of the expert (who needs

to answer x |V | questions and the crowd (who needs to answer
xy |V | questions).

Specifically, we start with (2,2), i.e., x = 2 and y = 2 (the

smallest values that allow us to meaningfully compute feature

vectors), and compute the ranking of the values K(2, 2), as de-
scribed earlier. Next, we increase y to consider (2,3), and compute

K(2, 3). Then we consider (3,3) and computeK(3, 3), and so on. To
compute a new ranking, say K(3, 3), using SVM Rank, the expert

needs to label, i.e., provide golden answers to the new questions,

and we need to solicit crowd answers for these questions. But

we do not have to create any additional training data.

We use the Spearman score [48], which ranges from 1 to -

1, to measure the correlation between any two rankings. Con-

sider three consecutive rankings K(xn−2,yn−2), K(xn−1,yn−1),

K(xn,yn). If it is the case that the score
Spearman(K(xn−2,yn−2),K(xn−1,yn−1)) and the score

Spearman(K(xn−1,yn−1),K(xn,yn)) are both exceeding a pre-

specified threshold, or if xn and yn reach pre-specified maximal

values, then we stop, returning K(xn,yn) as the desired ranking.

Algorithm 1 shows the pseudo code of the entire process to rank

the data regions.

4 DEBUGGING THE RANKING
Recall from the previous section that at the start, we enlist the

expert and the crowd workers to create a ranking K of the values

in V , in decreasing order of difficulties. In practice, it turns out

that the ranking K can be used for many important purposes.

Example 4.1. The ranking K can be used to re-calibrate the
worker accuracies of the values (see Section 5.2). It can be used in
formulating optimization problems, e.g., a user may want to focus
on the top-10 most difficult values in K and try to maximize the
average accuracy of those values (see Section 5.1). Finally, K can
also be used in quality assurance (QA). For example, after we have
crowdsourced to obtain answers for all questions, we may want to
take a sample and manually check the accuracies of the questions
in the sample, for QA purposes. The ranking K allows us to bias the
sample, e.g., intentionally sample items with values in the top-10
of K , to check how well the crowdsourcing process works for these
difficult values.

As a result, it is important to make the ranking K as accurate
as possible. Once K has been created (see Section 4), the expert

often wants to examine, debug, andmodify it. Currently, however,

there is no debugging support. To address this problem, as a first

step, in this paper we will develop a way to generate explanations,

which can help the expert debug K .
Specifically, given a value v placed high in the ranking K ,

indicating that it is difficult, the expert can ask for an explanation

on why v is judged difficult by the system.

Example 4.2. When asked why “acid yellow” is judged difficult,
our system may return explanations that state that this value is
actually not difficult, but appears to be difficult due to spammers
and low-quality (i.e., bad) workers who gave many incorrect an-
swers. Or the system may return explanations that state that the
value is indeed difficult because it is unfamiliar to many workers.
Other explanations may include “the product description contains
incomplete or confusing information” and “the description is hard
to understand”, among others.

Clearly, such explanations can significantly help the expert un-

derstand and debug the rankingK . To generate such explanations,
we first develop a model M on how a crowd worker answers a

question. Next, we analyzeM to create a taxonomy T of possible

explanations. Finally, we develop a procedure that, when given

a value v , analyzes answers solicited from the crowd to identify

the most likely explanations in T for v . We now discuss these

steps in more details.

Developing a User Model for Answering Questions: There

are many possible ways to model how a worker answers our

questions. For this paper we use the following simple yet rea-

sonable model. Suppose a worker U has to answer a question

q, which has a value v for the target attribute and a context c
(which is the rest of the description of the data item). Then U
first tries to understand v . Next, U tries to understand c . Finally,
U determines if v and c are consistent, returning “yes” or “no” if

315

Algorithm 1 Learning to Rank the Data Regions

Input: Q : set of questions, V : set of values, xmax : max num of sampled questions,

ymax : max num of answers to be collected per sampled question, (x0, y0): initial
value for (x , y), ϵ : convergence threshold for ranking, n0 : number of training

examples for SVM Rank

Output: A ranking K of values

1: Vt ← Randomly sample n0 values from V
2: O ← CreatePartialOrder(Vt)
3: P ← GenerateConfigs(x0, y0, xmax, ymax)

4: Qs , As ,Ts ,Gs ← ∅
5: (xc , yc) ← (0, 0) // current (x , y)
6: L ← [] // list of rankings
7: for (x , y) ∈ P do
8: Sample x − xc new questions per value and add them to Qs
9: Collects needed answers and time data and add them to As

and Ts
10: Find golden answers for newly sampled questions and add

them to Gs
11: Compute set of features F from As ,Ts ,Gs
12: K (x , y) ← SVMRank values in V using F ,O
13: (xc , yc) ← (x , y)
14: Append K (x , y) to L
15: if IsRankingConverged(L, ϵ) then
16: break

17: end if
18: end for
19: K ← K (xc , yc)
20: W ← Improve estimated worker accuracy using K in Equation 4

21: return K ,W

22: procedure CreatePartialOrder(Vt)
23: The expert partitions Vt into two groupsU ,V such that each

value inU is more difficult than each value in V
24: O ← ∅
25: for v ∈ U do
26: Add (v , 1) into O
27: end for
28: for v ∈ V do
29: Add (v , 2) into O
30: end for
31: return O
32: end procedure

33: procedure GenerateConfigs(x0, y0, xmax, ymax)

34: P ← [(x0, y0)]
35: n = min(xmax − x0, ymax − y0)
36: for i = 1, 2, . . . , n do
37: Append (x0 + i − 1, y0 + i) and (x0 + i , y0 + i) to P
38: end for
39: if x0 + n == xmax then
40: m = ymax − y0 − n
41: for i = 1, 2, . . . ,m do
42: Append (x0 + n, y0 + n + i) to P
43: end for
44: else if y0 + n == ymax then
45: m = xmax − x0 − n
46: for i = 1, 2, . . . ,m do
47: Append (x0 + n + i , y0 + n) to P
48: end for
49: end if
50: return P
51: end procedure

52: procedure IsRankingConverged(L, ϵ)
53: if len(L) < 3 then
54: return False

55: else
56: Let Kn−2, Kn−1, Kn be the last three rankings in L
57: s1 ← Spearman(Kn−2, Kn−1)
58: s2 ← Spearman(Kn−1, Kn)
59: if s1 ≥ ϵ and s2 ≥ ϵ then
60: return True

61: else
62: return False

63: end if
64: end if
65: end procedure

Figure 3: A taxonomy of explanations.

