
A Nested Decomposition Model for
Reliable NFV 5G Network Slicing
Huy Duong and Brigitte Jaumard

Computer Science and Software Engineering, Concordia University
Montreal, QC, Canada

bjaumard@cse.concordia.ca

ABSTRACT

With the 5th generation ofmobile networking (5G) on our doorstep,
optical network operators are reorganizing their network infras-
tructures so that they can deploy different topologies on the same
physical infrastructure on demand. This new paradigm, called
network slicing, together with network function virtualization
(NFV), can be enabled by segmenting the physical resources based
on the requirements of the application level.

In this paper, we investigate a nested decomposition scheme
for the design of reliable 5G network slicing. It involves revisit-
ing and improving the previously proposed column generation
models, and adding in particular the computation of dual bounds
with Lagrangian relaxation in order to assess the accuracy of the
solutions.

Extensive computational results show thatwe can get ε-optimal
reliable 5G slicing solutions with small ε (about 1% on average)
in fairly reasonable computational times.

1 INTRODUCTION

The 5th generation of mobile networking (5G) is based on the
key technologies of Software-Defined Networking (SDN) and
Network Function Virtualization (NFV) in order to offer multiple
services with various performance requirements, e.g., low latency,
high throughput, high reliability, or high security. SDN allows
network operators to remotely (re)configure the physical network
in order to reserve on demand networking resources. Virtual
compute nodes (i.e., node with computing resources such as
servers or a data center) can enable Virtual Network Functions
(VNFs) running on top of general-purpose hardware, such as a
cloud infrastructure.

Within the context of 5G networks, network slicing is an end-
to-end logical network provisioned with a set of isolated virtual
resources on a shared physical infrastructure. Slices are provided
as different customized services to fulfill dynamic demands, with
flexible resource allocations. In other words, a network slice is a
self-contained network with its own virtual resources, topology,
traffic flow, and provisioning rules. Network slicing is therefore
a key feature of 5G networks, which allows the efficient resource
share of a common physical infrastructure and consequently,
reduces operators’ network construction costs.

An interesting feature of SDN is its ability to process traf-
fic while forwarding it, using "network functions" or "network
services". The latter ones can implement header processing and
payload processing functions, such as network address transla-
tion (NAT), firewall, or domain name system (DNS). They are
called Virtual Network Functions (VNFs) and can be implemented
in software on conventional processing systems (e.g., servers or
data centers) that are co-located with networking equipment.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

The sequence of functions that need to be set up for a specific
flow is referred to as a "service chain."

In this paper, we propose a 5G network slicing design model
and algorithm, based on nested column generation. It aims at
maximizing the number of granted slices while addressing the
reliability requirements of network slices. In order to avoid the
costly exact solutions of the sub-problems, we discuss how to
compute bounds using Lagrangian relaxation, so that we can
assess the accuracy of the output solutions.

The paper is organized as follows. Section 2 contains the liter-
ature review. Section 3 provides the detailed problem statement
of the design of reliable 5G network slicing. An original nested
decomposition model is proposed in Section 4. Algorithmic as-
pects are covered in Section 5. Numerical results are described in
Section 6 and conclusions are drawn in the last section.

2 LITERATURE REVIEW

2.1 5G Network Slicing

Several papers and surveys have already appeared on 5G network
slicing and described their various challenges and opportunities
[1, 14]. Similarly, many studies and several surveys have been
devoted to Network Function Virtualization (NFV), e.g., [20].

Very few studies look at the combination of reliable 5G slicing
and NFV. Tang et al. [18] propose an MILP for 5G network slicing
that maximizes the number of granted slices while minimizing
their failure rate, without providing protection mechanisms.

Some authors looked at network slicing andNFV,more often in
the wireless networks than in the wired optical ones. Challenges
are discussed in, e.g., [10, 14].

