
Erratum for Discovering Order Dependencies
through Order Compatibility

Jaroslaw Szlichta
Ontario Tech University

Canada
jarek@ontariotechu.ca

Parke Godfrey
York University

Canada
godfrey@yorku.ca

Lukasz Golab
University of Waterloo

Canada
lgolab@uwaterloo.ca

Mehdi Kargar
Ryerson University

Canada
kargar@ryerson.ca

Divesh Srivastava
AT&T Labs-Research

United States
divesh@research.att.com

ABSTRACT
A number of extensions to the classical notion of functional de-
pendencies have been proposed to express and enforce application
semantics. One of these extensions is that of order dependencies
(ODs), which express rules involving order. The article entitled
“Discovering Order Dependencies through Order Compatibility”
by Consonni et al., published in the EDBT conference proceedings
in March 2019, investigates the OD discovery problem. The au-
thors claim to prove that their OD discovery algorithm, OCDDIS-
COVER, is complete, as well as being significantly more efficient
in practice than the state-of-the-art. They further claim that the
implementation of the existing FASTOD algorithm (ours)—we
shared our code base with the authors—which they benchmark
against is flawed, as OCDDISCOVER and FASTOD report differ-
ent sets of ODs over the same data sets.

In this rebuttal, we show that their claim of completeness is, in
fact, not true. OCDDISCOVER’s pruning rules are overly aggres-
sive, and prune parts of the search space that contain legitimate
ODs. This is the reason their approach appears to be “faster” in
practice. Finally, we show that Consonni et al. misinterpret our
set-based canonical form for ODs, leading to an incorrect claim
that our FASTOD implementation has an error.

1 INTRODUCTION
Integrity constraints specify the intended semantics of dataset
attributes. They are commonly used in a number of application
areas, such as schema design, data integration, data cleaning, and
query optimization [2]. Past work focused primarily on functional
dependencies (FDs). In recent years, several extensions to the
notion of an FD have been studied, including that of order de-
pendencies (ODs) [3, 5–8, 10]. FDs cannot capture relationships
among attributes with naturally ordered domains, such as over
timestamps, numbers, and strings, which are common in business
data [9]. For example, consider Table 1, which shows employee
tax records in which tax is calculated as a percentage of salary.
Both tax and percentage are non-decreasing with salary.

Order dependencies naturally express such semantics. For a
second example from Table 1, the OD <salary orders group,
subgroup> holds. When the table is sorted by salary, it is also
then sorted by group (with ties broken by subgroup). However,
<salary orders subgroup, group> does not hold. This illustrates
that the order in which attributes appear in the OD matters.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Table 1: Table with employee information.

ID yr posit bin sal perc tax grp subg

t1 10 19 secr 1 5K 20% 1K A III
t2 11 19 mngr 2 8K 25% 2K C II
t3 12 19 direct 3 10K 30% 3K D I

t4 10 18 secr 1 4.5K 20% 0.9K A III
t5 11 18 mngr 2 6K 25% 1.5K C I
t6 12 18 direct 3 8K 25% 2K C II

The theory of order dependencies subsumes that of functional
dependencies. Any FD can be mapped to an equivalent OD by
prefixing the left-hand-side attributes onto the right-hand side
[8, 10]. For example, if salary functionally determines tax, then
salary orders salary, tax.

The purpose of this article is to refute the following claims in
Consonni et al. [3].
(1) The authors present a definition of minimality for order com-

patibility dependencies (OCDs). An OCD is a more specific
form of order dependency in which two lists of attributes or-
der each other, when taken together [8]. They claim that their
definition of minimality is complete; that is, from it, one can
recover all valid OCDs that hold over a given table.

(2) Given their definition of minimal OCDs, Consonni et al. [3]
propose an algorithm to discover ODs via OCDs, which has
factorial complexity in the number of attributes. They claim to
prove that their algorithm produces a canonically complete set
of ODs. (That is, a minimal set of ODs with respect to their
definition, from which all the ODs which hold over the data
could purportedly be inferred.)

(3) The authors claim that their experimental evaluation illus-
trates an error in our implementation of OD discovery algo-
rithm (FASTOD) [6, 7], which leads to discovering many
additional—and, purportedly, incorrect—dependencies. In
spite of this claim of an “implementation error” in the FAS-
TOD implementation that we provided them, they support
via benchmark experiments that their algorithm, OCDDIS-
COVER, outperforms our algorithm, FASTOD.