Algorithm 2 Generating Explanations

Input: v : the value to be explained

Output: Ev : the set of possible explanations for value v
1: Collect data S = {Qx , A,W } where Qx is all x |V | questions sam-

pled in difficulty estimation stage, A is all answers and their time

stats for questions in Qx ,W is the set of all workers for A
2: Compute accuracy α and average time t for A
3: for each w ∈W do
4: Apply a procedure on Rw using α , t to classify w as spammers,

low-quality workers, or regular workers

5: end for
6: LetWv be the set of workers who answer at least one question with

value v
7: Ew ← GenWorkerExplanations(Wv)

8: Update S to S+ by removing answers and the time stats from spam-

mers and low-quality workers

9: Apply a procedure on Rv using S+, α , t to classify the nature Nv
of value v (i.e., ambiguous, unfamiliar, overlapping)

10: Ev ← GenValueExplanations(Nv)
11: Let Qv be the set of questions in Qx with value v
12: for each q ∈ Qv do
13: Apply a procedure on Rq using α , t to classify the nature of q

(i.e., comprehension, incomplete, confusing/conflict)

14: end for
15: Let Nq be the set of natures for questions in Qv
16: Eq ← GenQuestionExplanations(Nq)
17: Ev ← Ew ∪ Ev ∪ Eq
18: return Ev

U can make this determination with high confidence. Otherwise

U returns the answer (“yes” or “no”) judged most likely.

Creating a Taxonomy of Explanations: Analyzing the above

user model produces the taxonomy of explanations in Figure

3. Observe that the explanations fall into several clean groups.

The first group concerns the workers: if they are spammers, bad

workers, etc., then the value may not be difficult but will appear

difficult. The second group concerns the nature of the value v
itself: is it ambiguous, unfamiliar, etc? If so, it may explain why

v is ranked difficult. The final group concerns the nature of the
question/the description of the data item/the context. Is the descrip-
tion understandable (e.g., in English)? Is it complete? As we will

see below, we can develop solutions to explore each of the above

groups of explanations.

Generating Explanations for a Valuev: Given a valuev , we
now seek to generate explanations for whyv is difficult. We refer

to each node in the above taxonomy (see Figure 3) as an expla-
nation. Our solution will return a set of such explanations (in

future work we will explore ranking them). To do so, the solution

316

proceeds in the following steps (see Algorithm 2 for the pseudo

code).

(1) Collect data S : We first collect data that can be analyzed to

generate explanations. This data S consists of Qx , the set of all

questions generated for the difficulty score estimation process,

A, the set of all answers solicited for questions inQx , andW , the

set of all workers who have given at least one answer in A.

(2) Use S to classify the workers:We use a rule-based procedure to

classify workers inW into spammers, bad workers, and regular

workers. For example, we classify a worker w as a spammer if

w’s accuracy is significantly lower than the average accuracy,

andw ’s response time is much faster than the average response

time (as computed from data S).

(3) Generate explanations regarding the nature of the workers:Next,
we identify likely explanations regarding the nature of the work-

ers in the taxonomy T . For example, if a certain percentage of

workers that have answered questions involvingv are spammers,

then we will identify node “1.A (Spammers)” of T as an explana-

tion.

(4) Update data S into S+: Next, we remove the data involving the

spammers and bad workers from S , so that we can work with

more accurate statistics in subsequent steps.

(5) Use S+ to classify the nature of value v : Similar to Step 2,

here we use a rule-based procedure to analyze S+, to classify the

valuev as ambiguous, unfamiliar, etc. For example, if the average

worker accuracy for v is high and the average response time is

low, then we determine that v is not unfamiliar.

(6) Generate explanations regarding the nature of value v : Again,
similar to Step 3, we identity explanations in taxonomy T that

involve the nature of value v . This step is straightforward.

(7) Use S+ to classify the nature of the questions and generate ex-
planations:We proceed similarly to Steps 2-3. For example, if a

certain percentage of the questions involvingv is confusing, then

we will identify node “2.B.c” of T as an explanation. Finally, we

return all identified explanations as the set of explanations for

value v .
It is important to note that our rule-based procedures for the

above steps have been created, only once. They are not depen-

dent on the particular application domain. However, the rules

employed do use various parameters (e.g., thresholds). These

parameters are set based on analyzing the data S (but can also be

tuned by the domain expert).

5 FINDING GOOD PLANS
We now discuss finding good crowdsourcing plans. We begin by

considering the types of problems that the user wants to solve. As
discussed in Section 1, a common baseline crowdsourcing (CS)

plan is to solicit tb answers per question, then take the majority

vote to be the final answer. The existing solution has considered

a single problem: minimize the total CS cost while keeping the

accuracy the same as that of the baseline plan.

In practice, however, we observe that users often want to express
a wide range of other CS problems. Examples include minimizing

cost given that the accuracy exceeds a threshold, maximizing ac-

curacy given a budget on the cost, improving the overall accuracy

of a set of data items having difficult values, and more.

As a result, in this section we develop a unified framework

in which users can easily express a variety of such CS problems.

Some of these problems make use of the ranking K (e.g., max-

imizing the average accuracy of the values in the top-5 of K).

Next, we show how to solve these problems using integer lin-

ear programming (ILP). Our solutions often involve the average

worker accuracy per data value. Finally, we show how to use the

ranking K to improve our estimations of these average worker

accuracies.

5.1 Expressing Crowdsourcing Problems
Let D = {d1, . . . ,dn } be a set of data items to be validated. Let

V = {v1, . . . ,vr } be the set of values for the target attribute

of the items in D. We define a crowdsourcing plan p to be a

tuple ⟨⟨v1, t1⟩, . . . , ⟨vr , tr ⟩⟩, where for each question involving

the value vi , plan p will solicit ti answers from the crowd (i ∈
[1, r]).

