
Sharing Computations for User-Defined Aggregate Functions
Chao Zhang

LIMOS, CNRS, University Clermont Auvergne

zhangchaohit13sg@gmail.com

Farouk Toumani

LIMOS, CNRS, University Clermont Auvergne

ftoumani@isima.fr

ABSTRACT
UDAFs (user-defined aggregate functions) are becoming a type

of fundamental operators in advanced data analytics. The UDAF

mechanism provided by most of the modern systems suffers,

however, from at least two severe drawbacks: defining a UDAF

requires hardcoding the routine that computes an aggregation,

and the semantics of a UDAF is totally or partially unknown to the

query processor, which hampers the optimization possibilities.

This paper presents SUDAF (Sharing User-Defined Aggregate

Functions), a declarative framework that allows users to write

UDAFs as mathematical expressions and use them in SQL state-

ments. SUDAF rewrites partial aggregates of UDAFs in users’

queries using built-in aggregate functions and supports efficient

dynamic caching and reusing of partial aggregates. Our experi-

ments show that rewriting UDAFs using built-in functions can

significantly speed up queries with UDAFs, and the proposed

sharing approach can yield up to two orders of magnitude im-

provement in query execution time.

1 INTRODUCTION
An aggregate function has the inherent property of taking several

values as input and generating a single value based on specific

criteria [17, 25]. This ability to summarize information, the in-

trinsic feature of aggregation, has always been a fundamental

task in data analysis [18, 24]. While earlier data management and

analysis systems come equipped with a set of built-in aggregate

functions, e.g., max, min, sum and count, it becomes clear that a

limited set of predefined functions is not sufficient to cover the

needs of the new applications in the age of analytics. In addition

to augmenting the set of their built-in functions, most modern

systems (e.g., [1, 2, 4, 21, 28, 29]) enable users to extend the system

functionalities by defining their own aggregations. The UDAF

(User-Defined Aggregate Function) mechanism provides a flex-

ible interface to allow users to define new aggregate functions

that can then be used for advanced data analytics, i.e., queries

with statistical functions or ML workloads.

Current UDAF mechanisms suffer, however, from at least two

drawbacks. Firstly, defining a UDAF is not an easy task since

it is up to users to implement the routine that computes their

aggregation functions. For example, to write a custom UDAF in

Spark SQL [4], a user needs to map the UDAF to four methods:

initialize, update, merge and evaluate, a.k.a. the IUME pattern.

The user must ensure that the merge method is commutative

and associative such that the UDAF can be computed correctly

in a distributed architecture. In other words, to take benefit from

distributed computations in Spark SQL, it is up to the user to

identify whether her function supports partial aggregates (i.e.,

whether it is an algebraic function [18]). Secondly, the semantics

of a UDAF, i.e., computation details, are not fully captured by

a query engine, which hampers optimization possibilities. For

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

example, when computing a UDAF that is created using the IUME

pattern, a query engine can only be aware of calling an update

function if there is a tuple or calling a merge function if there are

intermediate results. However, the specific computations that are

required to compute update and merge functions are unknown

to a query engine since these two functions are hardcoded. The

loss of such computation details prevents a query engine from

sharing partial results of different UDAFs.

In the context of aggregate queries optimization, material-

ized views with aggregates or cached queries are among the

techniques that can be used to accelerate query processing. In

this context, most existing works focus on the data dimension

[8, 11, 12, 15], i.e., sharing identical aggregates computed over

overlapping range predicates or different data granularities. Ad-

mittedly, considering only the data dimension restricts the shar-

ing possibilities to queries with identical aggregation operators.

To cope with such a limitation, few works propose to use prede-

fined rules to specify how a given aggregate can be computed

from the results of another one [10, 33]. However, such a static

approach requires one to explicitly predefine the computation

rules across prefixed aggregates, which hinders the optimization

for UDAFs defined on the fly.

The objective of this work is twofold: firstly, we aim at giving

full flexibility to users by providing a declarative framework

that allows them to write UDAFs as mathematical expressions

and use them in SQL queries
1
. Then, a UDAF is decomposed

into partial aggregates, which are then rewritten using built-in

functions, i.e., scalar functions and aggregations. Secondly, our

goal is to develop a dynamic approach for caching and reusing

partial aggregates of UDAFs to optimize the computations of

UDAFs. More precisely, we aim at identifying when it is possible

to reuse cached partial aggregates of past UDAFs to compute

new UDAFs.

Contributions. Our main contributions, implemented in the

SUDAF framework, are as follows:

• We present SUDAF, a declarative UDAF framework that al-

lows users to formulate a UDAF as a mathematical expres-

sion and use them within SQL queries. When executing a

given query with UDAFs, SUDAF identifies appropriate

partial aggregations from the mathematical expression of

a UDAF and rewrites them using built-in functions of an

underlying data management and analysis system.

• We formalize the problem of identifying when a partial

aggregate of a given UDAF can be used in the computation

of another UDAF as the sharing problem, and we show that

this problem is undecidable in a general setting.

• To deal with the undecidability of the sharing problem, we

restrict the set of UDAFs supported in SUDAF by provid-

ing classes of primitive functions that can be used to de-

scribe mathematical expressions of UDAFs. This practical

framework is powerful enough to be used in practical ap-

plications. From a theoretical standpoint, we characterize

1
This approach is more intuitive than programming the procedure of an aggregation,

e.g., Wolfram Mathematica provides mathematical expressions to define advanced

statistical computation [34].

Series ISSN: 2367-2005 241 10.5441/002/edbt.2020.22

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.22

UDAF

cov
/va

r
SU

DAF
0

50

100

150

200

Ex
ec

ut
io

n
tim

e
(s

)

(a) Q1

UDAF
SU

DAF
0

50

100

150

Ex
ec

ut
io

n
tim

e
(s

)

(b) Q2 (after Q1)

0.892 s

Q3
RQ3'

0

5

10

15

20

Ex
ec

ut
io

n
tim

e
(s

)

(c) Q3 and RQ3'

31.7 ms

Figure 1: Experiments in PostgreSQL with the TPC-DS
dataset (scale = 20). UDAFs theta1() and qm() are created
in PL/pgSQL.

the sharing problem in SUDAF and provide correspond-

ing sharing conditions (Theorem 4.1). From a practical

standpoint, we design an approach based on symbolic

representations of mathematical expressions to efficiently

verify the proposed conditions.

• We implemented a SUDAF prototype and report on ex-

periments using SUDAF with both PostgreSQL and Spark

SQL. Our experiments show that rewriting partial aggre-

gates of UDAFs using built-in aggregates can significantly

speed up query execution. In addition, the proposed shar-

ing technique can yield up to two orders of magnitude

improvement in query execution time.

The rest of this paper is organized as follows. We present a

motivating example to illustrate SUDAF’s main features in Sec-

tion 2. In Section 3, we introduce a canonical form of UDAFs

and discuss the sharing problem in this context. In Section 4,

we present the SUDAF framework and show that the sharing

problem is decidable in this context. In Section 5, we introduce a

practical approach, based on symbolic representations of partial

aggregates, to solve the sharing problem in the SUDAF frame-

work. In Section 6, we present an experimental evaluation of

SUDAF. We discuss related works in Section 7 and conclude in

Section 8. All related proofs are included in our online technical

report [31].

2 MOTIVATING EXAMPLE
In this section, we present a motivating example demonstrating

two SUDAF’s functionalities: (i) rewriting UDAFs using built-in
functions, and (ii) sharing partial aggregation results between

different UDAFs. In addition, we also illustrate how the sharing

mechanism can be used to extend query rewriting using aggre-

gate views. In the following example, we consider 4 relations of

the TPC-DS [27] dataset, store_sales, store, date_dim and stores.
Suppose that a user wants to analyze the price of every item

sold by the stores in the state Tennessee (TN) in the past ev-

ery year. Specifically, the user has a hypothesis of a simple
linear regression: y = θ1x + θ0, where y represents a value

in the sales_price column and x a value in the list_price col-

umn. Using the least square error function, we have θ1 (X ,Y) =
n
∑
xiyi−

∑
xi
∑
yi

n
∑
x 2

i −(
∑
xi)2

, and θ0 (X ,Y) = avд(Y) − θ1avд(X).

One can hardcode θ1 as a user-defined function and then uses

it in an SQL statement, e.g., one writes a piece of Java or Scala

code to create θ1 in Spark SQL (see Scala code in [31]). Assume

that a hardcoded user-defined function theta1(), that implements

the function θ1 (), is created and the following query Q1 is issued:
Q1: SELECT ss_item_sk, d_year, avg(ss_list_price),

avg(ss_sales_price),
theta1(ss_list_price,ss_sales_price)

FROM store_sales, store, date_dim
WHERE ss_sold_date_sk = d_date_sk and

UDAF

cov
/va

r
SU

DAF
0

1

2

3

4

Ex
ec

ut
io

n
tim

e
(s

)

(a) Q1

UDAF
SU

DAF
0

1

2

3

Ex
ec

ut
io

n
tim

e
(s

)

(b) Q2 (after Q1)

0.059 s

Q3
RQ3'

0

1

2

Ex
ec

ut
io

n
tim

e
(s

)

(c) Q3 and RQ3'

Figure 2: Experiments in Spark SQL with the TPC-DS
dataset (scale = 100). UDAFs theta1() and qm() are created
using UserDefinedAggregateFunction in Scala.

ss_store_sk = s_store_sk and s_state = 'TN'
GROUP BY ss_item_sk, d_year;

Alternatively, in SUDAF the function theta1() is defined declar-
atively by providing its mathematical expression without the

needs of any programming effort.

Now, assume that a user defines the expressions of theta1()
and avg() and uses them in the query Q1. We illustrate in the rest

of this section two benefits of using SUDAF to execute the query

Q1: (i) the partial aggregates of theta1() and avg() used in the

query Q1 are rewritten into a set of partial aggregates using the

built-in functions sum and count , and (ii) the partial aggregates
computed during the execution of Q1 can be cached and reused

to compute various other UDAFs.

Rewriting partial aggregates using built-in functions. The
first step of processingQ1 in SUDAF is to factor out partial aggre-
gates of theta1() and avg() and rewrite them using built-in func-

tions to compute. More precisely, SUDAF identifies the following
5 partial aggregates in the expression of θ1: s1 = count (), s2 =∑
xi , s3 =

∑
x2

i , s4 =
∑
yi and s5 =

∑
xiyi . Hence, SUDAF

rewrites Q1 to the following query RQ1 where the partial aggre-
gates are first computed and then theta1() is computed using the

partial aggregates, θ1 =
s1s5−s4s2

s1s3−(s2)2
.