We show that each of these three claims is incorrect, in turn.
(1) The definition of minimality in Consonni et al. [3]—insofar as

its intended purpose is a canonical form—is incorrect. Their
“canonical” form does not allow for the inference of all OCDs.
It misses an important subclass of OCDs (and, respectively,
ODs), any dependency which has a common prefix on the left
and right (that is, repeated attributes at the beginning of the
dependency).

Errata Note

Series ISSN: 2367-2005 659 10.5441/002/edbt.2020.88

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.88

(2) The claim of completeness of the OD discovery algorithm in
Consonni et al. [3] is incorrect, as it relies upon their incor-
rect notion of “minimal” OCDs. Their conjecture that their
algorithm is complete is incorrect; it is incomplete.

(3) Consonni et al. [3] misinterpret our set-based canonical form
for ODs [6, 7] (which is equivalent to the list-based canonical
form for ODs). This leads the authors to confuse set-based
OCDs with ODs. Their claim that our implementation has an
error arises from this, and their belief that their approach is
complete. Consonni et al. [3] conclude that their algorithm is
faster in practice, despite being significantly worse in asymp-
totic complexity. This arises in their benchmark experiments,
however, due to the fact that their algorithm is incomplete.

In Section 2, we provide basic definitions and canonical forms
for ODs. In Section 3, we analyze the completeness of OD dis-
covery. In Section 4, we discuss the experimental evaluation con-
ducted by Consonni et al. [3]. We conclude in Section 5.

2 FOUNDATIONS
2.1 Background
We use the following notational conventions.

Table 2: Notational conventions.

• Relations. R denotes a relation schema and r denotes a specific
table instance. Letters from the beginning of the alphabet, A,
B and C, denote single attributes. Additionally, t and s denote
tuples, and tA denotes the value of an attribute A in a tuple t.

• Sets. Letters from the end of the alphabet, X, Y and Z, denote
sets of attributes. Also, tX denotes the projection of a tuple t on
X. XY is shorthand for X ∪ Y. The empty set of attributes is
denoted as {}.

• Lists. X, Y and Z denote lists. The empty list of attributes is
represented as []. List [A,B,C] denotes an explicit list. [A | T]
denotes a list with the head A and the tail T. XY is shorthand for
X concatenate Y. Set X denotes the set of elements in list X. Xp

denotes any arbitrary permutation of list X or set X. Given a set
of attributes X, for brevity, we state ∀i, Xi to indicate indices
[1, ..., i] that have valid ranges (i ≤ |X|).

We provide a summary of the relevant definitions. The operator
‘⪯X’ defines a weak total order over any set of tuples, where X
denotes a list of attributes. Unless otherwise specified, numbers
are ordered numerically, strings are ordered lexicographically and
dates are ordered chronologically.

Definition 2.1. [6, 7] Let X be a list of attributes. For two
tuples t and s, X ∈ R, t ⪯X s if1

– X = []; or
– X = [A | T] and tA < sA; or
– X = [A | T], tA = sA, and t ⪯T s.
Let t ≺X s if t ⪯X s but s ⪯̸X t.

Next, we define order dependencies.
Definition 2.2. [3, 5–8, 10] Let X and Y be lists of attributes

over a relation schema R. Table r over R satisfies an OD X 7→ Y
(r |= X 7→ Y), read as X orders Y, if for all t, s ∈ r, t ⪯X s implies
t ⪯Y s. X 7→ Y is said to hold for R (R |= X 7→ Y) if, for each
admissible table instance r of R, table r satisfies X 7→ Y. X 7→ Y

1 By some conventions, “iff ”—“if and only if—would be used here. The intent, in
any case, is that the use of “if” defines completely the notion.

is trivial if, for all r, r |= X 7→ Y. X ↔ Y, read as X and Y are
order equivalent, if X 7→ Y and Y 7→ X.

The OD X 7→ Y means that Y values are monotonically non-
decreasing wrt X values. Thus, if a list of tuples is ordered by X,
then it is also ordered by Y, but not necessarily vice versa.