Let S ⊆ V be a set of values. We define acc(S,p) to be the

accuracy of planp for the values in S , i.e., the fraction of questions
with valuev ∈ S that receive a correct (aggregated) answer when

p is executed. We define cost(S,p) to be the total number of

answers solicited from the crowd for the questions with value

v ∈ S .
We can now define a general CS problem template as follows

“Given a set of plans P and a set of values S, return the plan that
maximizes or minimizes an objective O , subject to a constraint
C , where O and C involve P and S, and optionally a ranking K
of values”. In this paper we consider the following concrete CS

problems that follow the above template.

Finding Plans That Outperform a Baseline Plan: In many

scenarios there exists already a baseline plan pb . The user how-
ever wants a plan p that is better than pb in some aspects. While

numerous problem variations exist, in this paper we consider the

following variations:

T1: Minimize cost while achieving the same accuracy

Return the plan p that minimizes cost(V ,p), subject to constraints
acc(V ,p) ≥ acc(V ,pb) and cost(V ,p) ≤ cost(V ,pb). This is the
problem considered by PBA [14].

T2: Maximize accuracy while keeping the same cost

Return the plan p that maximizes acc(V ,p), subject to constraints
cost(V ,p) ≤ cost(V ,pb) and acc(V ,p) ≥ acc(V ,pb).

T3: Maximize the individual accuracy

In many cases the overall accuracy acc(V ,p) can be high, say 95%,

yet certain individual accuracies (e.g., acc(v,p) for certain v-s)
may be quite low, say 60%. For example, the overall accuracy for

color verification can be 95%. Yet the accuracy for “chartreuse” is

only 60%.

In such cases, the user often wants to improve the accura-

cies of the values across the board as much as possible, while

keeping the overall accuracy at least as high as that of pb and

keeping the overall cost at most as high as that of pb . To do

this, the user can try to solve the following problem: Return the

plan p that maximizesminvi ∈V acc(vi ,p), subject to acc(V ,p) ≥
acc(V ,pb) and cost(V ,p) ≤ cost(V ,pb). Intuitively, if a plan in-

creasesminvi ∈V acc(vi ,p), then it would increase the accuracies

of all individual values.

Solving problems T1 −T3 for only a subset of values

The above problems T1 −T3 consider all values in V . In certain

cases, the user may be interested in optimizing for only a subset

of values S ⊆ V , such as the top 10 most difficult values, accord-

ing to the ranking K . In such cases, we can formulate problems

similar to T1 −T3, but replace V with S where appropriate.

317

Finding Plans That Satisfy General Constraints: In cer-

tain cases, the user does not have a baseline plan pb to compare

against. Instead, he or she just wants to find an “optimal” plan

that satisfies certain constraints about cost and accuracy. Many

variations exist. In this paper we consider the following:

T4: Minimize cost while keeping accuracy above a threshold

Return the plan p that minimizes cost(V ,p), subject to constraint
acc(V ,p) ≥ α .

T5: Maximize accuracy while keeping cost below a threshold

Return the plan p that maximizes acc(V ,p), subject to constraint

cost(V ,p) ≤ β .

Solving problems T4 −T5 for only a subset of values

Again, in certain cases, the user may be interested in optimizing

for only a subset of values S ⊆ V . In such cases, we can for-

mulate problems similar to T4 −T5, but replace V with S where

appropriate.

5.2 Solving Crowdsourcing Problems
Wehave described howusers can express a variety of CS problems

for detecting data errors. We now discuss how to solve them. The

main idea is to formulate them as integer linear programming

(ILP) optimization problems, solve these problems to find an

optimal CS plan p∗ = ⟨⟨v1, t1⟩, . . . , ⟨vr , tr ⟩⟩, then execute p∗.
In what follows we discuss how to carry out the above idea

for problem type T1, then briefly discuss problem types T2 −
T5. Recall that in problem type T1, we want to find the plan

p that minimizes cost(V ,p), subject to constraints acc(V ,p) ≥
acc(V ,pb) and cost(V ,p) ≤ cost(V ,pb). We now discuss how

to estimate the quantities cost(V ,p), cost(V ,pb), acc(V ,pb), and
acc(V ,p).

Estimating cost(V ,p) and cost(V ,pb): It is straightforward

to compute cost(V ,pb), the crowdsourcing cost of the baseline

solution. Recall thatV is the set of values. Suppose each value vi
has ni questions, then the total number of questions is

∑r
i=1 ni .

Since tb answers need to be collected per question, cost(V ,pb) =
tb

∑r
i=1 ni .

To compute cost(V ,p), recall that in our solution, for each

value vi , we have sampled x questions and collected y answers

per sampled question. If plan p states that ti answers will be
collected for each remaining question, then the cost spent on

value vi will be ti (ni − x) + xy. Then the total cost on V can be

computed as cost(V ,p) =
∑r
i=1(ti (ni − x) + xy).

However, we cannot use ti ’s as variables in the resulting ILP

optimization problem (because constraints involving them will

not be linear). To handle this problem, we use a set of indicator

variables to represent ti . Specifically, suppose tmin and tmax are

the min and max number of answers to be collected per question

(these two values are pre-specified; tmin, tmax need to be odd

positive integers since majority vote is used for aggregation).

Let A = {tmin, tmin + 2, . . . , tmax}. Clearly, all ti ’s are in A. To
represent ti , for each j ∈ A we create an indicator variable hi j .
That is, if j = ti , then hi j = 1; otherwise hi j = 0 for all j , ti .
We have ti =

∑
j ∈A jhi j and cost(V ,p) =

∑r
i=1((

∑
j ∈A jhi j)(ni −

x) + xy). As we will see shortly, our ILP formulation uses this

formula for cost(V ,p).