Lin et al. [11] propose an exact algorithm using column gen-
eration aiming to minimize the total embedding cost in terms
of spectrum cost and computation cost for a single virtual net-
work request. Moreover, validation of the exact algorithm is made
on a six node network. Large data instances are solved using a
heuristic. Destounis et al. [3] also propose an exact column gen-
eration algorithm for network slicing without the NSF features.
They solved data instances up to 200 nodes. Carella et al. [2]
exemplified Network slicing as an addition to the current Cloud
architecture and evaluated on a testbed architecture based on
the Fraunhofer FOKUS and TU Berlinopen source Open Baton
toolkit.

2.2 Nested Column Generation

Decomposition

The idea of nested column generation is not new: several authors
have already investigated it for various problems, e.g., Song [17]
in logistics, Dohn and Mason [4] for staff rostering, Karabuk
[8] for scheduling paratransit vehicles and Vanderbeck [19] for
two-dimension cutting-stock.

However, most studies did not worry about assessing accu-
rately the quality of the output solutions, except, e.g., [6, 19].

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 107 DOI: 10.5441/002/inoc.2019.20

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.20

SFC 1 Slice (smartphones)

SFC 2 Slice (autonomous driving)

SFC 2 Slice (IoT)

ClassifierClassifier

SRC
node

DST
node

proxy

firewall

NAT

Classifier

Backup path

Physical network

Optical network virtualization

Physical
mapping

of the
working route

Physical
mapping

of the
backup route

Figure 1: 5G Reliable Slicing

3 PROBLEM STATEMENT AND NOTATIONS

3.1 Rel_5G_NFV Problem Statement

Consider a physical network Gp and a set K of connections, in-
dexed by k . The Reliable 5G NFV Network Slicing (Rel_5G_NFV)
problem consists of embedding/mapping the maximum number
of slices onto the physical network while ensuring each slice
is individually protected against any single link failure. We as-
sume each slice is associated with a given application, that is
characterized with the use of a single service function chain.

3.2 Notations

Physical Network. The physical network Gp = (V p,Lp) is de-
fined by its set of nodes V p, indexed by v , set of links ℓ ∈ Lp,
with capacities capv ≥ 0 and capℓ ≥ 0 on both nodes and links,
respectively.
5G Slicing. Each slice S ∈ S is associated with a virtual network
S = (V S ,LS , capS), which is defined by a set of virtual nodes
V S (indexed by v ′), and virtual links LS (indexed by ℓ′), with
capacity requirements capSv ′ and capS

ℓ′
, respectively.

Virtual Networks. An embedding of S ontoGp consists of map-
ping:

• Each virtual node v ′ ∈ V S onto a physical node v ∈ V p

• Each virtual link ℓ′ onto a loop-free physical path, con-
necting two physical nodes u and v , to which the virtual
nodes u ′ and v ′ have been mapped

• Each virtual "path" is protected by a virtual path, whose
mapping is physical link-disjoint from the mapping of the
first path,

in order to maximize the GoS.
A feasible embedding is an embedding in which all physical

link and node capacity constraints are satisfied; that is, the sum
of capacity demands of all virtual nodes embedded on a physical
node is less than the capacity of this physical node, and the sum
of the requests of all the virtual links going through a physical
link does not exceed the capacity of this link.

In order to simplify the model and the algorithm, we work
directly with the mapping of the virtual nodes/links, i.e., with
physical nodes/links, without expressing explicitly the virtual
links and nodes.
Service Function Chaining. Let F be the set of all services
functions, indexed by f , and let C be the set of all service func-
tion chains, indexed by c . Any chain c is defined by an ordered
sequence of nc functions: c = { f0, f1, .., fnc−1}. The routing of
any demand in a slice governed by SFC c must go through virtual
compute nodes hosting the functions of c .

Application (Slice) Demand. Demands are provided for each
slice S , with each slice being associated with one particular appli-
cation, characterized by a given Service Function Chain (SFC) cS .
We denote by Ksd,cS the demand for node pair (vs ,vd) ∈ SDcS ,
i.e., with traffic in slice S , subject to the requirement of SFC cS ,
and by ∆sd,cfi

the required computational resource of function fi

for demand Ksd,cS .