Example 2.3. Consider Table 1 in which tax is calculated as a
percentage of salary, and tax groups and subgroups are based on
salary. Tax, percentage and group are not decreasing with salary.
Furthermore, within the same group, subgroup is not decreasing
with salary. Finally, within the same year, bin increases with
salary. Thus, the following order dependencies hold in that table:
[salary] 7→ [tax], [salary] 7→ [percentage], [salary] 7→

[group, subgroup] and [year, salary] 7→ [year, bin].
Definition 2.4. [3, 5, 8, 10] Two order specifications X and Y

are order compatible, denoted as X ∼ Y, if XY ↔ YX. ODs in the
form of X ∼ Y are called order compatible dependencies (OCDs)

The empty list of attributes (i.e., []) is order compatible with
any list of attributes. There is a strong relationship between ODs
and FDs. Any OD implies an FD, modulo lists and sets, however,
not vice versa.

LEMMA 2.5. [8, 10] If R |= X 7→ Y (OD), then R |= X → Y

(FD).

Also, there is a correspondence between FDs and ODs.

THEOREM 2.6. [8, 10] R |= X → Y iff X 7→ XY, for any
list X over the attributes of X and any list Y over the attributes of
Y.

ODs can be violated in two ways.

THEOREM 2.7. [8, 10] R |= X 7→ Y (OD) iff R |= X 7→ XY
(FD) and X ∼ Y (OCD).

We are now ready to explain the two sources of OD violations:
splits and swaps [8, 10]. An OD X 7→ Y can be violated in two
ways, as per Theorem 2.7.

Definition 2.8. [8, 10] A split wrt an OD X 7→ XY (FD) is a
pair of tuples s and t such that sX = tX but sY , tY .

Definition 2.9. [8, 10] A swap wrt X ∼ Y (OCD) is a pair of
tuples s and t such that s ≺X t, but t ≺Y s.

Example 2.10. In Table 1, there are three splits with respect to
the OD [position] 7→ [position, salary] because position
does not functionally determine salary. The violating tuple pairs
are t1 and t4, t2 and t5, and t3 and t6. There is a swap with respect
to [salary] ∼ [subgroup], e.g., over the pair of tuples t1 and t2.

2.2 Canonical Forms
Consonni et al. [3] use a native list-based canonical form, which
is based on decomposing an OD into a FD and an OCD [8, 10].
Recall that based on Theorem 2.7 “OD = FD + OCD", as X 7→

Y iff X 7→ XY (FD) and X ∼ Y (OCD). The authors exploit
this relationship to guide their discovery algorithm through order
compatibility. Since they use a list-based representation for ODs,
this leads to factorial complexity of OD discovery in the number
of attributes.

Expressing ODs in a natural way relies on lists of attributes, as
in the SQL order-by statement. One might well wonder whether
lists are inherently necessary. We provide a polynomial mapping
of list-based ODs into equivalent set-based canonical ODs [6, 7].
The mapping allows us to develop an OD discovery algorithm
that traverses a much smaller set-containment lattice (to identify

660

candidates for ODs) rather than the list-containment lattice used
in Consonni et al. [3].

Two tuples, t and s, are equivalent over a set of attributes X
if tX = sX . An attribute set X partitions tuples into equivalence
classes [4]. We denote the equivalence class of a tuple t ∈ r over
a set X as E(tX), i.e., E(tX) = {s ∈ r | sX = tX}. A partition of
r over X is the set of equivalence classes, ΠX = {E(tX) | t ∈ r}.
For instance, in Table 1, E(t1{year}) = E(t2{year}) = E(t3{year}) =
{t1, t2, t3} and Πyear = {{t1, t2, t3}, {t4, t5, t6}}.

We now present a set-based canonical form for ODs.
Definition 2.11. [6, 7] An attribute A is a constant within each

equivalence class over X, denoted as X: [] 7→ A, if Xp 7→ XpA.
Furthermore, two attributes, A and B, are order-compatible within
each equivalence class wrt X, denoted as X: A ∼ B, if XpA ∼

XpB. ODs of the form of X: [] 7→ A and X: A ∼ B are called
(set-based) canonical ODs, and the set X is called a context.

Example 2.12. In Table 1, the attribute bin is a constant in the
context of position (posit) written as {position}: [] 7→ bin,
since E(t1{position}) |= [] 7→ bin, E(t2{position}) |= [] 7→

bin and E(t3{position}) |= [] 7→ bin. Also, there is no swap be-
tween bin and salary in the context of year, i.e., {year}: bin ∼

salary, since E(t1{year}) |= bin ∼ salary and E(t4{year}) |=

bin ∼ salary.