Estimating acc(V ,pb): Letmi be the number of questions with

valuevi whose aggregated answers are correct, then acc(V ,pb) =

(
∑r
i=1mi)/(

∑r
i=1 ni), where ni is the number of questions for

value vi .
To estimatemi , for each question q with value vi we need to

compute the probability that q’s aggregated answer is correct,

which depends on the number of collected answers. Recall that we

assume that all questions with value vi have the same difficulty

and workers are i.i.d. (i.e., identically independently distributed)

for each value. When we collect the same number of answers per

question for a value, the aggregated answers of those questions

will have the same probability of being correct.

We define fi ,t as the probability that for any question q with

value vi , q’s aggregated answer is correct when t answers are
collected per question. So if the baseline approach collects tb
answers per question, thenmi = ni fi ,tb , where ni is the number

of questions in region i (for value vi). We now describe how to

compute fi ,t for any i and t .
To compute fi ,t , we use the worker accuracy ai for value

vi . Since we assume that workers are i.i.d. for value vi , when t
answers are collected for question q in region i , these answers
are independent and each answer has the probability ai of being
correct. So the number of correct answers follows the binomial

distribution B(t,ai). Since we use majority voting, q’s aggregated
answer is correct if and only if more than half of the collected

answers of q are correct. So we can compute

fi ,t =
t∑

j=⌈t/2⌉

(
t
j

)
a ji (1 − ai)

t−j
(1)

For each valuevi , we compute fi ,tb using (1), then estimatemi ’s

and cost(V ,pb) as described above. (At the end of this subsection
we will describe howwe use the rankings from Section 4 to adjust

ai ’s for all vi ’s.)

Estimating acc(V ,p): Recall thatA = {tmin, tmin + 2, . . . , tmax}

and fi ,t is the probability that for any question q with value vi ,
q’s aggregated answer is correct when t answers are collected
per question. Using the indicator variables described earlier, the

expected probability that q’s aggregated answer is correct can

be estimated as

∑
j ∈A hi j fi , j . Then the overall accuracy of our

approach is computed as acc(V ,p) =
∑r
i=1(x+(ni−x)(

∑
j∈A hi j fi , j))∑r

i=1 ni
.

Formulating T1 as an ILP Problem: We now can formulate

problem T1 as the following ILP problem:

minimize

hi j∀j∈A,
i=1,2, . . .r

r∑
i=1
(xy + (

∑
j∈A

jhi j)(ni − x))

subject to

∑r
i=1(x + (ni − x)(

∑
j∈A hi j fi , j))∑r

i=1 ni
≥ αb

r∑
i=1
(xy + (

∑
j∈A

jhi j)(ni − x)) ≤ tb
r∑
i=1

ni∑
j∈A

hi j = 1 ∀i = 1, 2, . . . , r

hi j ∈ {0, 1} ∀j ∈ A, ∀i = 1, 2, . . . , r

(2)

The objective function is the total number of answers to be

collected, which should be minimized. The first constraint en-

sures that the overall accuracy is same or better than that of the

baseline approach (here αb is acc(V ,pb)). The second constraint

ensures that the total cost is no more than that of the baseline.

The third constraint ensures that for each value, only one indica-

tor variable is equal to 1. Finally, we solve the above ILP problem

using the Gurobi solver [1], and return any solution found to the

user, as the crowdsourcing plan p to be executed. We have

318

Proposition 5.1. Let tmin and tmax be the minimal and max-
imal number of answers that the user wants to solicit for each ques-
tion. Let tb be the number of answers that the baseline solution so-
licit for each question, andx be the number of questions that we sam-
ple per value for the difficulty estimation step. If tmin ≤ tb ≤ tmax
and tb ≥ x , then Equation 2 always has at least one solution.

Solving Problems T2 −T5: So far we have discussed solving

problem T1. Problems T2, T4, and T5 can be transformed simi-

larly. For T2, we only need to change the objective to maximize

acc(V ,p) (which is the left side part of first constraint in problem

T1). ForT4 (orT5), we only need to replace the estimated baseline

accuracy (or cost) with the given accuracy (or cost) threshold

from problem T1 (or T2) and remove the unnecessary constraint

on cost (or accuracy).

Solving T3, which maximizes minvi ∈V acc(vi ,p), is a bit more

involved. Let z be the minimum value accuracy among values in

V , then the objective function of the transformed optimization is

simply to maximize z, and it must add a constraint for each value

vi in V to ensure the accuracy of vi is at least z (Constraint 3 in
Equation 3). Therefore, we formulate problem T3 as

maximize

z ,hi j∀j∈A,
i=1,2, . . .r

z

subject to

∑r
i=1(x + (ni − x)(

∑
j∈A hi j fi , j))∑r

i=1 ni
≥ αb

r∑
i=1
(xy + (

∑
j∈A

jhi j)(ni − x)) ≤ tb
r∑
i=1

ni

x + (ni − x)(
∑
j∈A hi j fi , j)

ni
≥ z ∀vi ∈ V∑

j∈A

hi j = 1 ∀i = 1, 2, . . . , r

hi j ∈ {0, 1} ∀j ∈ A, ∀i = 1, 2, . . . , r

(3)

We have described how to solve problems T1 −T5 in the cases

where they involve the set of all values V . It is easy to see that

these problems can be solved in a similar fashion if they involve

only a subset of values S ⊆ V .

Using the Ranking to Adjust Worker Accuracies: Recall

that for each value vi ∈ V , we have obtained xy answers from

the crowd, and have estimated the worker accuracy for vi as ai ,
the fraction of the xy answers that are correct.

However, ai is often not a good estimation of the true worker

accuracy for vi , because the set of xy answers is often small (e.g.,

x = 4 and y = 5 for 20 answers total). Thus, we seek to improve

these estimations, using the ranking K . Our key idea is that if

vi is ranked higher than vj , thus being perceived as being more

difficult, then the worker accuracy for vi should be no higher

than that of vj . If this is not the case, then we can adjust such

worker accuracies so that they become more consistent with the

ranking K .
Specifically, suppose K assigns to each value vi ∈ V a rank

ki ∈ [1, r], where a smaller ki indicates a value closer to the

top of the ranked list. Then we model the task of improving the

worker accuracies ai ’s as the following optimization problem:

minimize

z1 ,z2 , . . .,zr

r∑
i=1
(zi − ai)2

subject to 0 ≤ zi ≤ zj ≤ 1 ∀i , j ∈ [1, r] s.t. ki < kj

(4)

Here zi is the improved worker accuracy for value vi , and the

cost function is the sum of the squares of zi − ai (also known

as L2 cost function). Its constraint ensures that each value has

the same or less worker accuracy than any easier value. This

Table 1: An example of handling ambiguous colors.

model is a simple Isotonic Regression problem, which always has

a solution. It can be efficiently solved in O(r) time [23], where r
is the number of values. We solve it using Gurobi [1]. We then

set ai = zi and use ai ’s as the worker accuracies in formulating

ILP problems, as discussed earlier in this section.