4 A NESTED DECOMPOSITION SCHEME

We now present a nested decomposition scheme, in which at the
upper layer of the decomposition, we select the slice configura-
tions for each slice demand. Each slice configuration is defined
by a virtual network as defined in Section 3.2, which satisfies
the demand KcS associated with its required application and
corresponding SFC cS .

Let Γ, indexed by γ , be set of all possible slice configurations.
Each slice configuration γ is characterized by a slice S and its
assigned resources. Each slice configuration γ is characterized
by its slice index S , its node assigned resources Rγv , and its link
assigned resources Bγ

ℓ
. We have Γ =

⋃
c ∈C

ΓcS .

In order to simplify the notations, we will simply write c unless
there is confusion.

4.1 Master Problem

Master problem maximizes the grade of service (GoS) subject to
capacity constraints. It requires only one set of variables: zγ = 1
if potential slice virtual network γ associated with c is selected,
0 otherwise, for γ ∈ Γc and c ∈ C .
Objective:

max
∑
c ∈C

∑
γ ∈Γc

∑
(s,d)∈SDc

Ksd,c zγ (1)

subject to: ∑
γ ∈Γc

zγ ≤ 1 c ∈ C (2)∑
c ∈C

∑
γ ∈Γc

R
γ
vzγ ≤ capv v ∈ V p (3)∑

c ∈C

∑
γ ∈Γc

B
γ
ℓ
zγ ≤ capℓ ℓ ∈ Lp (4)

zγ ∈ {0, 1} γ ∈ Γ (5)

Constraints (2) impose to select at most one virtual network
(slice) for demand associated with c ∈ C . Constraints (3) enforce
the compute node capabilities, while constraints (4) enforce the
link transport capacities.

4.2 Slicing Pricing Problem (PPslice)

In order to be able to compute the required node and link resource
for a given slice, the pricing problem, or equivalently, the slice
configuration generator, needs to provision the demand Kc . We
define the following parameters.
Parameters:

• π ∈ Π: a logical path that defines a service path with chain
c from s to d . Note that a logical path may go through a
given physical link several times due to the sequence of
functions in c .

• Πc
sd ⊆ Π: set of all potential paths for service chain c from

s to d .

108

• ai,πv = 1 if, on path π , function fi is hosted on physical
node v , 0 otherwise.

• δπ
ℓ
= number of times path π goes through link ℓ

• xπ
ℓ
= 1 if logical path π goes through physical link ℓ at

least once, 0 otherwise.
Variables:

• ysd,cπ ,p = 1 if path π is the primary path to provision traffic
from s to d , 0 otherwise.

• ysd,cπ ,b = 1 if path π is the backup path to provision traffic
from s to d , 0 otherwise.

Objective:

max RCPPslice =
∑

(s,d)∈SD

Ksd,c − u
(2)
c

−
∑
v ∈V p

u
(3)
v

∑
(s,d)∈SD

nc−1∑
i=0

∑
π ∈Πcsd

∆sdfi
ai,πv (ysd,cπ ,p + y

sd,c
π ,b)

−
∑
ℓ∈Lp

u
(4)
ℓ

∑
(s,d)∈SD

∑
π ∈Πcsd

Ksd,cδπℓ (y
sd,c
π ,p + y

sd,c
π ,b) (6)

Constraints:

One primary path per demand:∑
π ∈Πcsd

ysd,cπ ,p = 1 (vs ,vd) ∈ SD (7)

One backup path per demand:∑
π ∈Πcsd

ysd,cπ ,b = 1 (vs ,vd) ∈ SD . (8)

Link disjoint primary and backup paths:∑
π ∈Πcsd

xπℓ (y
sd,c
π ,p + y

sd,c
π ,b) ≤ 1 (vs ,vd) ∈ SD, ℓ ∈ Lp. (9)

Link and node capacities:

(Rv =)
∑

(vs ,vd)∈SD

nc−1∑
i=0

∑
π ∈Πcsd

∆sdfi
ai,πv (ysd,cπ ,p + y

sd,c
π ,b)

≤ capv v ∈ V p (10)

(Bℓ =)
∑

(vs ,vd)∈SD

∑
π ∈Πcsd

Ksd,cδπℓ (ysd,cπ ,p + y
sd,c
π ,b)

≤ capℓ ℓ ∈ Lp. (11)

4.3 Path Pricing Problem (PPsd): Service path

for Demand from vs to vd
For a given (vs ,vd) ∈ SD, we look for the generation of a path
π from vs to vd , which can improve the linear programming
relaxation of PPslice.
Variables:

• xπ
ℓ
= 1 if path π uses ℓ, 0 otherwise.