Based on Theorem 2.13 and Theorem 2.14, list-based ODs
in the form of FDs and OCDs, respectively, can be mapped into
equivalent set-based ODs.

THEOREM 2.13. [6, 7] R |= X 7→ XY iff ∀A ∈ Y, R |=

X: [] 7→ A.

THEOREM 2.14. [6, 7] R |= X ∼ Y iff ∀i, j, R |= {X1, ..,Xi−1,
Y1, ..,Yj−1}: Xi ∼ Yj .

A list-based OD can be mapped into an equivalent set of set-
based ODs via a polynomial mapping.

THEOREM 2.15. [6, 7] R |= X 7→ Y iff ∀A ∈ Y, R |=

X: [] 7→ A and ∀i, j, R |= {X1, .., Xi−1, Y1, .., Yj−1}: Xi ∼ Yj .

Example 2.16. The OD [AB] 7→ [CD] can be mapped to the
following equivalent canonical ODs: {A,B}: [] 7→ C, {A,B}: [] 7→
D, {}: A ∼ C, {A}: B ∼ C, {C}: A ∼ D, {A,C}: B ∼ D.

3 COMPLETENESS ANALYSIS
While the theoretical search space for FASTOD [6, 7] is O(2 |R |),
the search space for OCDDISCOVER [3] is O(|R|!), which is
much larger as it traverses a lattice of attribute permutations
(where |R| denotes the number of attributes over a relational
schema R). To mitigate the factorial complexity, the list-based
algorithm in Consonni et al. [3] uses pruning rules. We show
that, despite the authors’ claim that their approach discovers a
canonically complete set of ODs, their pruning rules lead to in-
completeness.

Section 3 in Consonni et al. [3] addresses their completeness
“proof” for their OD discovery algorithm. The authors introduce a
notion of minimality of a set of dependencies which is incorrect.
Herein, a set of dependencies is called minimal—as it is in pre-
vious work on FDs and ODs [4, 6, 7]—if all dependencies that
logically hold over a relation schema R can be inferred from this
minimal (canonical) set of dependencies.2 That is, a set of depen-
dencies M is minimal over a table r, if {X 7→ Y | M |= X 7→ Y}
is equivalent to {X 7→ Y | r |= X 7→ Y}.
2In some previous work [1], minimal dependencies M also satisfy an additional
condition that that no proper subset of M can be used to infer all dependencies.

Thus, one should be able to infer from a minimal set of depen-
dencies via the inference rules (axioms), I, all the dependencies
that are valid over the given instance of the table. That is, {X 7→ Y
| M ⊢I X 7→ Y} is equal to {X 7→ Y | r |= X 7→ Y}. Consonni et
al. [3] use the set of sound and complete OD inference rules, I,
from [9, 10].

Pruning applied by a dependency discovery algorithm, thus,
must respect minimality. This allows for the implicit discovery of
the full set of valid dependencies, and thus be deemed complete.

In [3], an attribute list is minimal if it has no embedded order
dependency (the list of attributes is the shortest possible).

Definition 3.1. [3] An attribute list X is minimal if there is no
other list of attributes X′ such that:
• X′ is smaller than X, and
• X ↔ X′

Example 3.2. [A,B,A] is not minimal as [A,B,A] ↔ [A,B].

It follows then that an OCD is minimal in [3] if and only if
there are no repeated attributes in the OCD. That is, there are no
repeated attributes within the left or within the right list of the
minimal OCD, as each is a minimal attribute list, and there is no
repeated attribute between left and right.

Definition 3.3. [3] An OCD X ∼ Y is minimal if
• X and Y are minimal attribute lists and
• X ∩ Y = ∅.

Definition 3.3 of minimality with no permitted repeated at-
tributes is at the heart of the incompleteness problem of [3], as it
does not allow for the inference of all dependencies that are valid
over the given table. Theorem 3.4 states this, that an OCD with
a common prefix between left and right (repeated attributes) can
hold over a table, while no OCD without repeated attributes holds.
Our proof of Theorem 3.4 is by offering a counter-example to the
completeness premise in [3].