RQ1: SELECT ss_item_sk, d_year, s2/s1 avg_list_price,
s4/s1 avg_sales_price,
(s1*s5-s4*s2)/NULLIF((s1*s3-power(s2,2)),0) theta1

FROM (SELECT ss_item_sk, d_year, count(*) s1,
sum(ss_list_price) s2,
sum(power(ss_list_price,2)) s3,
sum(ss_sales_price) s4,
sum(ss_sales_price*ss_list_price) s5

FROM store_sales, store, date_dim
WHERE ss_sold_date_sk = d_date_sk and

ss_store_sk = s_store_sk and
s_state = 'TN'

GROUP BY ss_item_sk, d_year) TEMP;

Compared to the original query Q1, RQ1 uses only built-in

aggregate functions and hence it is expected to be much more

efficient because built-in functions are better handled by existing

query optimizers and execution engines than hardcoded user-

defined functions. Figure 1 (a) shows that the execution of Q1
using SUDAF on top of PostgreSQL can be 10X faster compared

to running Q1 directly over PostgreSQL. Similar results can be

observed in Figure 2 (a) using SUDAF on top of Spark SQL, where

Q1 is 1.25X faster compared to the direct execution of Q1 over
Spark SQL. To be fair in our analysis, we should mention that

in the context of PostgreSQL and Spark SQL systems, where the

covariance (cov) and the variance (var) are built-in functions,

an alternative and efficient implementation of theta1() can be

obtained using the formula theta1() = cov/var. We also report

the query time of using cov/var in Q1, respectively in Figure 1

(a) and Figure 2 (a), which is at the same order of magnitude as

SUDAF execution time. However, even in this case, the benefit

242

of using SUDAF comes from the fact that the performance of

SUDAF is independent of the user’s programming skill and, as

shown in the next example, the partial aggregates computed by

SUDAF using sum and count aggregates open wider sharing

possibilities than the variance and covariance functions.

Note that SUDAF decomposes a UDAF into two parts, a set

of partial aggregates and a terminating function T , then only

the partial aggregates of a UDAF are rewritten using built-in

functions. This is because a terminating function T is essentially

a scalar function applied only on several partial aggregates, and

hence it does not impact the computation time of a UDAF. More-

over, there are some UDAFs where it is not possible to write their

corresponding terminating functions using built-in functions,

e.g., the MomentSolver [16] used to approximate a quantile.

Sharing partial aggregates across UDAFs. Caching the result
of Q1, which contains the aggregate values of theta1(), is of
little interest from the sharing perspective. However, the partial

aggregates s1, . . . , s5 computed by the query RQ1 offer more pos-

sibilities to be reused in future UDAF computations. We illustrate

the sharing idea by the following example. Consider a new query

Q2 that computes quadratic mean qm() and standard deviation

stddev() of list prices of every item sold by stores in TN for every

year:

Q2: SELECT ss_item_sk, d_year, qm(ss_list_price),
stddev(ss_list_price)

FROM store_sales, store, date_dim
WHERE ss_sold_date_sk = d_date_sk and

ss_store_sk = s_store_sk and s_state = 'TN'
GROUP BY ss_item_sk, d_year;

Using SUDAF, qm() (an instance of power mean with p = 2

shown in Table 1) and stddev() are defined using themathematical

expressions given in Table 1. When executing Q2, SUDAF factors
out their partial aggregations and generates the following query

RQ2 which uses the same partial aggregates s1, s2 and s3 as the

query RQ1.
RQ2: SELECT ss_item_sk, d_year, sqrt(s3/s1) qm_list_price,

sqrt(s3/s1-power(s2/s1,2)) std_list_price
FROM (SELECT ss_item_sk, d_year, count(*) s1,

sum(ss_list_price) s2,
sum(power(ss_list_price,2)) s3

FROM store_sales, store, date_dim
WHERE ss_sold_date_sk = d_date_sk and

ss_store_sk = s_store_sk and
s_state = 'TN'

GROUP BY ss_item_sk, d_year) TEMP2;

SUDAF can cache the partial aggregates in the query RQ1 and
identify the opportunity to reuse them for computing aggregates

in the query RQ2 automatically. This makes the execution of Q2
in SUDAF significantly faster than executing the query Q2 from
base data. We report the query time of Q2 when it is executed by

SUDAF on top of PostgreSQL in Figure 1 (b) and on top of Spark

SQL in Figure 2 (b). In both figures, the execution time of SUDAF
is compared to the execution time of the query Q2 computed

respectively over PostgreSQL and Spark SQL. We would like to

stress the fact that the result of the UDAF theta1() computed by

the query RQ1 cannot be reused to compute the UDAF qm() and
stddev() of the query RQ2. However, identifying the appropriate

partial aggregates of RQ1 andRQ2 enables to increase the sharing
opportunities between these two queries.

Note that we only consider in our example the computation

dimension, i.e., computing a UDAF from other UDAFs. Full imple-

mentation of our approach requires handling the data dimension,

i.e., whether a query is semantically contained in the cached

query, which is not addressed in this paper. We point out existing

techniques [15, 33] based on data partitioning that can be used in

our context to handle the data dimension issue. The main idea of

such techniques is to partition the data into predefined chunks

and then to map a given query to chunks. Extending SUDAF
with such techniques enables us to share partial aggregates over

predefined data chunks.

We would like to stress the following three features of the

SUDAF sharing mechanism:

• Firstly, it increases performance significantly compared

to SUDAF without sharing. In this example, using SUDAF
without sharing over PostgreSQL to compute Q2 will take

33.61 s, which is far slower compared to 0.892 s shown in

Figure 1 (b). Similarly, in the case of using SUDAF over

SparkSQL, SUDAFwithout sharing will take 2.953 s, which
is also significantly slower compared to 0.059 s shown in

Figure 2 (b).

• Moreover, the sharing opportunity is dynamically iden-

tified in SUDAF by analyzing the expressions of partial

aggregates in UDAFs. Note that, using a static approach,

one has to predefine computation rules for specific aggre-

gations, e.g., defining stddev → s1, s2, s3 to share results

between RQ1 and RQ2, which is not required in SUDAF.
• Finally, the sharing mechanism of SUDAF covers also the

case where partial aggregates are not identical (we present

sharing conditions in Section 4.2). For example, SUDAF
enables sharing computations between geometric mean

and the aggregate

∑
ln(xi), an element of the moment

sketch [16]. This is because the partial aggregate

∏
xi

of geometric mean (see Table 1) can be computed from∑
ln(xi), i.e.,

∏
xi = exp (

∑
ln(xi)),∀xi > 0 (see detailed

experiments in Section 6).

Extending query rewriting using aggregate views.We show

that factoring out partial aggregations of UDAFs can improve

traditional query rewriting using aggregate views. Assuming a

user is interested in computing qm() and stddev() of the list prices
of all items in the category of sports sold by stores in TN for every

year since 2000. This is expressed by the following query Q3.
Q3: SELECT d_year, qm(ss_list_price), stddev(ss_list_price)

FROM store_sales, store, date_dim, item
WHERE ss_sold_date_sk = d_date_sk and ss_item_sk =

i_item_sk and ss_store_sk = s_store_sk and
i_category = 'Sports' and s_state = 'TN'
and d_year >= 2000

GROUP BY d_year;

Now, assume that a materialized view VQ1 corresponding

to the query Q1 is given. One can realize that the view VQ1 is
useless for rewriting Q3 since it is not possible to compute qm()
and stddev() from theta1() and avg().

However, if a materialized view V1 corresponding to the sub-

query of RQ1 is given and if we factor out partial aggregations

of qm() and stddev() in Q3 to generate the following query RQ3:
RQ3: SELECT d_year, sqrt(s3/s1) qm_list_price,

sqrt(s3/s1-pow(s2/s1,2)) std_list_price
FROM (SELECT d_year, count(*) s1,

sum(ss_list_price) s2,
sum(power(ss_list_price,2)) s3

FROM store_sales, store, date_dim, item
WHERE ss_sold_date_sk = d_date_sk and

ss_item_sk = i_item_sk and
ss_store_sk = s_store_sk and
i_category = 'Sports'
and s_state = 'TN'and d_year >= 2000

GROUP BY d_year) TEMP3;

Then it is possible to use the rewriting algorithm proposed in [13]

to rewrite the subquery of RQ3 using V1. The obtained rewriting,
denoted by RQ3’, is shown below.

243

Table 1: Examples of aggregations in canonical forms.

Aggregation Expression Canonical form
(
F, ⊕,T

)
Power mean (

∑
(xi)

p

n
)1/p

(
(1,x

p
i), (+,+), (

s2

s1

)1/p
)

Geometric

mean
(
∏

xi)
1/n

(
(xi , 1), (×,+), (s1)

1/s2

)

Stddev

√∑
x2

i
n
− (

∑
xi
n

)2
(
(1,xi ,x

2

i), (+,+,+),

√
s3

s1

− (
s2

s1

)2
)

Central

moment

∑
(xi − avд)

k

n

(
((xi − avд)

k , 1), (+,+), s1/s2

)
LogSumExp ln(

∑
exp (xi))

(
(exp (xi)), (+), ln(s1)

)

Aggregation Expression Canonical form
(
F, ⊕,T

)
Skewness

(
∑
(xi − avд)

3)/n

((
∑
(xi − avд)2)/n)3/2

(
((xi − avд)

3, (xi − avд)
2, 1),

(+,+,+),
(s1/s3)

(s2/s3)3/2

)
Covariance

∑
(xiyi)

n
−

∑
xi
∑
yi

n2

(
(xi ,yi ,xiyi , 1), (+,+,+,+),

s3

s4

−
s1s2

s4

)

Correlation
n
∑
(xiyi) −

∑
xi
∑
yi√

n
∑
x2

i − (
∑
xi)2
√
n
∑
y2

i − (
∑
yi)2

(
(xi ,x

2

i ,yi ,y
2

i ,xi × yi , 1),

(+,+,+,+,+,+),
s6s5 − s1s3√

s6s2 − (s1)2
√
s6s4 − (s4)2

)

RQ3': SELECT d_year, sqrt(s3/s1) qm_list_price,
sqrt(s3/s1-pow(s2/s1,2)) std_list_price

FROM (SELECT d_year, sum(s1) s1, sum(s2) s2,
sum(s3) s3

FROM V1, item
WHERE ss_item_sk = i_item_sk and

d_year >= 2000 and
i_category = 'Sports'

GROUP BY d_year) TEMP3;

The key reason that enables such a rewriting comes from the

fact that the UDAFs have been rewritten using built-in aggre-

gates: sum() and count() (we recall that the rewriting algorithm
proposed in [13] supports only the sum and count aggregates).
We report the execution time of Q3 and RQ3’ in PostgreSQL in

Figure 1 (c) and Spark SQL in Figure 2 (c).