• δπ
ℓ
= number of times path π goes through ℓ.

• φsd,c,i
ℓ

= 1 if, for service chain c , the path from vs to vd
uses link ℓ to go from the location of function fi−1 to the
location of function fi , 0 otherwise. Note that, when i = 0,
φsd,c,i
ℓ

represents the path from the source to the first
function, when i = nc , it is the path from the last function
to the destination.

• aiv = 1 if the ith function (fi) of chain c is installed on
node v , 0 otherwise.

Objective:

max

(
−

∑
v ∈V p

u
(3)
v

nc−1∑
i=0

∆sdfi
ai,πv −

∑
ℓ∈Lp

u
(4)
ℓ
Ksd,cδπℓ)

)
− u

(7)
sd,p −

∑
ℓ∈Lp

xπl u
(9)
sd

−
∑
v ∈V

nc−1∑
i=0

∆sdfi
aivu

(10)
v −

∑
ℓ∈L

u
(11)
ℓ

Ksd,cδπℓ (12)

Constraints:

Aggregation of link usage:

δπℓ =

nc∑
i=0

φsd,c,i
ℓ

ℓ ∈ Lp. (13)

Multiple usage of a link:

φiℓ ≤ xπℓ ℓ ∈ Lp, i ∈ 0, ..,nc − 1. (14)

This set of constraints ensures that xℓ keeps track of physical
link ℓ if it is used by any logical link. Indeed, a link can be used
multiple times by a given path, this set of constraints result xℓ
as used links, no matter how many times they are used. These
variables play the role in the upper pricing where backup path
and primary path must be disjoint.

Flow Conservation constraints∑
ℓ∈ω+(v)

φsd,c,0
ℓ

−
∑

ℓ∈ω−v

φsd,c,0
ℓ

+ asd,c,0v

=

{
1 if v = vs
0 else

v ∈ V p (15)∑
ℓ∈ω+(v)

φsd,c,nc
ℓ

−
∑

l ∈w−v

φsd,c,nc
ℓ

− asd,c,nc−1v

=

{
−1 if v = vd
0 else

v ∈ V p (16)∑
ℓ∈ω+(v)

φsd,c,i
ℓ

−
∑

ℓ∈ω−(v)

φsd,c,i
ℓ

+ asd,c,iv − asd,c,i−1v = 0

v ∈ V p, 0 < i < nc . (17)

Constraints (15) ensure that demand starts at the source node,
then is transferred through a path to the location of first function
(unless first function is located at the source node). Similarly,
constraints (16) make sure that the demand is delivered to the
destination after it is processed by the last function (unless the last
function is installed at the destination node). From the location
of function i − 1 to the location of function i , constraints (17)
define a path to connect them.

We next use constraints to eliminate the ineffective solutions
and, as a consequence, those constraints help to improve the
quality of the columns, i.e., slice configurations.
A unique node location for each function occurrence in the ser-
vice chain: ∑

v ∈V p
aiv = 1 i = 0, 1, . . . ,nc . (18)

If a link is not used, its corresponding xℓ can be set to zero:

xℓ ≤ δπℓ ℓ ∈ Lp (19)

Domain constraints:

xπℓ ,φ
π
ℓ ,a

i
v ∈ {0, 1}; δπℓ ∈ Z+ (20)

109

Node capacity constraints:

nc−1∑
i=0

∆fia
i
v ≤ capv v ∈ V p (21)

Link capacity constraints:

δπℓ K
sd,c ≤ capℓ ℓ ∈ Lp. (22)

We will discuss in the next section how to solve efficiently
the path pricing problems, without requiring the solution of ILP
programs at each iteration of the column generation algorithm.