6 MANAGING AMBIGUOUS VALUES
As discussed in Section 1, in practice, there are many cases when

the value for the target attribute is inherently ambiguous, such

as “desert sand” and “arctic white”. In such cases even the expert

has trouble determining what should be the correct answer to

the question, let alone asking the crowd workers. Such cases are

surprisingly common, and no existing work has addressed them,

as far as we can tell.

In this paper we provide a simple yet effective solution to this

problem, based on what we have seen working well in industry.

Briefly, we ask the expert E to first create a taxonomy Z of only

unambiguous values, such as the one in Figure 1. Then the ex-

pert E examines each value v in V (the set of all values for the

target attribute in the data set D). If E judges v to be inherently

ambiguous, E should map v to a valuem(v) in Z .

Example 6.1. Table 1 shows a set of values (on the left side of the
figure) that are ambiguous. The expert can map “Arctic White” to
node “White” in the taxonomy, “Chocolate Cosmos” to “Burgundy”,
and so on.

A question such as “is the color of this product indeed choco-

late cosmos?” is then transformed into “is the color of this product

indeed burgundy?”, which is unambiguous for crowd workers to

answer.

7 EMPIRICAL EVALUATION
We now evaluate our solution. First, we crawled online sources

to obtain the three datasets shown under “Datasets A” in Table 2.

Their schemas are shown at the top of the table, with the target

attribute underlined. Column “# Items” lists the number of data

items in each dataset, and column “# Values” lists the number of

values for the target attribute.

Since it would be too expensive to crowdsource all items in

all datasets, we downsample all three datasets (using stratified

sampling in which for each value of the target attribute, we

randomly retain only 20% of the data items with that value). The

new datasets are listed under “Datasets B” in the same table. Our

experiments with real crowdworkers are performed on these new

datasets. We used Amazon Mechanical Turk for crowdsourcing,

and used common turker qualifications, such as allowing only

turkers with at least 100 approved HITs and 95% approval rate.

7.1 Learning to Rank
We first examine the performance of learning to rank. Recall

that for each dataset, we sample x questions for each value, and

then solicit y answers for each question. Thus, the expert must

provide golden answers for x |V | questions (where V is the set of

319

Table 2: Datasets for our experiments.

Products (title, description, picture, price, color)

Courses (title, description, department, #credits, subject)

Apparel (title, description, style, size, picture, category)

Datasets A Datasets B
Items # Values # Items # Values

Products 10,869 63 2,131 57

Courses 7,583 148 1,395 133

Apparel 3,480 12 690 11

Table 3: Evaluating the quality of the rankings.

WAK VChecker
Precision Recall F1 Precision Recall F1

Products 71.97 61.33 66.22 68.64 68.47 68.56

Courses 74.81 51.46 60.98 66.71 64.46 65.57

Apparel 76.67 63.89 69.70 72.22 72.22 72.22

all values for the target attribute), and the crowd must provide

xy |V | answers. So it is highly desirable that we minimize these

two quantities, to minimize the workload of the expert and the

crowd workers.

For our current three datasets, (x,y) are (4, 5), (5, 5), (5, 5) for
Products, Courses, and Apparel, respectively. Our iterative ex-

pansion process (to find x and y) converged for Products and

Courses. These results suggest that indeed VChecker spends rel-

atively little expert and crowd effort to compute the difficulty

scores.

Next, we examine the quality of the ranking K of the values

that we have obtained. To do so, we need a “golden” ranking K∗.
We obtain K∗ as follows. First, for each value v , we collect Av ,
the set of all answers obtained from the crowd for all questions

involving v . Since we have obtained at least 9 answers for each

question, this is usually a large number (in the hundreds). Next,

we have identified the correct answer for all questions in our

datasets, so we can compute the worker accuracy for v as the

fraction of answers inAv that is correct. SinceAv is a large set of

answers, we take this worker accuracy to be the golden worker

accuracy. Finally, we sort the values in decreasing order of these

golden accuracies, to obtain a golden rank K∗ of the values, in
decreasing order of difficulties.

We now compare ranking K with K∗. Direct comparison turns

out to be difficult, because we often have two values vi and vj
such thatvi is ranked abovevj inK and the reverse applies inK∗,
yet their difficulty scores differ by less than 0.01, say. In such cases,

where the difficulty scores differ by less than a small ϵ threshold,

we say the two values are not comparable. We translate ranking

K∗ into a set of S(K∗) of all (vi ,vj) pairs that are comparable,

and translate ranking K into a similar set S(K).
Table 3 compares these sets. Consider the last three cells of the

first row (the cells under “VChecker”). The cell under “Precision”

is 68.64%, meaning 68.64% of pairs in S(K) appear in S(K∗). The
cell under “Recall” means 68.47% of pairs in S(K∗) appear in
S(K). These two numbers produce a F1 score of 68.56%. Thus,

for Products, the ranking K approximates the golden rank K∗
quite well, with high precision and recall (though there is still

room for improvement). Similar results are shown for Courses

and Apparel.

Recall that the current popular solution in industry uses the

average worker accuracy to rank the data values. Table 3 shows

Table 4: Evaluating the generated explanations.