THEOREM 3.4. R ̸ |= Y ∼ Z, R ̸ |= XY ∼ Z and R ̸ |= Y ∼ XZ
do not imply R ̸ |= XY ∼ XZ

Proof
It suffices to construct a table in which the OCD of the form

• XY ∼ XZ
holds, but OCDs

• Y ∼ Z,
• XY ∼ Z, and
• Y ∼ XZ

do not.
Consider Table 3 constructed over attributes A, B and C. In

Table 3, the OCD [A,B] ∼ [A,C] holds, but [B] ∼ [C], [AB] ∼
[C], and [B] ∼ [AC] do not. □

In [3], the authors only show—as is stated in Theorem 3.5
below—that OCDs of the form XY ∼ XZ can be derived from
Y ∼ Z (Theorem 3.5 via Theorem 3.10 in [3]).

THEOREM 3.5. [3] If R |= Y ∼ Z, then R |= XY ∼ XZ

Theorem 3.5 in [3] is true. The flaw in the authors’ logic is that
this theorem proves only one direction (the “if” of an intended “if
and only if”). The “only if” (not proved by the theorem) is implic-
itly assumed as true, while it assuredly is not. It follows that their
claim of canonical completeness for their definition of minimal
OCDs is incorrect (Section 3.3 in [3]). OCDs with common pre-
fixes between their left and right attribute lists are not redundant,
by Theorem 3.4. This leads to an incomplete approach for OD

661

Table 3: Incompleteness of OCDDISCOVER [3].

A B C

t1 0 0 1
t2 1 1 0
t3 2 3 2
t4 3 2 3

T������ 3.10 (C����������� �� ������� OCD � 1).
Y ∼ Z

XY ∼ XZ

P����. By the Shift theorem [21] and the fact that X↔ X by
Re�exivity (AX1):

YZ� ZY
X↔ X

XYZ� XZY

by Normalization (AX3) and Replace [21] XYXZ� XZXY. Anal-
ogously by the Shift theorem [21] starting from ZY� YZ we ob-
tain XZXY� XYXZ. Thus XYXZ↔ XZXY, i.e., XY ∼ XZ ⇤

The following theorem proves that attribute lists with repeated
attributes at the end are also redundant:

T������ 3.11 (C����������� �� ������� OCD � 2).
X ∼ Y

XZ ∼ Y
X ∼ YZ

XZ ∼ YZ

P����. (1) using XY ↔ YX and XZY ↔ YXZ, by Nor-
malization (AX3) XZY ↔ XZYZ and by Replace [21]
YXZ↔ XZYZ;

(2) using XY ↔ YX and XYZ ↔ YZX, by Normalization
(AX3) YZX↔ YZXZ, by Replace [21] YXZ↔ YZX and
by Transitivity (AX4) YXZ↔ YZXZ;

By Transitivity (AX4) YXZ ↔ XZYZ and YXZ ↔ YZXZ
imply XZYZ↔ YZXZ, i.e., XZ ∼ YZ. ⇤

Finally, the following theorem proves that attribute lists with
repeated attributes in the middle are redundant:

T������ 3.12 (C����������� �� ������� OCD � 3).
X ∼M

XY ∼M
X ∼MY

XY ∼MN

XY ∼MYN
P����.

(1) from XY ∼ MN, by Normalization (AX3) XYMYN ↔
MNXY;

(2) from XY ∼M and X ∼MY, using X ∼M and Replace [21]
we get MYX↔ XYM and MXY↔MYX↔ XYM;

(3) from (2), by the Shift theorem [21] with MY↔ MY and
MNXY↔ XYMMYN we get MYMNXY↔MYXYMMYN;

(4) by Normalization (AX3) MYMNXY↔MYNXY;
(5) from MYXYMMYN, using MYX ↔ XYM and Normal-

ization (AX3) we get XYMYMYN and �nally XYMYN;
From points (3), (4) and (5) we �nally get MYNXY↔ XYMYN,
i.e., XY ∼MYN. ⇤

4 THE OCDDISCOVER ALGORITHM
We present now the details of our algorithm, called �����������,
by �rst examining its search strategy to cover all the possible
combinations and then presenting an implementation in pseudo-
code.

AA BB CC

A � CA � CA � BA � B B � CB � C

B � CAB � CABA � CBA � CA � CBA � CBAB � CAB � CA � BCA � BCAC � BAC � B

� = 2� = 2

� = 0� = 0

� = 1� = 1

� = 3� = 3

Figure 1: Permutation tree for a table withn = 3 attributes.

4.1 Column Reduction
Given that the search space grows with the number of columns,
we start our discovery algorithm focusing on the columns show-
ing special properties and we perform two operations: (a) the re-
moval of constant columns; (b) the reduction of order-equivalent
columns. The dependencies provided by these operations are an
integral part of the results provided by our algorithm.