To conclude this section, we would like to emphasis the fact

that the main features of SUDAF, factoring out the partial aggre-

gations of UDAFs, computing partial aggregations using built-in

functions and sharing partial aggregates, provide abundant op-

portunities to speed up queries with UDAFs. In the rest of this

paper, we address the following challenges:

• how to identify appropriate partial aggregations of UDAFs
to maximize sharing opportunities?
• how to efficiently determine when cached results of par-
tial aggregations of UDAFs can be reused to compute other
UDAFs? (hereafter, called the sharing problem)

3 IDENTIFYING AND SHARING PARTIAL
AGGREGATES

We aim at speeding up queries with UDAFs by reusing cached

answers to previous queries with UDAFs during the evaluation of

new ones. We deal with the following two issues in this section.

What computation results should be cached to optimize the eval-
uation of UDAFs? We identify a canonical form of UDAFs [10],

which captures the computation pipelines of UDAFs. We analyze

the caching possibilities based on the computation pipelines and

identify the appropriate level of aggregation to be kept in caches.

How can we identify if a cached answer can be reused in the
evaluation of a given UDAF? We formalize the problem of identi-

fying a reusable answer as the sharing problem. Then we show

that it is an undecidable problem for arbitrary cases. In Section

4, we present a restricted, yet powerful enough, framework to

handle the sharing problem for practical cases.

3.1 Canonical forms of UDAFs
An aggregate function takes as inputs several values and pro-

duces as output a single representative value [17]. In our work, we

consider aggregations operating on multisets. Let Ds and Dt be

two domains i.e., countably infinite sets of values, and letM (Ds)

denote the set of all nonempty multisets of elements from Ds .

An aggregate function α is a function:M (Ds) → Dt .

We use the notion of well-formed aggregation to define a

canonical form of aggregate functions. Well-formed aggregation

was introduced in [10] to capture the manner in which a UDAF

is created. An aggregation α : M (Ds) → Dt is a well-formed
aggregation if α can be expressed as a triple (F , ⊕,T), where F
is a translating function, ⊕ is a commutative and associative

binary operation andT is a terminating function, such that ∀X =
{{x1, ...,xn }} ∈ M (Ds),α (X) = T (F (x1) ⊕ . . . ⊕ F (xn)), or briefly
α (X) = T (

∑
⊕ F (xi)).

In this paper, we consider the well-formed aggregation as the

canonical form of UDAFs. We list some examples of aggregations

with their canonical forms in Table 1 (an input of a terminating

functionT is denoted as si). It is interesting to note that practical
aggregations usually have addition and multiplication as an ele-

ment of ⊕ function in their canonical forms, e.g., the ⊕ function

of geometric mean is (×,+).
Given an aggregation, α = (F , ⊕,T), the associative and com-

mutative property of ⊕ ensures that α (X) can be computed by

first applying F and ⊕ on arbitrary subsets of X and then the

intermediate results can be merged using ⊕ and T to produce

the final result α (X). Hence, we call the intermediate results∑
⊕ F (xi) the partial aggregations of α .

3.2 Caching aggregate data
To obtain more sharing possibilities, we identify which results

of an aggregation are worth caching based on its canonical

form. Consider two aggregations α = (Fα , ⊕α ,Tα) and β =
(Fβ , ⊕β ,Tβ). Suppose a scenario where an implementation of α
based on its canonical form is executed first. When the UDAF β
is evaluated, there are three possibilities to reuse partial or whole

computation results of α : (1) the result of Fα , (2) the result of∑
⊕α Fα , or (3) the final result of α . It is clear that caching the 1st

result does not provide any added value to the computation of

β since Fα is a scalar function. Storing the 3rd result is of little

interest as it offers very restricted possibilities
2
to be reused in

the computation of other UDAFs, e.g., β . However, the partial
aggregation

∑
⊕α Fα offers much more potentials to reuse than

the others. For example, if α is a stddev and β is a power mean
(p = 2) shown in Table 1, it is not possible to reuse the final result
of α to compute β . However, using their canonical forms, one can

observe that the fragments, s1 and s3, in the partial aggregation

of α can be used to compute β . Therefore, we choose to cache

the partial aggregation

∑
⊕α Fα (xi).

2
Theoretically, Tα should not be expected to have an inverse function [10], such

that we cannot always have the 2nd result if we cache the 3rd one. However, we

can indeed have the 3rd result if we cache the 2nd result.

244

Table 2: Classes of primitive functions provided in
SUDAF.

Class Functions
PS a; x ; ax ; xa ; loдax ; a

x
.

PB +; −; ×; /; ∧.

PA
∑
;

∏
.

PS◦ д(x) = hl ◦ ... ◦ h1 (x), with hj ∈ PS, for j ∈
[1, ..., l].

PS⊙ f (x) = дk (x) ⊙k−1
... ⊙1 д1 (x), with дj ∈

PS◦, ⊙z ∈ PB, for j ∈ (1, ...,k), z ∈ (1, ...,k −
1),k ∈ N>0.

PA◦ aдд(X) = f ′ ◦
∑
⊕ ◦f (xi), with f , f ′ ∈

PS⊙,
∑
⊕ ∈ PA.

PA⊙ baдд(X) = T ′(aддk (X) ⊙k−1
... ⊙1 aдд1 (X)),

with aддj ∈ PA◦,⊙z ∈ PB for j ∈ (1, ...,k),z ∈
(1, ...,k − 1),k ∈ N>1 and T ′ ∈ PS⊙ .

Table 3: Cases analysis of the sharing problem in SUDAF.

Case f1 in s1 f2 in s2 Whether s1 ∈ D (s2)

1 Injective Non-injective N (case 1 of Theorem 4.1)

2 - Injective Case 2 of Theorem 4.1

3 Even Even Case 2 of Theorem 4.1

4 Neither injective

nor even

Neither injective

nor even

Splitting rules (SR)

: neither injective
nor even

: injective

: even

𝑷𝑺∘

𝑷𝑺⨀

Figure 3: Injective and even functions in PS◦ and PS⊙ (excluding
constant functions).

3.3 Sharing aggregation states
Let α = (F , ⊕,T) be an aggregation and

∑
⊕ F (xi) be the partial

aggregation of α . We decompose the partial aggregation as fol-

lows,

∑
⊕ F (xi) =

(∑
⊕1

f1 (xi), ...,
∑
⊕m fm (xi)

)
, where the fi s

are scalar functions and the ⊕i s are commutative and associa-

tive binary operations, e.g., the partial aggregation of geometric

mean is (
∏

xi , count). In the sequel, we call an individual ele-

ment sj (X) =
∑
⊕j fj (xi) as an aggregation state, e.g., both

∏
xi

and count are aggregation states of geometric mean.

We rely on aggregation states to define when a partial result

of a UDAF α can be reused in the computation of another UDAF

β . More precisely, we define below when an aggregation state s
of α can be shared by an aggregation state s ′ of β .

Definition 3.1. Let s ′(X) and s (X) be two aggregation states

of two UDAFs. Then, s ′ shares s iff there exists a computable

function r such that s ′(X) = r ◦ s (X),∀X ∈ M (D).

The function r is a scalar function that enables computing the

aggregation state s ′ without scanning the base dataset X , e.g., r
is the identity function if s ′(X) = s (X). If an aggregation state s
is cached, the sharing problem is then to decide whether s can
be reused in the computation of another aggregation state s ′.

We denote the problem whether s ′ shares s as share(s ′, s).
As stated by the following theorem, it is not possible to solve

share(s ′, s) in a general setting. The proof for Theorem 3.2 is

included in our online technical report [31].

Theorem 3.2. The problem share(s ′, s) is undecidable.

4 THE SUDAF PRACTICAL FRAMEWORK
In this section, we present a declarative UDAF framework SUDAF,
which rests on the canonical form of UDAFs to generate and share

partial aggregation states of UDAFs automatically. The following

main objective guided the design of SUDAF.
How to deal with the undecidability of the sharing problem? We

adopt a pragmatic approach to solve this problem by restricting

the class of UDAFs that can be used in SUDAF. The proposed
practical framework is powerful enough to be useful in many real-

world applications while making the sharing problem decidable.

We argue that it is not realistic to ask a user to provide UDAFs

in their canonical forms. Therefore, SUDAF enables users to for-

mulate UDAFs as mathematical expressions and then generates

a corresponding canonical form. Consequently, in a generated

canonical form, SUDAF knows the semantics of partial aggrega-

tions, i.e., computation details, which can be exploited to analyze

sharing possibilities during computing UDAFs.

4.1 Declarative UDAF framework
SUDAF provides a set of predefined functions that can be used

by users to write UDAFs. Three classes of primitive functions are

proposed (cf. Table 2):

• Primitive scalar functions. This class, denoted PS (primitive

scalar), contains six types of functions: constant, identity,
linear, power, logarithmic and exponential functions. The
elements of PS are presented in line 1 of Table 2, where a
is an arbitrary constant defined by users.

• Primitive binary functions. This class, denoted PB (primi-

tive binary), contains the following binary functions: ad-
dition +, subtraction −, multiplication ×, division / and
exponentiation ∧.
• Primitive aggregate functions. This class, denoted PA (prim-

itive aggregate functions), contains two functions: sum-
mation

∑
and product

∏
.

As explained below, primitive functions can be combined using

the composition operator and binary functions to create more

complex scalar and aggregate functions.