Values
Explanations
by VChecker

Explanations
by Expert

Compatible
Explanations

P.Denim 2Ab,2Ac,2B,2C 2A,2C 3 {2Ab,2Ac,2C}

P.Brown 1,2A,2Ab,2B,2C 1C,2A,2Bc,2C 5 {1,2A,2Ab,2B,2C}

P.Turquoise 2A,2B,2C 2Ab,2Ac,2Bc,2C 3 {2A,2B,2C}

C.German 2A,2B,2C 2A,2Bc,2C 3 {2A,2B,2C}

C.Zoology 2A,2C 2A,2B,2C 2 {2A,2C}

C.Dance 1A,1Ab,2A,2C 1A,2C 3 {1A,1Ab,2C}

A.Tanks 2Aa,2B,2Ba,2Bb,2C 2A,2B,2C 5 {2Aa,2B,2Ba,2Bb,2C}

A.Underwear 2A,2B,2C 2Bc,2C 2 {2B,2C}

A.Socks 2A,2C 2C 1 {2C}

Table 5: VChecker vs. the UCS baseline solution.

Dataset tb
Cost Accuracy

UCS VChecker Reduction UCS VChecker

Products

3 6,393 4,435 30.6 96.10 95.53

5 10,655 5,961 44.1 96.89 96.03

7 14,917 7,585 49.2 97.27 96.18

9 19,179 8,941 53.4 97.49 96.32

Courses

3 4,185 4,063 2.9 95.94 96.08

5 6,975 5,393 22.7 96.83 97.18

7 9,765 6,639 32.0 97.17 97.60

9 12,555 7,715 38.6 97.56 97.69

Apparel

3 2,070 2,016 2.6 97.60 97.62

5 3,450 2,384 30.9 98.03 97.82

7 4,830 2,866 40.7 98.36 97.97

9 6,210 3,202 48.4 98.84 98.02

that the ranking produced by this solution is worse than the

VChecker ranking (see the first three columns of the table, under

“WAK”, shorthand for “worker accuracy-based ranking”, which

show lower F1 values). This result suggests that VChecker is

indeed able to exploit additional information such as the response

time and the worker disagreement to obtain a better ranking of

value difficulties than the current existing solution.

7.2 Generating Explanations
To evaluate our explanation generator, for each dataset we select

3 values in the top part of the ranking K , then ask for their expla-

nations. For comparison purposes, we also ask a domain expert

to manually generate explanations, after carefully examining all

the answers solicited from the crowd.

Table 4 lists the explanations for VChecker vs those generated

by the experts. “2Ab” for example is the explanation at node

“2.A.b” in the taxonomy of explanations in Figure 3 (“v is indeed

difficult because it is unfamiliar”). The table shows that the two

sets of explanations share large overlaps (see the last column of

the table), suggesting that VChecker is effective in generating

explanations to explain why a value is considered difficult.

7.3 Finding Good Crowdsourcing Plans
We now show that VChecker can find good crowdsourcing plans

for a variety of problem types. Table 5 compares VChecker to

the baseline plan of soliciting the same number tb of answers for

each data value. We call this plan UCS, shorthand for “uniform

crowdsourcing”.

To explain, consider the third row of this table. It shows that

for dataset Products, if UCS solicits tb = 3 answers per question,

then it incurs a total crowdsourcing cost of 6,393 answers. If

320

Table 6: VChecker vs UCS in solving problem T3.

Dataset Min Value Accuracy Avg Value Accuracy
UCS VChecker UCS VChecker

Products 68.45 83.33 92.34 96.11

Courses 72.45 74.68 96.11 96.81

Apparel 92.23 95.58 97.46 98.30

we solve the CS problem T1 (as described in Section 5.1; we

experiment with other CS problem types below) to find a better

CS plan, which would minimize this cost while keeping accuracy

at least equal or better than that of UCS, then the cost of this new

plan (listed under column “VChecker”) is 4,435. This produces

a reduction of 30.6% in cost. The last two cells of this row show

that the accuracies of UCS and VChecker are comparable (96.1

vs 95.53)
1
. (We obtained these accuracy numbers by executing

both plans on Amazon Mechanical Turk.) Subsequent rows are

similar, but for different values of tb .
The table shows that VChecker can significantly reduce the

cost of the baseline solution UCS, by 22.7-53.4% in all cases, except

two cases where the reduction is a more modest 2.6% and 2.9%. It

also shows that the accuracy of VChecker is comparable to that

of UCS (with the difference in the range [-1.17%, 0.43%]).

Solving Other Types of CS Problems: Earlier we have shown

how VChecker solves CS problems of typeT1. We now show that

VChecker is effective in helping users solve other types of CS

problems.

In Section 5.1 we discuss problem T3, where the user wants to
improve the accuracies of the values across the board as much

as possible, while keeping the overall accuracy at least as high

as that of the baseline plan pb and keeping the overall cost at

most as high as that of pb . The goal is to return the plan p that

maximizesminvi ∈V acc(vi ,p), subject to acc(V ,p) ≥ acc(V ,pb)
and cost(V ,p) ≤ cost(V ,pb).

Table 6 shows how well VChecker performs for this problem.

The column “UCS” shows the minimal value accuracy (i.e., the

lowest accuracy among those of all values) when it solicits 3

answers for each question. The column “VChecker” shows that

VChecker is able to improve this minimal accuracy significantly,

while keeping the cost no higher than the cost of UCS. The last

two columns show that even the average value accuracy (i.e.,

averaged over all values) of VChecker is higher than that of UCS.

In Section 5.1 we also discuss the problem of maximizing the

accuracy of k most difficult values, as taken from the ranking K .
Table 7 shows that VChecker is effective for solving this problem,

improving the accuracy of the top 5 most difficult values per

dataset significantly.

7.4 Additional Experiments

Sensitivity Analysis: In the current VChecker system we set

xmax = 5 and ymax = 5, meaning that the iterative exploration

process (see Section 3.2) never goes beyond these values. Figure

4 shows how iterative exploration is sensitive to varying these

values. It shows that this process converges between 3 and 6

for all three datasets, suggesting that setting the values to 5 is a

reasonable choice.

1
When solving the ILP problem, we specified the constraint that VChecker has the

same or better accuracy than UCS. When executing the found plan on Mechanical

Turk, however, this constraint may not hold, due to spammers, careless workers,

etc. Nevertheless, our experiments show that the accuracies of VChecker and UCS

differ by a very small range.