5 NESTED COLUMN GENERATION

ALGORITHM

Column generation [9] is based on the fact that, in the simplex
method, the solver does not need to simultaneously access all
variables of the problem. In fact, a solver can start working only
with the basis (a particular subset of the constrained variables),
then use a reduced cost to choose the other variables to access,
as needed. It is today a very well known and powerful technique
[5, 12], while column generation modeling remains an art when
the decomposition is not deduced from the application of the
Dantzig-Wolfe decomposition.

We next provide the details of our nested column generation
algorithm and how we estimated the accuracies of the resulting
solutions.

5.1 Nested CG and ILP Solution

The conceptual column generation scheme alternates between
solving a restriction of the original problem, usually called re-
stricted master problem, and a column generation phase which
is used to augment the set of variables/columns of the restricted
master problem using a so-called pricing problem. Here, the
pricing problem can be decomposed into |S| slice pricing sub-
problems.

In order to guarantee reaching an optimal LP solution, it is
required to solve at least once the pricing problem. In this study,
we propose to solve the slice pricing problem, indeed, the slicing
pricing subproblems using again a column generation algorithm.
As these last subproblems are Integer Linear Programs (ILPs),
and as we did not develop any branch-and-price algorithms to
solve them, they are never solved optimally, and therefore we
need to derive a linear relaxation bound in order to get upper
bounds, see next section for the details.

In any case, at both decomposition levels, we use the column
generation algorithm as long as we can derive new improving
columns. For integer solutions, when we cannot improve any-
more the LP solution, we use an ILP solver on the current con-
straint matrix, i.e., the constraint matrix made of all the columns
generated so far, and deduce an ILP solution.

Flowcharts in Figure 2 summarize the algorithm. Accuracy
of the output solutions is assessed with ε , which is defined as
follows:

ε =
zlp − z̃ilp

z̃lp
,

where zlp is an upper bound the LP solution of problem (1)-(5),
whose calculation is developed in Section 5.2. z̃ilp is the best
found ILP solution (hence a lower bound on the ILP solution), as
derived by the solution of the ILP solver on the constraint matrix
of (1)-(5) when no more improved column can be generated by
the solution of the slice pricing problem (6)-(11).

Values
of the
dual

variables

ε-optimal
LP

solution

ε'-optimal 5G
reliable slicing

solution

Optimality
condition
satisfied?

Generation of new potential slice configurations

Selection of the
best slice

configurations

Yes

NoInitial
set of

configu
rations

…………………………………..PP"#$%& PP□PP□

(a) Upper level flowchart

…………………………………..

Weighted
shortest path

problem

Values
of the
dual

variables

optimal LP solution
for PPslice

ε-optimal ILP solution
for PPslice

Optimality
condition
satisfied

for all sd?

Generation of new potential path configurations
Selection of the

best NFV (primary
or backup) path
configurations

Yes

NoInitial set
of paths
(e.g., 1

shortest
path)

PP"#PP□ PP□

(b) Lower level flowchart

Figure 2: Flowcharts

In order to speed-up the solution of the path pricing subprob-
lems, we first use a shortest path algorithm after noting that all
the link costs are positive, taking into account the values of the
dual variables. It is worth noting that the usage of a shortest path
algorithm does not necessarily guarantee the generation of feasi-
ble lightpaths with respect to link and node capacities. However,
those capacities are enforced in the slice pricing subproblems,
and therefore taken care. When the path pricing subproblems
are not able to generate improving paths (i.e., with a negative
reduced cost), then we use an ILP solver to solve them, with the
guarantee to satisfy all node and link capacities.

5.2 Solution Accuracy

The nested column generation framework allows the efficient
exploitation of the substructures of a problem at the expense
of a more difficult exact solution of the linear programming
relaxation as it a priori requires the exact solution of the upper
level pricing problem (here the slice PPslice pricing problem), i.e.,
a branch-and-price algorithm. In order to overcome that difficulty,
we propose to compute an upper bound on the objective (i.e.,
reduced cost) of the PPslice problem, and then deduce an upper
bound on the optimal LP solution of the Rel_5G_NFV master
problem (1)-(5). It then allows the evaluation of the accuracy
(gap) of output ILP solutions using the algorithm described in
the previous section.