Complex scalar functions. SUDAF provides a composition op-
erator, denoted ◦, that enables creating complex scalar functions

from the primitive ones. The class of such functions is denoted

PS◦. A function д(x) ∈ PS◦ can be expressed as a composition

of primitive scalar functions (cf. Table 2). The length of д(x),
denoted |д |, gives the number of primitive functions used in the

definition of д(x). For example, if д(x) = hl ◦ ... ◦ h1 (x), with
hj ∈ PS , then |д | = l . Besides, more complex scalar functions

can be expressed by using binary functions to combine scalar

functions from PS◦. The set of such functions, i.e., scalar func-

tions containing binary operations, is denoted PS⊙ . The shape
of functions in PS⊙ is shown in Table 2.

Supported aggregations. SUDAF also allows using the compo-

sition operator ◦ between scalar functions and primitive aggre-

gate functions to define new aggregations. More precisely, in this

context, the composition can be used in two ways: (i) to apply a

scalar function on an output of a primitive aggregate function, or

(ii) to apply a primitive aggregation on a set of data transformed

using a scalar function. The class of such functions is denoted

245

as PA◦. The expression of aggregation aдд ∈ PA◦ is presented in

Table 2. Moreover, more complex aggregations can be expressed

using primitive binary functions to combine several aggregations

in PA◦. The class of such functions is denoted as PA⊙, and a

UDAF baдд ∈ PA⊙ has the expression shown in Table 2.

Scope of UDAFs in SUDAF. SUDAF restricts the set of UDAFs

that can be declared to the classes presented in Table 2. We shall

show in the next section that this restriction enables us to cope

with the undecidability of sharing problems. However, this re-

striction does not hamper the usability of SUDAF in real world

applications since the proposed framework covers a wide range

of aggregations such as the classes of power mean, arbitrary
central moments [7], arbitrary standardized moments [32] and
other multi-variate aggregations

3
such as covariance, correlation,

and cofactor aggregates [30] used in training linear regression.

Generally, algebraic aggregations can be defined in SUDAF. Al-
though holistic aggregations, e.g., median, cannot be expressed
in SUDAF, aggregates used in their approximation algorithms

are supported by SUDAF, e.g., moment sketch [16],

Mapping SUDAF functions into canonical forms. SUDAF
supports two scenarios to define UDAFs. We explain below how

to derive canonical forms and aggregation states from UDAFs

defined in each scenario.

The first scenario is that a terminating function is described

using an element from PS⊙ . Such functions are expressed using

a functionT ′ ∈ PS⊙ applied on compositions, using binary oper-

ations in PB, of aggregations from PA◦ and have the following

general form:

α (X) = T ′(
(
f ′k ◦
∑
⊕k

◦fk (xi)
)
⊙k−1

... ⊙1

(
f ′
1
◦
∑
⊕1

◦f1 (xi)
)
).

The fj , f
′
j , for j ∈ [1, ...,k], are scalar functions from PS⊙ and∑

⊕j are primitive aggregations from PA. Given such a function

α (X) ∈ PA⊙ , a canonical form canonical(α) = (F , ⊕,T) is de-
rived from the general expression of α as follows:

• F = (f1, . . . , fk);
• ⊕ = (⊕1, . . . , ⊕k) and

• T = T ′
(
(f ′

1
◦
∑
⊕1
◦f1) ⊙1 . . . ⊙k−1

(f ′k ◦
∑
⊕k ◦fk)

)
.

The aggregation states of α are shown as follows: sj (X) =∑
⊕j fj (xi), for j ∈ [1, . . . ,k]. For instance, aggregations in Table

1 can be defined in SUDAF using their expressions in the second

column. SUDAF generates their canonical forms and aggregation

states from their expressions (the si elements in Table 1).

The second scenario is that a terminating function is cre-

ated by hardcoding. Such functions have the following shapes,

α (X) = T (s1, ..., sk), where sj , j ∈ (1, ...,k) is an aggregation

state. For example, if one wants to use the MomentSolver [16]

taking the MomentSketch as inputs to approximate a quantile,

the MomentSketch can be defined as a set of aggregation states

from PS◦ and the MomentSolver as a terminating function.

4.2 Dealing with the sharing problem in
SUDAF

In this section, we present sharing conditions to deal with

the sharing problem in SUDAF. Let s1 (X) =
∑
⊕1

f1 (xi) and
s2 (X) =

∑
⊕2

f2 (xi) be two aggregation states of two UDAFs in

the scope of SUDAF. Then both f1 and f2 belong to PS⊙ . We

3
Multi-variate aggregations can be seen as a combination of several uni-variate

aggregations, each of which is expressed using functions in Table 2. Moreover,

the cofactor aggregate

∑
xiyi computed over columns X and Y can be seen as a

uni-variate aggregate over an abstract column Z = X ·Y with the scalar product ·.

carry out a case analysis to identify the conditions that character-

ize situations where s1 shares s2. Our case analysis is based on the

properties of the scalar functions f1 and f2 used by the aggrega-

tion states s1 and s2. In fact, all scalar functions in PS
◦
, except con-

stant functions, are either injective, or even (i.e., f (x) = f (−x))),
while scalar functions in (PS⊙ \ PS◦) are not injective because
of the presence of the arithmetic binary functions ⊙ (cf. Figure

3). Therefore, we split the sharing problem share(s1, s2) into four

main cases depending on whether f1 and f2 are injections or

even functions. The studied cases are presented in Table 3. Our

main results provide a full characterization for the first three

cases in Table 3. Specifically, we provide complete conditions in

Theorem 4.1 for the first two cases in Table 3, and then we reduce

the third case to the second case in Table 3. We also propose an

incomplete solution to deal with the fourth case in Table 3.

Theorem 4.1. Let X ∈ M (Q) and let s1 (X) =
∑
⊕1

f1 (xi) and
s2 (X) =

∑
⊕2

f2 (xi) be two aggregation states with
∑
⊕1
∈ PA and∑

⊕2
∈ PA, f1 a non constant function and s1 , s2. Then, we have:

(Case 1) if f1 is injective and f2 is not injective, then s1 does not share
s2.

(Case 2) if f2 is injective, then: there exists a computable function
r12 such that s1 (X) = r12 ◦ s2 (X) iff one of the following
conditions holds:

(2.1)

∑
⊕1
=
∑
⊕2
=
∑

and f1 ◦ f
−1

2
(x) = ax with a ∈ Q,0 a

constant. Then we have r12 (x) = f1 ◦ f
−1

2
(x).

(2.2)

∑
⊕1
=
∑
,
∑
⊕2
=
∏

and f1 ◦ f
−1

2
(x) = a(loдb |x |) with

b ∈ Q>0,,1 and a ∈ Q,0 two constants. Then we have
r12 (x) = f1 ◦ f

−1

2
(x).

(2.3)

∑
⊕1
=
∏
,
∑
⊕2
=
∑

and f1 ◦ f −1

2
(x) = bax with

b ∈ Q>0,,1 and a ∈ Q,0 two constants. Then we have
r12 (x) = f1 ◦ f

−1

2
(x).

(2.4)

∑
⊕1
=
∑
⊕2
=
∏

and with a constant a ∈ Q,0:
(i) when f1 ◦ f

−1

2
(−1) = 1, f1 ◦ f −1

2
(x) = |x |a ;

(ii) when f1 ◦ f
−1

2
(1) = −1, f1 ◦ f −1

2
(x) = sдn(x) × |x |a ;

Then we have r (x) = f1 ◦ f
−1

2
(x).

The proof for Theorem 4.1 is included in a technical report [31].

The case 1 of Theorem 4.1 states that, given two aggregation

states s1 (X) =
∑
⊕1

f1 (xi) and s2 (X) =
∑
⊕2

f2 (xi) in the scope

of SUDAF, when f1 is injective and f2 is non-injective, then

except the special case of an identity function when s1 = s2,

it is not possible to find a computable function r12 such that

s1 (X) = r12◦s2 (X). The case 2 of Theorem 4.1 provides necessary

and sufficient conditions to characterize solutions for the problem

share(s1, s2) when f2 is injective. It carries out a case analysis for

the four possible combinations obtained from the instantiation

of

∑
⊕1

and

∑
⊕2

as operations in PA, i.e., either sum or product.

Example 4.2. We explain how Theorem 4.1 can be used as

follows. Consider the problem whether s1 (X) =
∑

4xi shares
s2 (X) =

∏
2
xi
. Since

∑
⊕1
=
∑

and

∑
⊕2
=
∏
, then the case 2.2

of Theorem 4.1 is selected. Then, we have f1 ◦ f
−1

2
(x) = 4loд2 (x),

which satisfies the shape a(loдb (x)) with constants a = 4 and

b = 2. Thus, we have s1 (X) = r ◦ s2 (X) with r (x) = 4loд2 (x).

The case of even scalar functions. The third case to deal with
is when both f1 (x) and f2 (x) are not injections but even functions
(case 3 of Table 3). As depicted in Figure 3, non-injective scalar

functions of PS◦ are even functions. We exploit this property to

reduce the study to a sharing problem over a positive domain

of scalar functions and show that the case 2 of Theorem 4.1 can

be applied in this setting. We denote UX = {ux = |x | |x ∈ X }.

246

Then, whatever x is, we haveux ⩾ 0. Let s1 (X) =
∑
⊕1

f1 (xi) and
s2 (X) =

∑
⊕2

f2 (xi) be two aggregation states in SUDAF such

that { f1, f2} ⊂ PS◦. Observe that s1 (X) shares s2 (X) iff s1 (UX)
shares s2 (UX). This is because f1 (x) = f1 (ux) (since f1 is even),

and similarly for f2. Consequently, one can focus on solving

the sharing problem only over positive domains of f1 and f2. In
this setting (positive domain), all primitive scalar functions of

SUDAF (non-constant elements in PS) are injections and hence

the complex scalar functions, elements of PS◦, are also injective

functions. Therefore, the case 2 of Theorem 4.1 can be exploited

to solve the sharing problem in this context.

The case of neither even nor injective scalar functions. The
last case to deal with is when both f1 (x) and f2 (x) are nei-

ther injections nor even functions (case 4 of Table 3). As de-

picted in Figure 3, such scalar functions are from (PS⊙ \ PS◦).
We propose splitting rules to deal with such cases. W.l.o.g, let

s (X) =
∑
⊕ (д1 (xi) ⊙ д2 (xi)),

∑
⊕ ∈ PA, {д1,д2} ∈ PS

◦
. Then, we

define the following two splitting rules (SR):

SR1:
∑
(д1 (xi) ⊙ д2 (xi)) =

∑
(д1 (xi)) ⊙

∑
(д2 (xi)), ⊙ ∈ {+,−};

SR2:
∏
(д1 (xi) ⊙ д2 (xi)) =

∏
(д1 (xi)) ⊙

∏
(д2 (xi)), ⊙ ∈ {×, /}.