Table 7: Maximizing accuracy of 5 most difficult values.

Dataset Values Value Accuracy
UCS VChecker % Improved

Products

Coral 68.45 83.33 14.88

Denim 81.07 100.00 18.93

Taupe 76.96 100.00 23.04

Brown 95.55 97.92 2.37

Camel 98.52 100.00 1.48

Courses

La Follette School of Pub-

lic Affairs (PUB AFFR)

78.04 87.50 9.46

Agronomy (AGRON-

OMY)

96.13 100.00 3.87

Geological Engineering

(G L E)

93.45 100.00 6.55

Civil and Environmental

Engineering (CIV ENGR)

97.11 100.00 2.89

German (GERMAN) 87.22 96.90 9.68

Apparel

Underwear 98.43 100.00 1.57

Tanks 92.23 100.00 7.77

Pants 94.72 96.85 2.13

Socks 96.87 96.90 0.03

Swimwear 99.34 97.35 -1.99

Figure 4: Convergence in iterative exploration.

Managing Ambiguous Values: Finally, we briefly discuss ex-

amples of managing ambiguous values. In our experiments it

turns out that Products has ambiguous values. Specifically, it has

a total of 173 values, 110 of which are considered ambiguous and

have to be mapped to 63 values in a taxonomy of unambiguous

values. Examples of such mappings include Arctic White mapped

to White, Fluorescent Orange mapped to Orange Red, and Saddle

Brown mapped to Brown. This clearly suggests that managing

such ambiguous values is critical in real-world verification of

attribute values.

8 RELATEDWORK
Data cleaning has received enormous attention (e.g., [2–4, 6, 9,

11, 12, 16, 32–37, 40–45, 50]). See [5, 7, 10, 46] for recent tutorials,

surveys, and books. However, as far as we can tell, no published

work has examined the problem of manually detecting data errors

in categorical attributes, as we do in this paper.

In recent years, crowdsourcing (CS) has received significant

attention and has also been applied to many data cleaning prob-

lems (e.g., [8, 14, 15, 20, 22, 25, 28, 30, 31, 47, 49]). Among these,

the work [14] also discusses the idea of adapting crowdsourcing

strategies to the difficulties of data regions. However, it consid-

ers this idea in the setting of crowdsourcing for active learning.

Further, it does not consider learning to rank the data regions,

nor debugging the ranking, as we do this paper.

A critical challenge in CS is that the quality of workers varies.

Researchers have proposed many methods to differentiate work-

ers, such as filtering out spammers [25, 47], measuring the relia-

bility and quality of workers [19, 22, 27, 39], and finding the right

group of workers for a given task [17]. These methods usually

321

assume that all the questions are of the same difficulty. In con-

trast, VChecker utilizes the difficulty heterogeneity among the

questions while assuming that all workers have the same quality.

VChecker uses majority voting to aggregate the collected

answers of each question. Many other aggregation methods

have been proposed [19, 22, 27, 39]. They usually assign higher

weights to answers from workers with good quality, then per-

form weighted aggregation. Many build probabilistic models

[22, 39] to iteratively update the estimation of worker quality

and weights. However, as far as we can tell, there is no published

work yet showing conclusive evidence that these methods can

achieve higher accuracy than majority voting, especially when

we can only collect a small number of answers per question due

to limited budget, as in our setting here.

Researchers also propose other methods to reduce CS cost, e.g.,

early-stopping strategies [13, 21, 29]. They stop collecting more

answers for a question when they realize that collecting more

answers will not change the aggregated answer. Such methods

can also be used in VChecker to further reduce our cost, when

we use the best plan returned by VChecker to crowdsource all

the questions.

Finally, most CS works only collect answers from the crowd.

[26] also collects the self-reported confidence from workers to

improve the accuracy of aggregated answers. However, they

also notice that workers have the tendency to overestimate or

underestimate their confidence. Recently [18] proposes to collect

the time spent by workers to measure CS effort. VChecker also

collects the response times, but use these (and other data) to

estimate question difficulty.

9 CONCLUSIONS
Detecting data errors completely manually is a ubiquitous prob-

lem in data cleaning, yet it has not received much attention. In

this paper we have shown that the current common solution of

crowdsourcing the above problem using the same number of an-

swers per question can be improved by detecting the difficulties

of data regions, then adjusting the number of answers required

for each region based on its difficulty. We showed that current

work using this idea has several significant limitations. We pro-

posed VChecker, a novel solution to address these limitations,

and described extensive experiments with three real-world data

sets that demonstrate the promise of our solution. For future

work, we plan to improve VChecker in multiple ways, including

developing solutions to partition the input data into regions, bet-

ter solutions to estimate and rank the data regions’ difficulties,

and better solutions to generate explanations for domain experts.

REFERENCES
[1] [n.d.]. Gurobi. http://www.gurobi.com/.

[2] Z. Abedjan et al. 2016. Detecting Data Errors: Where are we and what needs

to be done? PVLDB 9, 12 (2016), 993–1004.

[3] A. Arasu et al. 2011. Towards a Domain Independent Platform for Data

Cleaning. IEEE Data Eng. Bull. 34, 3 (2011), 43–50.
[4] S. Chaudhuri et al. 2006. Data Debugger: An Operator-Centric Approach for

Data Quality Solutions. IEEE Data Eng. Bull. 29, 2 (2006), 60–66.
[5] Xu Chu et al. 2016. Data Cleaning: Overview and Emerging Challenges. In

SIGMOD.
[6] X. Chu et al. 2016. Distributed Data Deduplication. In VLDB.
[7] X. Chu and I. F. Ilyas. 2016. Qualitative Data Cleaning. PVLDB 9, 13 (2016).

[8] S. Das et al. 2017. Falcon: Scaling UpHands-OffCrowdsourced EntityMatching

to Build Cloud Services. In SIGMOD.
[9] A. Das Sarma et al. 2012. An automatic blocking mechanism for large-scale

de-duplication tasks. In CIKM.

[10] T. Dasu and T. Johnson. 2003. Exploratory Data Mining and Data Cleaning.
John Wiley.