Removal of constant columns. Constant columns generate
a huge amount of ODs; in fact, over an instance r a constant
column C is ordered by any other attribute list X.1 Thus, we
remove all constant columns and we collect the corresponding
dependencies.

Reduction of order-equivalent columns. Order-equivalent
columns asA↔ B describe a relation in which both the directions
of the order dependency hold. By the Replace theorem (Theorem
6, [21]), we can replace any order dependency where A appears
with another dependency with any instance of A replaced with
B, that is:

XAY�MAN⇔ XBY�MBN

We check any combination of order-equivalent dependencies,
i.e. for all A,B ∈ U we verify the validity of A � B and B � A,
and we build the equivalence classes of columns using the Tarjan
algorithm [25].

We choose a representative from each of these equivalence
classes; we then remove all other columns. We store this infor-
mation to later recover the redundant dependencies.

4.2 Search Tree
We use a breadth-�rst search strategy for identifying OCD re-
lations in r ; in this way, shorter minimal dependencies are dis-
covered before longer ones. At the �rst level, we consider the
set of all pairs of single attributes. Given that OCDs are com-
mutative, we build this set by enumerating all the attributes
with A1,A2, . . . ,An and taking all the pairs (Ai ,Aj) such that{(Ai ,Aj) � Ai ,Aj ∈ U , i < j}.

Figure 1 shows the tree T of generated candidates for a relation
r with attributes U = {A,B,C} where all possible candidates are
generated.

Each OCD candidate X ∼ Y is checked for order compatibility;
we are then confronted with two possibilities:

1If C is constant column, the following property holds for any tuple p, q in any
instance r of R: pX ≤ qX ⇒ pC = qC , where the second part of the implication is
always true by de�nition of constant column.

���

Figure 1: Lattice permutation tree for OCDDISCOVER [3].

discovery, as the recovery of the full set of valid dependencies is
not possible.

Details of the OD discovery algorithm, OCDDISCOVER, by
Consonni et al. [3] are presented in their Section 4. Let U be a set
of attributes over a relation schema R. In the first level of the lat-
tice, they generate candidates of the form A ∼ B, where A,B ∈ U

and A , B. (An OCD B ∼ A is not generated as it is equivalent to
A ∼ B.) At each level of the lattice (Fig. 1), if the candidate X ∼ Y
is order compatible, they generate dependencies for the next level
of the lattice. For each attribute not already present in the OCD, for
each attribute A ∈ U \ {X ∪Y}, they add it to the right of each at-
tribute list; i.e., XA ∼ Y and X ∼ YA. Thus, important OCDs with
repeated attributes in a common prefix are never considered (as is
consistent with their incorrect definition of minimality for OCDs).
For example, an OCD [year, month] ∼ [year, week] would be
missed. As a consequence, the authors do not discover ODs with
repeated attributes, such as [year, salary] 7→ [year, bin] (recall
Table 1).

In contrast, our FASTOD algorithm [6, 7] is complete for OD
discovery. It does not miss dependencies with common prefixes.
This is because the algorithm considers as candidates dependen-
cies of the set-based form: OCD {X}: A ∼ B. This is built into
the context of the set-based notation used in [6, 7], and cannot be
missed when using this representation (see Theorem 2.14). Thus,
dependencies with common prefixes are considered.

4 EXPERIMENTAL ANALYSIS
We demonstrate that the experimental analysis in Consonni et
al. [3] that compares their OD discovery algorithm, OCDDIS-
COVER, with ours, FASTOD [6, 7], is incorrect. The authors
misinterpret the set-based canonical representation for ODs as
introduced in [6, 7] and as used in FASTOD. They conflate OCDs
and ODs as we report them when evaluating the results. In [6, 7],
we quantify the numbers of found FDs and OCDs. In [3], they
incorrectly report these as the FDs and ODs, respectively, that
we found. This occurs in their Table 6, where, for instance, they

Table 4: Correctness of implementation for FASTOD [6].

A B C D

t1 1 3 1 1
t2 2 3 3 2
t3 2 3 2 2
t4 2 5 2 2
t5 3 1 2 3
t6 4 4 4 2
t7 4 5 3 2

report 400 ODs and 89,571 FDs found by FASTOD, whereas this
should be 400 OCDs and 89,571 FDs, respectively.