Consider the compact formulation associated with (1)-(5), i.e.,
the compact model such that when applying a Dantzig-Wolfe
decomposition to it, we derive model (1)-(5). Let

[compact] max{cx : Ax ≤ b,x ∈ X }.

110

Using the Dantzig-Wolfe decomposition of Model compact,
the slicing pricing problem, PPslice, can be written as follows:

RC⋆
PPslice = max

{
c x : x ∈ X pricing} . (23)

We simply write RC to shorten RCPPslice when there is no ambi-
guity so that RC⋆

PPslice = RC⋆.
In Figure 3, we rank the relative positions of the various values

that we discuss below. Question marks indicate values that are
not computed accurately, and that are upper/lower bounded.

The Lagrangian relaxation of the compact Model can be writ-
ten:

LR(u) = max
x ∈X

L(u,x) = ub + (c − uA)x︸ ︷︷ ︸
RC(u,x)

 . (24)

Following Vanderbeck [19] and Pessoa et al. [15], a valid up-
per bound for the compact problem can be computed using
Lagrangian Relaxation (LR). At any iteration τ of the column gen-
eration algorithm, i.e., when we re-optimize the linear relaxation
of the master problem (1)-(5), the optimal xRC⋆ that maximizes
L(uτ ,xRC⋆) can be written:

xRC⋆ = argmax
x ∈X

L(uτ ,x) = argmax
x ∈X

RC(uτ ,x)

= argmax
i ∈I

RC(uτ ,x i) = arg max
x ∈X pricing

RC(uτ ,x),

where x i , i ∈ I denote the extreme points of X , see [13], Section
II.3.6.

As xRC⋆ is known only if we solve PPslice exactly, we can
bound it in order to get an upper bound, zlp, on the optimal value
of the linear programming relaxation. Indeed, RC⋆,τ

ilp ≤ RC⋆,τ
lp ,

where RC⋆,τ
lp is the optimal value of the LP relaxation of PPslice

at iteration τ of the column generation algorithm.
Consequently, L(uτ ,xRC⋆) = uτb+RC⋆,τ

ilp ≤ uτb+RCτlp = zτlp.

"̃#$% "̃$% ̅"$%
"#$%∗ =? "$%∗ =? LR ,-, /01∗ =?

Figure 3: Ranking of the various LP, LR and ILP values.

At each iteration τ of the column generation algorithm, each
pricing problem is decomposed into |S| elementary slice pricing
problems of the type PPslice. It implies:

zτlp = uτb +
∑
S ∈S

RC⋆
lp (PPslice(S)) .

Note that the Lagrangian relaxation upper bound does not im-
prove monotonically [15], thus, in order to derive the best possi-
ble upper bound, the algorithm must compute

zlp = min
τ

zτlp = min
τ

max
S ∈S

RC⋆,τ
lp (PPslice(S)) .

It remains possible to add several columns (i.e., slices) at a time
(whose R̃Cτilp (PPslice(S)) > 0) to the master problem (1)-(5) in
one iteration, as long as they are generated with the same set
of dual values. Note that output ILP solutions of PPslice(S) are
not guaranteed to be optimal, hence the notation R̃C to denote
a heuristic solution of the slice pricing problem. Indeed, the
algorithm has to go through all slice subproblems in each iteration
to ensure the correctness of the Lagrangian bound.

6 NUMERICAL RESULTS

We implemented the model and algorithm described in the pre-
vious sections with a C++ program on a Linux computer with
773727 MB RAM and Intel Xeon E5-2687W v3 @ 3.10 GHz 2
processors, 20 cores. We first describe the data sets, and then we
report on the performance of the algorithm.