[11] X. Dong et al. 2010. Global Detection of Complex Copying Relationships

Between Sources. PVLDB 3, 1 (2010), 1358–1369.

[12] V. Efthymiou et al. 2015. Parallel Meta-blocking: Realizing Scalable Entity

Resolution over Large, Heterogeneous Data. In Big Data.
[13] Aditya G. Parameswaran et al. 2012. CrowdScreen: algorithms for filtering

data with humans. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012.
361–372.

[14] B. Mozafari et al. 2014. Scaling Up Crowd-Sourcing to Very Large Datasets: A

Case for Active Learning. PVLDB 8, 2 (2014), 125–136.

[15] C. Gokhale et al. 2014. Corleone: hands-off crowdsourcing for entity matching.

In SIGMOD. 601–612.
[16] D. Haas et al. 2015. Wisteria: Nurturing Scalable Data Cleaning Infrastructure.

PVLDB 8, 12 (2015), 2004–2007.

[17] H. Li et al. 2014. The wisdom of minority: discovering and targeting the right

group of workers for crowdsourcing. InWWW. 165–176.

[18] J. Cheng et al. 2015. Measuring Crowdsourcing Effort with Error-Time Curves.

In ACM CHI. 1365–1374.
[19] J. Whitehill et al. 2009. Whose vote should count more: Optimal integration of

labels from labelers of unknown expertise. In Advances in neural information
processing systems. 2035–2043.

[20] J. Wang et al. 2012. CrowdER: Crowdsourcing Entity Resolution. PVLDB 5, 11

(2012), 1483–1494.

[21] L. Mo et al. 2013. Optimizing task assignment for crowdsourcing environments.
Technical Report. Citeseer.

[22] P. Ipeirotis et al. 2010. Quality management on amazon mechanical turk. In

ACM SIGKDD workshop on human computation. ACM, 64–67.

[23] P. Mair et al. 2009. Isotone optimization in R: pool-adjacent-violators algorithm

(PAVA) and active set methods. Journal of statistical software 32, 5 (2009), 1–24.
[24] Q. Deng et al. 2015. Deep learning for gender recognition. In ICCCS. 206–209.
[25] S. Jagabathula et al. 2014. Reputation-based Worker Filtering in Crowdsourc-

ing. In Advances in Neural Information Processing Systems 27. 2492–2500.
[26] S. Oyama et al. 2013. Accurate Integration of Crowdsourced Labels Using

Workers’ Self-reported Confidence Scores. In IJCAI.
[27] V. Raykar et al. 2009. Supervised learning from multiple experts: whom to

trust when everyone lies a bit. In ICML. 889–896.
[28] X. Chu et al. 2015. KATARA: A Data Cleaning System Powered by Knowledge

Bases and Crowdsourcing. In SIGMOD. 1247–1261.
[29] X. Liu et al. 2012. CDAS: A Crowdsourcing Data Analytics System. PVLDB 5,

10 (2012), 1040–1051.

[30] Y. Amsterdamer et al. 2013. CrowdMiner: Mining association rules from the

crowd. PVLDB 6, 12 (2013), 1250–1253.

[31] Y. Tong et al. 2014. CrowdCleaner: Data cleaning for multi-version data on

the web via crowdsourcing. In IEEE. 1182–1185.
[32] Z. Khayyat et al. 2015. BigDansing: A System for Big Data Cleansing. In

SIGMOD. 1215–1230.
[33] M. J. Franklin et al. 2011. CrowdDB: answering queries with crowdsourcing.

In SIGMOD.
[34] J. Freire et al. 2016. Exploring What not to Clean in Urban Data: A Study

Using New York City Taxi Trips. IEEE Data Eng. Bull. 39, 2 (2016), 63–77.
[35] Helena Galhardas et al. 2001. Declarative Data Cleaning: Language, Model,

and Algorithms. In VLDB.
[36] D. Haas et al. 2016. CLAMShell: Speeding up Crowds for Low-latency Data

Labeling. In VLDB.
[37] J. Heer et al. 2015. Predictive Interaction for Data Transformation. In CIDR.
[38] T. Joachims. 2002. Optimizing search engines using clickthrough data. In

SIGKDD. 133–142.
[39] A. Khan and H. Garcia-Molina. 2017. CrowdDQS: Dynamic Question Selection

in Crowdsourcing Systems. In SIGMOD.
[40] L. Kolb et al. 2011. Parallel Sorted Neighborhood Blocking with MapReduce.

In BTW.

[41] S. Krishnan et al. 2016. ActiveClean: Interactive Data Cleaning For Statistical

Modeling. PVLDB 9, 12 (2016).

[42] A. Marcus et al. 2011. Crowdsourced databases: Query processing with people.

In CIDR.
[43] B. Mozafari et al. 2014. Scaling Up Crowd-Sourcing to Very Large Datasets: A

Case for Active Learning. In VLDB.
[44] A. G. Parameswaran and N. Polyzotis. 2011. Answering Queries using Humans,

Algorithms and Databases. In CIDR.
[45] H. Park and J. Widom. 2013. Query Optimization over Crowdsourced Data. In

VLDB.
[46] E. Rahm and H. H. Do. 2000. Data Cleaning: Problems and Current Approaches.

IEEE Data Eng. Bull. 23, 4 (2000).
[47] V. Raykar and S. Yu. 2012. Eliminating Spammers and Ranking Annotators

for Crowdsourced Labeling Tasks. Journal of Machine Learning Research 13

(2012), 491–518.

[48] C. Spearman. 1987. The Proof and Measurement of Association between Two

Things. The American Journal of Psychology 100, 3/4 (1987), 441–471.

[49] V. Verroios et al. 2017. Waldo: An Adaptive Human Interface for Crowd Entity

Resolution. In SIGMOD.
[50] J. Wang et al. 2013. Leveraging Transitive Relations for Crowdsourced Joins.

In SIGMOD.

322

	Manually Detecting Errors for Data Cleaning Using Adaptive Crowdsourcing StrategiesHaojun Zhang, Chengliang Chai, Anhai Doan, Paris Koutris, Esteban Arcaute