As a consequence of this misunderstanding of the set-based
canonical representation for ODs [6, 7], the authors in [3] claim
that the implementation of FASTOD finds ODs that are not present
in the data. As an example of this, they provide the OD [B] 7→
[A,C] over Table 4 [3]. However, the FASTOD algorithm imple-
mentation in question finds the following ODs with respect to
Table 4, where clearly the OD [B] 7→ [A,C] is not present.

(1) OCD {D}: A ∼ C
(2) OCD {C}: A ∼ D
(3) FD {A}:[] 7→ D
(4) OCD {B}: A ∼ D
(5) OCD {B}: C ∼ D
(6) OCD {B}: A ∼ C
(7) FD {B,C}:[] 7→ D
(8) FD {B,C}:[] 7→ A
(9) FD {A,B}:[] 7→ C

(10) OCD {C,D}: A ∼ B

The authors confuse the OCD {B}: A ∼ C with the OD
[B] 7→ [A,C]. Consequently, they falsely assert that the reason
the number of ODs found by OCDDISCOVER and FASTOD
differ is due to an error in the implementation of FASTOD that
we provided them.3 The real reason that the number of reported
dependencies differ, however, is, that OCDDISCOVER [3] is in-
complete. The claim that they outperform the state-of-art despite
a much worse asymptotic complexity, when tested in practice on
real datasets, is invalid.

The authors in Consonni et al. [3] also state that FASTOD
considers all columns to be of type string, while their code also
considers real and integer numbers. While a minor point, we
wish to clarify that the implementation we sent the authors does
discover ODs over data types including real and integer numbers.
The dependencies 1–10 reported in Table 4 remain the same,
regardless of using numerical or string data type, given that the
values are in the range of 1 to 5.

5 CONCLUSIONS
In this article, we have conducted a detailed analysis of the cor-
rectness of the results in the recent article by Consonni et al. [3]
concerning the order dependency discovery problem. We have
shown that, for the main claimed results related to the OD discov-
ery problem, there are fundamental errors and omissions in the
proof or experiments.

3While Consonni et al. [3] state that they were not able to isolate and resolve
the root cause of what they felt was incorrect behavior in the implementation of
FASTOD (which we had provided to them at their request for “ensuring fairness and
reproducibility”), they never contacted us to help resolve it.

662

REFERENCES
[1] C. Beeri and P.A Bernstein. 1979. Computional Problems Related to the Design

of Normal Form Relational Schemas. TODS 4, 1 (1979), 30–59.
[2] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. 2007. Improving Data Quality:

Consistency and Accuracy. In VLDB. 315–326.
[3] C. Consonni, P. Sottovia, A. Montresor, and Y. Velegrakis. 2019. Discovering

Order Dependencies through Order Compatibility. In EDBT. 409–420. https:
//doi.org/10.5441/002/edbt.2019.36

[4] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen. 1998. Efficient Discov-
ery of Functional and Approximate Dependencies Using Partitions. In ICDE.
392–401.

[5] P. Langer and F. Naumann. 2016. Efficient Order Dependency Detection. VLDB
J. 25, 2 (2016), 223–241.

[6] J. Szlichta, P. Godfrey, L. Golab, M. Kargar, and D. Srivastava. 2017. Effective
and Complete Discovery of Order Dependencies via Set-based Axiomatization.
PVLDB 10, 7 (2017), 721–732.

[7] J. Szlichta, P. Godfrey, L. Golab, M. Kargar, and D. Srivastava. 2018. Effective
and Complete Discovery of Bidirectional Order Dependencies via Set-based
Axiomatization. VLDB J. 27, 4 (2018), 573–591.

[8] J. Szlichta, P. Godfrey, and J. Gryz. 2012. Fundamentals of Order Dependencies.
PVLDB, 5(11): 1220-1231 (2012).

[9] J. Szlichta, P. Godfrey, J. Gryz, W. Ma, W. Qiu, and C. Zuzarte. 2014. Business-
Intelligence Queries with Order Dependencies in DB2. In EDBT, 750-761.

[10] J. Szlichta, P. Godfrey, J. Gryz, and C. Zuzarte. 2013. Expressiveness and
Complexity of Order Dependencies. PVLDB 6(14): 1858-1869 (2013).

663

	Errata Notes
	Erratum for Discovering Order Dependencies through Order Compatibility (EDBT 2019)Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, Mehdi Kargar, Divesh Srivastava