6.1 Data Sets

We considered two topologies from SNDLib [16] and their char-
acteristics are described in Table 1. We re-use the traffic matrix
of [7] with four SFCs. In order to derive slice demand, for each
original SFC in [7], we divided the overall traffic in 4 subsets,
resulting into traffic demands for 16 slices. Transport capacities
were set with the optimal solution when allowing only one NFV
node.

Table 1: Data sets

Topologies # # # connections # Offered
nodes links per slice slices load

internet2 10 34 90 16 1Tb
atlanta 15 44 210 16 1Tb

6.2 Model and Algorithm Efficiency and

Accuracy

We conducted experiments with the same link transport capaci-
ties, and increased node capacities as we increase the number of
NFV (compute) nodes. Corresponding accuracies and computa-
tional times (seconds) are reported in Table 2. We observe that
resulting accuracies are less than 3% except for 4 cases where
the gap can reach up to 5.6%. Data Instances are easier to solve
as the number of NFVs is increasing, and computational times
are fairly reasonable taking inot account the accuracies and the
complexity of the design problem of reliable 5G network slicing.

Table 2: Nested CG performance

NFV internet2 atlanta
nodes gap (%) CPU gap (%) CPU

1 3.8 454.9 5.6 991.8
2 3.4 574.2 4.3 4,215.9
3 0.4 89.4 2.9 1,040.2
4 0.4 65.7 2.9 1,010.1
5 0.4 89.9 2.9 578.3
6 0.4 36.3 2.9 582.9
7 0.4 36.6 0.0 651.5
8 0.1 158.8 2.9 758.5
9 0.1 34.8 0.1 601.3
10 0.1 35.1 0.0 561.5
11 - - 0.0 442.5
12 - - 0.0 572.6
13 - - 0.0 524.8
14 - - 0.1 554.3
15 - - 0.0 557.8

111

6.3 Network Spectrum Usage

We investigated how the network spectrum is used when the
number of nodes with compute capacities is increasing, i.e., when
there aremore network functions distributed all over the network.
We provide the results for the atlanta topology in Figure 4.

Plots of Figure 4 show that it is more or less the same subset
of links which are the most loaded, but their load vary with the
number and location of the NFVs, and the increase of the overall
network load when the number of NFVs is increasing. Sometimes
we see a drop in the load of a link, which is explained by the
increase and position of more NFVs. In conclusion, dimensioning
of the link is very dependent on the number and location of the
NFVs.

0 10 20 30 40
10

20

30

40

50

60

70

80

90

100

Link ID

1 NFV 8 NFVs 15 NFVs

Figure 4: Physical Link Load - atlanta Topology

We also investigated the throughput evolution when the num-
ber of NFV nodes increases and results are depicted in Figure 5
for the atlanta network. We observe that as soon as we reach
four or five NFV nodes, then the throughput does not increase
significantly anymore.

7 CONCLUSIONS

We designed a first efficient nested decomposition scheme for
reliable 5G slicing. Future work will include several algorithmic
enhancements such as parallel solutions of pricing problems
and greedy heuristics to generate an initial solution (i.e., initial
columns at both decomposition levels).

ACKNOWLEDGMENTS

B. Jaumard has been supported by a Concordia University Re-
search Chair (Tier I) on the Optimization of Communication
Networks and by an NSERC (Natural Sciences and Engineering
Research Council of Canada) grant.

REFERENCES

[1] M.S. Bonfim, K.L. Dias, and S.F.L. Fernandes. 2019. Integrated NFV/SDN
Architectures: A Systematic Literature Review. Journal ACM Computing
Surveys (CSUR) 51, 6 (2019), xxx – xxx.

0 2 4 6 8 10 12 14 16
0

200

400

600

800

1,000

NFV Nodes

LR Bound
LP Solution
ILP Solution

Figure 5: Throughput evolution with an increasing num-

ber of NFV nodes

[2] G. Carella, M. Pauls, A. Medhat, L. Grebe, and T. Magedanz. 2017. A Net-
work Function Virtualization framework for Network Slicing of 5G Networks.
In Mobilkommunikation–Technologien und Anwendungen. ITG-Fachtagung,
Osnabrück, Deutschland, 1–7.