By applying the above two rules, aggregation states in (PS⊙\PS◦)
can be split into new ones with scalar functions in PS◦, which can
still be verified using Theorem 4.1. If aggregation stares are not

covered by splitting rules in this case, SUDAF simply proceeds

syntactic comparison between their mathematical expressions.

Note that syntactic comparison is sufficient but not necessary.

5 A PRACTICAL APPROACH TO SOLVE
THE SHARING PROBLEM

We present in this section a practical approach to solve the shar-

ing problem based on the results provided by Theorem 4.1. Turn-

ing the conditions of Theorem 4.1 into an algorithm could be

cumbersome because equivalent mathematical expressions may

have different syntactic shapes.

Example 5.1. Consider the problem whether s1 (X) =
∑

4x2

i
shares s2 (X) =

∑
(3xi)

2
. Using Theorem 4.1, one needs to con-

struct f1 ◦ f
−1

2
(x) = 4x ◦ x2 ◦ 1

3
x ◦
√
x (over the positive domain

since both f1 and f2 are even). Then, according to case 2.1 of

Theorem 4.1, we need to check whether f1 ◦ f
−1

2
(x) = ax , for

some constant a. This is not an easy task, particularly for gen-

eral cases, since it requires mathematical transformations of the

original expression as follows: f1 ◦ f
−1

2
(x) = 4x ◦ x2 ◦ 1

3
x ◦
√
x =

4x ◦ 1

9
x ◦ x2 ◦

√
x = 4

9
x . The first transformation is a reordering

of x2 ◦ 1

3
x , which generates

1

9
x ◦ x2

, and it is then followed by a

removal of the composition x2 ◦
√
x . Finally, f1 ◦ f

−1

2
(x) is trans-

formed to
4

9
x , which satisfies the condition f1 ◦ f

−1

2
(x) = ax ,

with a = 4

9
, of the case 2.1 of Theorem 4.1.

In addition, a straightforward implementation of Theorem 4.1

leads to redundant computations as illustrated below.

Example 5.2. Checking whether s ′
1
=
∑

6x3

i shares s ′
2
=∑

(5xi)
3
requires redoing identical transformations as in the pre-

vious example (i.e., checking whether s1 (X) =
∑

4x2

i shares

s2 (X) =
∑
(3xi)

2
). This is because we have as a general property:∑

a2x
a1

i shares

∑
(b1xi)

b2
if a1 = b2.

Hence, our general idea to deal with the two previous issues

is: (i) to use symbolic representations of aggregation states to

avoid redundant computations, i.e., using

∑
a2x

a1

i and

∑
(b1xi)

b2
,

where a1,a2,b1 and b2 are parameters, to represent the concrete

states

∑
4x2

i and

∑
(3xi)

2
, and (ii) to precompute sharing rela-

tionships between symbolic representations to avoid cumber-

some transformations of mathematical expressions at execution

time. For example, we precompute the relationship stating that∑
a2x

a1

i shares

∑
(b1xi)

b2
if a1 = b2. Then, at execution time, this

relationship can be used to efficiently identify that the concrete
aggregation state

∑
4x2

i , an instance of the abstract state
∑
a2x

a1

i ,

shares the concrete state

∑
(3xi)

2
, an instance of the abstract state∑

(b1xi)
b2
, because the condition a1 = b2 is satisfied.

5.1 Symbolic representations
In this section, we first present symbolic representations of scalar

functions and then use them to introduce symbolic representa-

tions of aggregation states. In the sequel, we assume an infinite

set of parameters, distinct from the set of constants. Hereafter,

the parameters are denoted p,p1,

Symbolic primitive scalar functions. Intuitively, px with a

parameter p is the symbolic representation of the primitive scalar

function 2x . In this case, 2x is an instance of px . Formally, we

consider four symbolic primitive scalar functions with a pa-

rameter p: px = {ax |∀a , 0}; loдpx = {loдax |∀a > 0,, 1};

px = {ax |∀a > 0,, 1}; xp = {xa |∀a , 0}. We use the notation

s fp̄ (x) for a symbolic primitive scalar function with a sequence

p̄ = (p) of a parameter p.
Symbolic scalar functions. Intuitively, p2x

p1
with a parameter

sequence (p2,p1) is the symbolic representation of the scalar

function 3x2
, and in this case 3x2

is an instance ofp2x
p1
. Formally,

let every s fip̄i (x) for i ∈ [1, . . . , l] be a symbolic primitive scalar

function. Then, s fp̄ (x) = s fl p̄l ◦ ... ◦ s f1p̄1
(x) is a symbolic scalar

function s fp̄ (x) with a sequence p̄ = (pl , ...,p1) of parameters.

Similarly, |s fp̄ | = l .

Symbolic aggregation states. Intuitively,
∑
p2x

p1

i is the sym-

bolic representation of

∑
3x2

i . In this case,

∑
p2x

p1

i is called a

symbolic (aggregation) state and we say that the concrete state∑
3x2

i is an instance of the symbolic state

∑
p2x

p1

i . Formally,

let

∑
⊕ ∈ PA and s fp̄ (x) be a symbolic scalar function. Then,

ss (X) =
∑
⊕ s fp̄ (xi) is a symbolic aggregation state.

Specifically, we let

∑
xi and

∏
xi be also two symbolic aggre-

gation states, which contain respectively only one instance

∑
xi

and

∏
xi , and we define | f | = 0 with f (x) = x .

5.2 Precomputed sharing relationships
Informally, we say that a symbolic state ss1 shares a symbolic

state ss2 if and only if for any instance s1 of ss1, there exists an

instance s2 of ss2, such that s1 shares s2. As explained previously,

our aim is to precompute and store the sharing relationships

between symbolic aggregation states. Specifically, we conduct

an exhaustive analysis to identify the sharing relationships be-

tween symbolic states in a preprocessing step, which is performed

once when SUDAF is deployed, and then the precomputed rela-

tionships are reused at runtime to handle the sharing problem

between concrete aggregation states. Note that the space of sym-

bolic states may be very huge (theoretically infinite) because

symbolic scalar functions may be of arbitrary lengths. In addi-

tion, aggregation states having scalar functions with a higher

length are useless from the practical point of view. For example

in our experiments presented in Section 6 it was enough to use

aggregation states, whose scalar functions have a length up to

2, to express aggregations in real-world applications. Therefore,

SUDAF enables a user to bound the space of symbolic aggregation

247

𝒍 = 𝟐

𝒍 = 𝟏

Σ𝑙𝑜𝑔𝑝𝑥𝑖Σ𝑝𝑥𝑖

Π𝑝𝑥𝑖 Σ𝑝𝑥𝑖

Σ𝑥𝑖

Π𝑥𝑖
𝑝

Π𝑥𝑖

Σ𝑥𝑖
𝑝 Π𝑝𝑥𝑖Π𝑙𝑜𝑔𝑝𝑥𝑖

Σ𝑝2𝑥𝑖
𝑝1 Π𝑝1

𝑝2𝑥𝑖 Σ𝑝2𝑝1
𝑥𝑖 Π(𝑙𝑜𝑔𝑝1𝑥𝑖)

𝑝2 Σ𝑙𝑜𝑔𝑝2(𝑥𝑖
𝑝1) Π(𝑝1𝑥𝑖)

𝑝2

. . . Σ(𝑙𝑜𝑔𝑝1𝑥𝑖)
𝑝2 Π𝑝2𝑥𝑖

𝑝1.

𝒍 = 𝟎

Figure 4: The digraph G of saддs2 (X).

𝒍 = 𝟐

𝒍 = 𝟏

Σ𝑙𝑜𝑔𝑝𝑥𝑖Σ𝑝𝑥𝑖

Π𝑝𝑥𝑖 Σ𝑝𝑥𝑖

Σ𝑥𝑖

Π𝑥𝑖
𝑝

Π𝑥𝑖

Σ𝑥𝑖
𝑝 Π𝑝𝑥𝑖Π𝑙𝑜𝑔𝑝𝑥𝑖

Σ𝑝2𝑥𝑖
𝑝1 Π𝑝1

𝑝2𝑥𝑖 Σ𝑝2𝑝1
𝑥𝑖 Π(𝑙𝑜𝑔𝑝1𝑥𝑖)

𝑝2 Σ𝑙𝑜𝑔𝑝2(𝑥𝑖
𝑝1) Π(𝑝1𝑥𝑖)

𝑝2

. . . Σ(𝑙𝑜𝑔𝑝1𝑥𝑖)
𝑝2 Π𝑝2𝑥𝑖

𝑝1.

𝒍 = 𝟎

Figure 5: The simplified digraph G of saддs2 (X).

states that is prebuilt in the preprocessing step using a configu-

ration parameter, denoted by l . The obtained space, denoted by

saддsl (X), is introduced below.

l-bounded symbolic space. Let l ⩾ 0 be an integer. We define

the space saддsl (X) of symbolic aggregation states as follows:

saддsl (X) = {
∑
⊕ s fp̄ (xi) |s fp̄ is a symbolic scalar function with

|s fp̄ | ⩽ l }. We say saддsl (X) is a l-bounded symbolic space. Note

that the size of the set saддsl (X) is bounded by
2(4l+1−1)

3
.

Once the parameter l is fixed by a user, SUDAF builds space

saддsl (X) and precomputes the sharing relationships between

every two symbolic aggregation states in saддsl (X). An excerpt

of saддs2 (X) is shown in Figure 4, where each symbolic aggrega-

tion state is depicted as a node labeled with its expression (the

meaning of edges in Figure 4 is explained later). As it can be

observed in Figure 4, the space saддs2 (X) is organized in three

levels, where each level i , with i ∈ {0, 1, 2}, contains the symbolic

states of the form

∑
⊕ s fp̄ (xi) with |s fp̄ | = i . Figure 4 shows all

the symbolic states of level 0 and 1, and some states of level 2.

5.3 Organizing the space saддsl (X)
We briefly discuss the organization of saддsl (X), w.l.o.g., focus-
ing on the case l = 2. In the sequel, we first consider that the

input multiset X contains only positive values, i.e., X ∈ M (Q+),
then we extend the results to the case whereX contains both neg-

ative and positive values. We represent the sharing relationships

between symbolic states in saддs2 (X) using a digraph G = (V ,E)
where the set of vertices V = saддs2 (X) is the space saддs2 (X)
and the set of edges E ⊆ V ×V represent the sharing relationship,

i.e., (ss ′, ss) ∈ E if and only if ss ′ shares ss . Figure 4 depicts the
digraph associated with the space saддs2 (X) . We distinguish

between two kinds of sharing relationships in G (two types of

edges are depicted in Figure 4). The first one is called strong re-
lationships and relates two symbolic states (ss ′, ss) if ss ′ shares
ss without requiring any condition on the parameters. The sec-

ond one is called weak relationships and relates two symbolic

states (ss ′, ss) if ss ′ shares ss under some conditions defined over

the parameters of ss and ss ′. For example, since any instance of∑
pxi shares any instance of

∏
pxi , then

∑
pxi and

∏
pxi have

a strong sharing relationship denoted as

∑
pxi −→

∏
pxi . As an-

other example, the state

∑
x
p
i shares

∑
p2x

p1
with the condition

p = p1, then

∑
x
p
i and

∑
p2x

p1
have a weak sharing relationship

denoted as

∑
x
p
i

p=p1

−−→
∑
p2x

p1
.

We observed that in the space saддs2 (X), the sharing relation-
ships are equivalence relations. For example,

∑
pxi ←→

∏
pxi and

∑
x
p
i

p=p1

← →
∑
p2x

p1
. Consequently, the space saддs2 (X) can be

partitioned into equivalence classes. Intuitively, for a symbolic

state ss , its associated equivalence class, denoted [ss], is made

of the set of symbolic aggregation states that shares (and are

shared by) ss . For example, as depicted in Figure 4: [

∑
xi] =

{
∑
xi ,
∑
pxi ,
∏

pxi ,
∏

p
p2xi
1
} and [

∑
x
p
i] = {

∑
x
p
i ,
∑
p2x

p1

i }.

We select a unique element in each equivalence class [ss] to
be a representative of the class, which is denoted as rep ([ss]) and
depicted as a shaded node in Figure 4. It is clear that, given an

equivalence class [ss], one only needs to focus on the instances

of its representative rep ([ss]) since they are able to compute an

instance of any other element in [ss].
We simplify G presented in Figure 5 based on the equivalence

relations derived from the sharing relationships. More precisely,

it is only necessary for any state ss ∈ saддs2 (X) to store such a

sharing relationship ss → rep ([ss]), or ss
pcon
−−→ rep ([ss]) with a

parameter condition (pcon). Consequently, when an instance s of

ss is given, we use an edge ss → rep ([ss]), or ss
pcon
−−→ rep ([ss])

to get a cached instance of rep ([ss]) to compute s .
Extension to an arbitrary multiset. When a multiset X con-

tains negative values, instances of some symbolic states in

saддs2 (X) do not exist, which will cause the miss of sharing

opportunities. We take

∑
loдpxi as an example to explain the

issue. As we know that, an instance

∑
ln(xi) of

∑
loдpxi can

only be computed over the positive domain, such that the caches

for

∑
loдpxi are empty in this context. To deal with this issue,

we separate input values from their signs. Specifically, we trans-

late an input multiset X = {x1, . . . ,xn } to the following multiset

X̂ = {(|x1 |, sдn(x1)), . . . , (|xn |, sдn(xn)}, where |x j | denotes the
absolute value of x j and sдn(x j) is its sign. Then, we keep in the

cache such a result (
∑
ln |xi |,

∏
sдn(xi)) for

∑
loдpxi . By this

way, a new aggregation state

∑
ln(x2

i) can still be computed us-

ing the cache (
∑
ln |xi |,

∏
sдn(xi)) that is stored for

∑
loдpxi .

6 EXPERIMENTAL EVALUATION
We implemented a SUDAF prototype in Java and Scala, which

can be used on top of PostgreSQL (through JDBC) and Spark

SQL. The SUDAF prototype also comes equipped with a UDAF

editor that enables users to write SUDAF-compatible UDAFs and

integrate them in SQL queries.

The general scheme of our experiments is the following. We

select 3 query models, and we instantiate each query model us-

ing 11 aggregations. We simulate the 11 instances of each query

model coming in 2 different orders, i.e., two different sequences of

248

cm qm gm hm min max count std var sum avg0

100

200

Ex
ec

ut
io

n
tim

e
(s

) (a) Aggregates of sequence 1 in query model 1
PostgreSQL
PostgreSQL + SUDAF (no share)

PostgreSQL + SUDAF (share)

AS1 AS20

100

200

Ex
ec

ut
io

n
tim

e
(s

) Query model 1

AS1 AS20

50

100

Ex
ec

ut
io

n
tim

e
(s

) Query model 2

AS1 AS20

25

50

75

Ex
ec

ut
io

n
tim

e
(s

) Query model 3

Figure 6: Total execution time of each query sequence in
each query model.

cm qm gm hm min max count std var sum avg apm0

2

4

6

8

10

Ex
ec

ut
io

n
tim

e
(s

)

(a) Aggregates of sequence 1 in query model 1
Spark SQL
Spark SQL + SUDAF (no share)

Spark SQL + SUDAF (share)

AS1 AS20

10

20

Ex
ec

ut
io

n
tim

e
(s

) Query model 1

AS1 AS20

10

20

Ex
ec

ut
io

n
tim

e
(s

) Query model 2

AS1 AS20

20

40

Ex
ec

ut
io

n
tim

e
(s

) Query model 3

Figure 7: Total execution time of each query sequence in each
query model.

cm qm gm hm min max count std var sum avg0

100

200

Ex
ec

ut
io

n
tim

e
(s

) (a) Aggregates of sequence 1 in query model 1
PostgreSQL PostgreSQL + SUDAF (no share) PostgreSQL + SUDAF (share)

cm qm gm hm min max count std var sum avg

10 2

100

Ex
ec

ut
io

n
tim

e
(s

) (a) Aggregates of sequence 1 in query model 1

max min sum avg count std var cm gm hm qm

10 2

100

Ex
ec

ut
io

n
tim

e
(s

) (b) Aggregates of sequence 2 in query model 1

cm qm gm hm min max count std var sum avg

10 2

100

Ex
ec

ut
io

n
tim

e
(s

) (c) Aggregates of sequence 1 in query model 2

max min sum avg count std var cm gm hm qm

10 2

100
Ex

ec
ut

io
n

tim
e

(s
) (d) Aggregates of sequence 2 in query model 2

cm qm gm hm min max count std var sum avg

10 2

100

Ex
ec

ut
io

n
tim

e
(s

) (e) Aggregates of sequence 1 in query model 3

max min sum avg count std var cm gm hm qm

10 2

100

Ex
ec

ut
io

n
tim

e
(s

) (f) Aggregates of sequence 2 in query model 3

Figure 8: Execution time in PostgreSQL of each query in each query sequence.

cm qm gm hm min max count std var sum avg apm0

2

4

6

Ex
ec

ut
io

n
tim

e
(s

)

(a) Aggregates of sequence 1 in query model 1
Spark SQL Spark SQL + SUDAF (no share) Spark SQL + SUDAF (share)

cm qm gm hm min max count std var sum avg
10 2

10 1

100

Ex
ec

ut
io

n
tim

e
(s

) (a) Aggregates of sequence 1 in query model 1

max min sum avg count std var cm gm hm qm

10 2

10 1

100

Ex
ec

ut
io

n
tim

e
(s

) (b) Aggregates of sequence 2 in query model 1

cm qm gm hm min max count std var sum avg

10 2

10 1

100

Ex
ec

ut
io

n
tim

e
(s

) (c) Aggregates of sequence 1 in query model 2

max min sum avg count std var cm gm hm qm

10 2

10 1

100

Ex
ec

ut
io

n
tim

e
(s

) (d) Aggregates of sequence 2 in query model 2

cm qm gm hm min max count std var sum avg
10 2

10 1

100

Ex
ec

ut
io

n
tim

e
(s

) (e) Aggregates of sequence 1 in query model 3

max min sum avg count std var cm gm hm qm
10 2

10 1

100

Ex
ec

ut
io

n
tim

e
(s

) (f) Aggregates of sequence 2 in query model 3

Figure 9: Execution time in Spark SQL of each query in each query sequence.

queries. Thus, the tested workload consists of 6 query sequences,

where each sequence has 11 queries. We execute the query se-

quences in three technical contexts (i) PostgreSQL and Spark SQL,
(ii) SUDAF without the sharing functionality, and (iii) SUDAF
with the sharing functionality. In the PostgreSQL environment

(case (i)), the aggregations are either PostgreSQL built-in or hard-

coded user-defined functions, and similarly for the Spark SQL

environment. PostgreSQL UDAFs are created using PL/pgSQL,

and Spark SQL UDAFs are created using the UserDefinedAggre-

gateFunction interface in Scala code. In the SUDAF environment

(cases (ii) and (iii)), UDAFs are provided as mathematical expres-

sions and used in the SQL queries. And in case (iii) of SUDAF, the
precomputed sharing relationships in saддs2 (X) are exploited to

reuse cached aggregation states to compute new ones. In SUDAF
sharing environment, we prefetch a moment sketch (MS) [16, 26]

under one of the two selected query orders. At the end of this

section, we also present a scenario of running a random sequence

of 200 queries in the Spark SQL context.

Our main findings are twofold. First, we observed that SUDAF
without sharing outperforms both PostgreSQL and Spark SQL

249

despite the overhead in SUDAF due to the analysis and decom-

position of UDAF expressions. The main reason that explains

these performances comes from the fact that rewriting of UDAFs

by SUDAF, which is based on canonical forms, leads to imple-

mentations that use PostgreSQL or Spark SQL built-in functions,

these later ones being much faster than PostgreSQL or Spark SQL

UDAFs. The second finding is SUDAF with sharing outperforms

both PostgreSQL and Spark SQL. In particular, the fine-grained

unit of caching used in SUDAF improves the sharing possibilities

and increases the gain brought by sharing.

Experiment setup.All experiments of Spark SQL are performed

on a cluster with 1 master node and 6 worker nodes, running

Ubuntu server 16.04, Spark 2.2.0 and Hadoop 2.7.4. The master

node has a processor of 6 cores (XEON E5-2630 2.4GHz), 16 GB of

main memory and 160 GB of disk space, and every worker node

has a processor of 4 cores (XEON E5-2630 2.4GHz), 8 GB of main

memory and 80 GB of disk space. All experiments on PostgreSQL

are only performed on the master node running PostgreSQL 11.4.