[3] A. Destounis, G. Paschos, S. Paris, J. Leguay, L. Gkatzikis, S. Vassilaras, M.
Leconte, and P. Medagliani. 2018. Slice-based column generation for network
slicing. In Annual Joint Conference of the IEEE Computer and Communications
Societies - INFOCOM. IEEE, Honolulu, HI, USA, 1–2.

[4] A. Dohn and A. Mason. 2013. Branch-and-price for staff rostering: An efficient
implementation using generic programming and nested column generation.
European Journal of Operational Research 230 (2013), 157–169.

[5] J.B. Gauthier, J. Desrosiers, and M.E. Lübbecke. 2018. Vector Space Decom-
position for Solving Large-Scale Linear Programs. Operations Research 66, 5
(2018), 1376–1389.

[6] F. Hennig, B. Nygreen, and M.E. Lübbecke. 2012. Nested Column Generation
Applied to the Crude Oil Tanker Routing and Scheduling Problem with Split
Pickup and Split Delivery. Naval Research Logistics 59 (April âĂŘ June 2012),
298–310. Issue 3âĂŘ4.

[7] N. Huin, B. Jaumard, and F. Giroire. 2018. Optimal Network Service Chain
Provisioning. IEEE/ACM Transactions on Networking 26, 3 (June 2018), 1320–
1333.

[8] S. Karabuk. 2009. A nested decomposition approach for solving the paratransit
vehicle scheduling problem. Transportation Research Part B 43 (2009), 448–465.

[9] L.S. Lasdon. 1970. Optimization Theory for Large Systems. MacMillan, New
York.

[10] X. Li, M. Samaka, H.A. Chan, D. Bhamare, L. Gupta, C. Guo, and R. Jain.
2017. Network Slicing for 5G: Challenges and Opportunities. IEEE Internet
Computing 21, 5 (2017), 20–27.

[11] R. Lin, S. Luo, J. Zhou, S. Wang, B. Chen, X. Zhang, A. Cai, W.-D. Zhong,
and M. Zukerman. 2018. Column generation algorithms for virtual network
embedding in flexi-grid optical networks. Optics Express 26, 8 (Apr 2018),
10898–10913.

[12] M.E. Lübbecke and J. Desrosiers. 2005. Selected Topics in Column Generation.
Operations Research 53 (2005), 1007–1023. Issue 6.

[13] George L. Nemhauser and Laurence A.Wolsey. 1988. Integer and Combinatorial
Optimization. Wiley, New York.

[14] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J.J. Ramos-Muñoz, J. Lorca, and J.
Folgueira. 2017. Network Slicing for 5G with SDN/NFV: Concepts, Architec-
tures and Challenges. IEEE Communications Magazine 55 (2017), 80–87. Issue
5.

[15] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. 2018. Automation and
Combination of Linear-Programming Based Stabilization Techniques in Col-
umn Generation. INFORMS Journal on Computing 30, 2 (2018), 339–360.

[16] SNDlib. 2005. Germany50 Problem. http://sndlib.zib.de/home.action/. (October
2005).

[17] S.H. Song. 2009. A nested column generation algorithm to the meta slab
allocation problem in the steel making industry. Journal International Journal
of Production Research 47, 13 (2009), 3625–3638.

[18] L. Tang, G. Zhao, C. Wang, P. Zhao, and Q. Chen. 2018. Queue-aware reli-
able embedding algorithm for 5G network slicing. Computer Networks 146
(December 2018), 138 – 150.

[19] F. Vanderbeck. 2001. A Nested Decomposition Approach to a Three-Stage,
Two-Dimensional Cutting-Stock Problem. Management Science 47, 6 (2001),
864–879.

[20] B. Yi, X. Wang, K. Li, S.K. Das, and M. Huan. 2018. A comprehensive survey of
Network Function Virtualization. Computer Networks 133 (2018), 212 – 262.

112

	A Nested Decomposition Model for Reliable NFV 5G Network SlicingHuy Quang Duong, Brigitte Jaumard