Querymodels. The three query models used in experiments are

illustrated below, where AGG represents an aggregation.

-- Query model 1
SELECT AGG(internet_traffic) FROM milan_data;
-- Query model 2
SELECT square_id, AGG(internet_traffic) FROM milan_data
GROUP by square_id ORDER by square_id LIMIT 20;
-- Query model 3, the TPC-DS query 7 when AGG is avg
SELECT i_item_id, AGG(ss_quantity) agg1, AGG(ss_list_price) agg2,

AGG(ss_coupon_amt) agg3, AGG(ss_sales_price) agg4
FROM store_sales, customer_demographics, date_dim, item, promotion
WHERE ss_sold_date_sk = d_date_sk and

ss_item_sk = i_item_sk and
ss_cdemo_sk = cd_demo_sk and
ss_promo_sk = p_promo_sk and cd_gender = 'M'
and cd_marital_status = 'S' and
cd_education_status = 'College' and
(p_channel_email = 'N' or p_channel_event = 'N')
and d_year = 2000

GROUP BY i_item_id ORDER BY i_item_id LIMIT 100;

Datasets. The first two query models are evaluated on the Milan

dataset [22] and the third query model is evaluated on the TPC-

DS [27] dataset. For the experiments of PostgreSQL, the Milan

dataset consists of 72.6 million rows in total and the TPC-DS

dataset comes with scale = 20. For the experiments of Spark SQL,

the Milan dataset consists of 319 million rows in total and the

TPC-DS dataset comes with scale = 100. All data files in Spark

SQL experiments are in Parquet format.

Aggregate functions.We use the following 11 aggregate func-

tions to instantiate our query models: cubic_mean (cm), qua-
dratic_mean (qm), geometric_mean (gm), harmonic_mean (hm),
min, max, count, sum, average (avg), standard deviation (std),
variance (var). In the used PostgreSQL and Spark SQL version,

all of these functions are built-in functions except the functions

cm, qm, gm and hm which are implemented using PL/pgSQL in

PostgreSQL and using UserDefinedAggregateFunction interface in

Scala code in Spark SQL.

Query sequences. We instantiate each query model using each

of the 11 aggregations and define the following two sequences

of query executions for each instantiated query model:

AS1 = [cm, qm, gm, hm, min, max, count, std, var, sum, avg]
AS2 = [max, min, sum, avg, count, std, var, cm, gm, hm, qm]
Thus, we obtain 6 query sequences in total, where each query

sequence is made of 11 aggregate queries. In the SUDAF
sharing environment (cases (ii)) with the sequence AS2, we
prefetch a moment sketch (MS) [16, 26] with parameter k =
10, which consists of a set of aggregate functions (min,max ,

count ,
∑
xi , ...,

∑
xki ,
∑
ln(xi), ...

∑
lnk (xi)) and can be used to

approximate a percentile, e.g., median.

Experimental results. We executed the 6 query sequences on

PostgreSQL or Spark SQL, SUDAF without sharing, and SUDAF
with sharing, and we report the execution time of every query.

In scenarios with sharing, we use precomputed sharing relation-

ships of symbolic aggregation states in saддs2 (X), and we also

add three additional relationships for SQL standard aggregates,

max, min, and count, that they share themselves. Note that in

the reported results we do not take into account the overhead

needed to precompute sharing relationships in saддs2 (X) which
is part of the initialization of SUDAF and takes 110ms . However,
the overhead due to the cache access is included in the global

execution time reported for each query. This overhead is about

2ms for query model 1 or 2, and about 5ms for query model 3.

Moreover, the prefetching of a moment sketch is a preprocess-

ing step in the aggregate sequence AS2, and the corresponding

time is not taken into account. In the context of PostgreSQL, the

prefetching time is 13.06 s for query model 1, 15.16 s for query
model 2, and 14.53 s for query model 3. In the context of Spark

SQL, the prefetching time is 1.87 s for query model 1, 2.17 s for
query model 2, and 3.82 s for query model 3.

The total execution time of each query sequence in each query

model is presented in Figure 6 for the case of PostgreSQL and in

Figure 7 for the case of Spark SQL. We observe that PostgreSQL

or Spark SQL (respectively, SUDAFwithout sharing) always have
the same execution time for the two sequences of the same model.

Also, we observe that SUDAF without sharing outperforms both

PostgreSQL and Spark SQL in all the considered scenarios ex-

cept query model 3 in Spark SQL (the reason is explained later).

SUDAF with sharing shows the best performances, whatever the

considered sequence or query model. In the sequel, we discuss

the execution time of every individual query depicted in Figure

8 and 9 for the cases of PostgreSQL and Spark SQL.

SUDAFwithout sharing. In this scenario, SUDAF only rewrites
aggregations to built-in ones and it does not share computations

in processing query sequences. For the case of PostgreSQL, com-

pared to PostgreSQL UDAF queries, SUDAF speeds up UDAF

queries up to 20X in query model 1 (Figure 8 (a) and (b)), 4X

in query model 2 (Figure 8 (c) and (d)), and 2X in query model

3 (Figure 8 (e) and (f)). For the case of Spark SQL, compared

to Spark UDAF queries, SUDAF speeds up UDAF queries up to

3X in query model 1 (Figure 9 (a) and (b)), 2X in query model

2 (Figure 9 (c) and (d)), and have identical query time in query

model 3 (Figure 9 (e) and (f)). The major reason for this improve-

ment is that SUDAF rewrites queries with UDAFs to queries with

partial aggregations that can be evaluated using PostgreSQL or

Spark SQL built-in functions, which are faster compared to Post-

greSQL or Spark UDAFs. The performance improvements of such

a rewriting depends on the number of data to be aggregated. The

instances of query model 1 have the highest number of values

to be aggregated while the instances of query model 3 have the

smallest number of values as aggregation inputs. Therefore, for

the case of query model 3, the difference between SUDAF only

with the rewriting functionality and Spark SQL is less noticeable.

SUDAF with sharing. In this scenario, SUDAF rewrites aggre-

gations to built-in ones and shares the computation results of

partial aggregations in every query sequence. For the sequence

AS1, we observe in Figure 8 (a), (c) and (e) and in Figure 9 (a), (c)

and (e) that for all the considered query models the computation

times of count, variance (var), sum and average (avg) decrease
drastically w.r.t. the no sharing option. This is because SUDAF

250

1,E+00

1,E+02

1,E+04

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

Ex
ec

u
ti

o
n

ti
m

e
(m

s)

Query sequence

Spark SQL Spark SQL + SUDAF (no share) Spark SQL + SUDAF (share)

Figure 10: Execution time in Spark SQL of a random sequence of 200 queries.

is able to reuse cached results from earlier aggregates in the se-

quence AS1. As it can be observed in Figure 8 (b), (d) and (f) and

in Figure 9 (b), (d) and (f), the sequence AS2 is more advanta-

geous for sharing due to the prefetched moment sketch. Indeed,

the moments sketch consists of 33 partial aggregates which are

cached by SUDAF and reused for the computation of all the re-

maining aggregations in the sequence AS2 except the harmonic
mean (hm). Computing queries with the harmonic mean in AS2
still requires data access since the aggregation state

∑
x−1

i in the

harmonic mean is not evaluated in previous computing.

Random query sequence. We present in Figure 10 the sce-

nario of running a random sequence of 200 queries in Spark SQL,

which are instances of the query model 2 having the following

16 aggregate functions: (min, max, sum, avg, harmonic_mean,

quadratic_mean, cubic_mean, geometric_mean, stddev, variance,

skewness, kurtosis, approx_median, count, approx_first_quantile,

approx_thrid_quantile). The benefits of using SUDAF in this sce-

nario are more obvious (the orange line in Figure 10).

7 RELATEDWORKS
There is a wealth of research on queries with aggregations, earlier

works focusing on standard aggregations (e.g., [8, 9, 12, 18, 19, 35])

and then extended to UDAFs (e.g., [6, 10, 20, 24]). Partial aggre-

gation appeared as an essential technique used to improve the

performances of aggregations: instead of computing aggregations

on a complete multiset, applying aggregations on subsets and

merging intermediate results is an efficient solution in numerous

scenarios. In OLAP applications, partial aggregation enables com-

puting aggregation by merging summaries of cells with different

granularities across multi-dimensional data, thereby allowing

aggregate queries to be executed on pre-computed results instead

of base data [8]. In join-aggregate query optimization, partial

aggregation enables to compute group-by aggregation before

joins to decrease the size of intermediate results [35], i.e., the

eager group-by technique. In distributed computing, partial ag-

gregation allows to push the execution of aggregation before

transferring data on networks [36], thereby decreasing the over-

head of data shuffling, which is usually called initial reduce in

MapReduce-like frameworks. An original classification of aggre-

gations [18] distinguishes between algebraic aggregations having

partial aggregation with fixed size results, and holistic functions

where there is no constant bound on the storage size for partial

aggregation. Several properties are proposed to have partial ag-

gregations from algebraic aggregations, such as decomposable

aggregation [35], commutative semi-group aggregation [11] and

associative and commutative aggregation [36].

Most modern data management and analysis systems support

UDAFs (e.g., [1, 2, 4, 21, 28, 29]). In the original MapReduce (MR)

framework [3, 14], UDAFs are implemented according to the MR
paradigm without requiring any specific template. This makes

the semantics of UDAFs hidden in the implementations and hin-

ders optimization possibilities (e.g., reordering with relational

operators and other UDAFs [20]). However, in most of recent

systems, users define UDAFs using an IUME pattern (initialize

function, update function, merge function and evaluate function).

Although such an approach enables exploiting the properties

of the merging functions to allow optimization based on partial

aggregations, e.g., parallel computation of the merging functions,

part of the UDAF semantics still remains hidden in the imple-

mentation, which hampers the opportunity of aggregate sharing.

In addition, implementing UDAFs in existing frameworks may

be a tedious task since it is up to the user to map a UDAF to the

implementation paradigm (MR or IUME). We build on a canonical

form of UDAFs proposed in [10] to design SUDAF by allowing

users to specify UDAFs as mathematical expressions and then

automatically generate canonical forms of UDAFs which are com-

pliant with the IUME pattern. Consequently, with SUDAF a user
does not need to handle the problem of how to obtain partial

aggregations from UDAFs. Moreover, SUDAF knows the seman-

tics of partial aggregations (primitive functions used in partial

aggregation) which extends the optimization opportunities.

Different facets of the sharing problem have been studied in

the literature, e.g., rewriting aggregate queries using materialized

views [11, 12], reusing caches to accelerate multi-dimensional

queries [8, 15], or identifying overlapping processing for mul-

tiple aggregate queries with various selection predicates [19],

group-by attributes [9] and sliding-windows [5, 23]. Most of these

approaches focus on the data dimension, i.e., they consider the

problem of sharing the same aggregation across different ranges

or granularities of data. Our work does not consider the data

granularity dimension where existing techniques, e.g., [15, 33],

can be used to extend SUDAF in this direction. [10, 11] proposes

to predefine computation rules for sharing between different

aggregations. However, SUDAF automatically identifies sharing

opportunities on partial aggregates across different UDAFs.

The closest work to SUDAF is DataCanopy [33]. DataCanopy

caches the basic aggregates (e.g.,

∑
xi ,
∑
x2

i and

∑
xiyi) of sta-

tistical measures and then is able to reuse them for queries with

various range predicates. Basic aggregates are maintained at a

granularity of a chunk (smallest portion of data), and DataCanopy

allows sharing across queries covering overlapping chunks. In

DataCanopy, basic aggregates are fixed in advance and the de-

composition of an aggregate into basic ones is predefined (see

Table 1 of [33]). We discuss the differences between DataCanopy

and SUDAF as follows. From a theoretical standpoint, the sharing

condition in SUDAF allows having a scalar function between two

251

aggregates (see Theorem 4.1), which is more general compared

to sharing identical basic aggregates in DataCanopy. From a prac-

tical standpoint, our approach is complementary to DataCanopy

in the sense that DataCanopy deals with sharing w.r.t. the data

dimension and proposes a static approach for sharing on the

aggregation dimension, whereas SUDAF extends its static ap-

proach to a dynamic one w.r.t. the aggregation dimension. More

precisely, the sharing opportunities w.r.t the aggregation dimen-

sion are automatically identified in SUDAF, which do not require

any decomposition rule and are not restricted to a fixed set of

aggregates. For example, if we restrict the attention to the set

of predefined basic aggregates introduced in [33], the execution

of a geometric mean (дm(X) = exp (

∑
ln(xi)

count
,∀xi > 0) cannot

take any benefit from the static caching solution used in Dat-

aCanopy (i.e., cannot reuse the basic aggregates stored in the

cache and do not lead to any new cached computation results). In

contrast, SUDAF can reuse partial aggregates from the cache to

compute дm and if not possible, it caches the partial aggregates

(
∑
ln(xi), count) after computing дm from base data. To obtain

similar behavior, one needs to explicitly define additional basic

aggregates in DataCanopy together with the appropriate decom-

position rules for дm. In addition to being cumbersome, such a

task requires to know in advance the query workloads that will

be issued.

8 CONCLUSIONS AND FUTURE WORKS
In this paper, we introduce the design principles underlying

SUDAF, a framework that provides a set of primitive functions to-

getherwith a composition operator to enable users to definemath-

ematical expressions of their UDAFs. SUDAF comes equipped

with the ability to automatically rewrite partial aggregations,

which are factored out from mathematical expressions of UDAFs,

using built-in aggregates, and supports efficient dynamic caching

and sharing of partial aggregates. We showed experimentally the

benefits of rewriting partial aggregates of UDAFs using built-in

functions and sharing partial aggregates to improve the perfor-

mances of queries with UDAFs.

In this paper, we focus on the issue of how to compute a UDAF
from another UDAF. In practice, to share computation results of

different queries, we need to consider the data dimension, e.g.,

different range queries, or different OLAP queries. Sharing over

data dimension has been extensively studied in existing works

[15, 33]. The general idea is to split cached query results using

chunks. For the case of range queries, a chunk is a range predicate

over an attribute. For the case of OLAP queries, a chunk is a region

in a multi-dimensional space. Merging our sharing approach

with such approaches, we can share computation results for

different queries with different UDAFs. As another future work,

we envision to exploit the fact that the semantics of UDAFs is

known by SUDAF to investigate query optimization and query

rewriting problems for join and group-by queries with UDAFs.

9 ACKNOWLEDGMENTS
This research was supported by the French government IDEX-

ISITE initiative 16-IDEX-0001 (CAP 20-25) and by the CPER of

the “Région Auvergne-Rhône-Alpes”, the French Government

and FEDER from the European community.

REFERENCES
[1] Aache Hive. 2019. https://hive.apache.org.

[2] Apache Flink. 2019. https://flink.apache.org.

[3] Apache Hadoop. 2019. https://hadoop.apache.org.

[4] Apache Spark. 2019. https://spark.apache.org/.

[5] Arvind Arasu and Jennifer Widom. 2004. Resource Sharing in Continuous

Sliding-window Aggregates (VLDB ’04). VLDB Endowment, 336–347.

[6] Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, and Volker

Markl. 2016. Cutty: Aggregate Sharing for User-DefinedWindows. 1201–1210.

[7] Central moments. 2019. https://en.wikipedia.org/wiki/Central_moment.

[8] Surajit Chaudhuri and Umeshwar Dayal. 1997. An Overview of Data Ware-

housing and OLAP Technology. SIGMOD Rec. 26, 1 (March 1997), 65–74.

[9] Zhimin Chen and Vivek Narasayya. 2005. Efficient Computation of Multiple

Group by Queries. In SIGMOD ’05. ACM, New York, NY, USA, 263–274.

[10] Sara Cohen. 2006. User-defined Aggregate Functions: Bridging Theory and

Practice. In SIGMOD ’06. ACM, New York, NY, USA, 49–60.

[11] Sara Cohen, Werner Nutt, and Yehoshua Sagiv. 2006. Rewriting Queries with

Arbitrary Aggregation Functions Using Views. ACM Trans. Database Syst. 31,
2 (June 2006), 672–715.

[12] Sara Cohen, Werner Nutt, and Alexander Serebrenik. 1999. Rewriting Aggre-

gate Queries Using Views. In PODS ’99. ACM, New York, NY, USA, 155–166.

[13] Sara Cohen, Werner Nutt, and Alexander Serebrenik. 2000. Algorithms for

Rewriting Aggregate Queries Using Views. In ADBIS-DASFAA ’00. Springer-
Verlag, London, UK, UK, 65–78.

[14] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Pro-

cessing on Large Clusters. In OSDI’04. San Francisco, CA, 137–150.

[15] Prasad M. Deshpande, Karthikeyan Ramasamy, Amit Shukla, and Jeffrey F.

Naughton. 1998. CachingMultidimensional Queries Using Chunks. In SIGMOD
’98. ACM, New York, NY, USA, 259–270.

[16] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. 2018.

Moment-based Quantile Sketches for Efficient High Cardinality Aggregation

Queries. Proc. VLDB Endow. 11, 11 (July 2018), 1647–1660.

[17] Michel Grabisch, Jean-Luc Marichal, Radko Mesiar, and Endre Pap. 2011.

Aggregation function: Means. Information Sciences 181, 1 (January 2011),

1–22.

[18] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,

Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data Cube: A

Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-

Totals. Data Mining and Knowledge Discovery 1, 1 (01 Mar 1997), 29–53.

[19] Ryan Huebsch, Minos Garofalakis, Joseph M Hellerstein, and Ion Stoica. 2007.

Sharing Aggregate Computation for Distributed Queries. In SIGMOD ’07. ACM,

New York, NY, USA, 485–496.

[20] Fabian Hueske, Mathias Peters, Aljoscha Krettek, Matthias Ringwald, Kostas

Tzoumas, Volker Markl, and Johann-Christoph Freytag. 2013. Peeking into

the Optimization of Data Flow Programs with MapReduce-style UDFs. ICDE.
[21] IBM DB2. 2019. https://www.ibm.com/analytics/db2.

[22] Telecom Italia. 2015. Telecommunications - SMS, Call, Internet - MI. https:

//doi.org/10.7910/DVN/EGZHFV

[23] Sailesh Krishnamurthy, Chung Wu, and Michael Franklin. 2006. On-the-fly

Sharing for Streamed Aggregation. In SIGMOD ’06. 623–634.
[24] Arun Kumar, Matthias Boehm, and Jun Yang. 2017. Data Management in

Machine Learning: Challenges, Techniques, and Systems. In SIGMOD ’17.
1717–1722.

[25] Radko Mesiar Michel Grabisch, Jean-Luc Marichal and Endre Pap. 2009. Ag-
gregation Functions. Cambridge University Press, Cambridge.

[26] Moment-based quantile sketches for aggregations. 2018. https://github.com/

stanford-futuredata/msketch.

[27] Raghunath Othayoth Nambiar andMeikel Poess. 2006. TheMaking of TPC-DS.

In VLDB ’06. 1049–1058.
[28] Oracle. 2019. https://docs.oracle.com/.

[29] PostgreSQL. 2019. https://www.postgresql.org/docs/.

[30] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. 2016. Learning Linear

Regression Models over Factorized Joins. In SIGMOD ’16. 3–18.
[31] Sharing computations for user-defined aggregate functions (techni-

cal report). 2019. https://github.com/CHAOHIT/SUDAF/blob/master/

sudaf-technical-report.pdf.

[32] Standardized moments. 2019. https://en.wikipedia.org/wiki/Standardized_

moment.

[33] Abdul Wasay, Xinding Wei, Niv Dayan, and Stratos Idreos. 2017. Data Canopy:

Accelerating Exploratory Statistical Analysis. In SIGMOD ’17. ACM, New York,

NY, USA, 557–572.

[34] Wolfram Mathematica. 2019. https://reference.wolfram.com/language/guide/

MathematicalFunctions.

[35] Weipeng P. Yan and Per-Ake Larson. 1995. Eager Aggregation and Lazy

Aggregation. In VLDB ’95. 345–357.
[36] Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. 2009. Distributed Aggre-

gation for Data-parallel Computing: Interfaces and Implementations. In SOSP
’09. ACM, New York, NY, USA, 247–260.

252

	Sharing Computations for User-Defined Aggregate FunctionsChao Zhang, Farouk Toumani

