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ABSTRACT

The pooling problem is a frequently studied extension of
the traditional minimum cost flow problem, in which the
composition of the flow is subject to restrictions. In a net-
work consisting of three layers of nodes, the composition
is given at the source layer. In the intermediate nodes,
referred to as pools, the composition is a weighted av-
erage of the compositions in entering flow streams. The
same is true at the sink layer, where upper bounds on
the concentration of each component apply. Motivated by
practical applications, and needs for heuristic methods for
the standard pooling problem, the current work focuses
on pooling problems where the flow graph is restricted to
satisfy certain sparsity conditions. We consider in partic-
ular the requirements that each pool receives flow from
at most one neighboring source, or sends flow to at most
one neighboring sink. We prove that the pooling problem
remains NP-hard after this and other similar extensions.
It is also demonstrated how the single-flow constrained
extensions can be modeled by means of mixed integer lin-
ear programming (MILP), without introducing bilinear
terms. We also show that such MILP-models are useful for
computing good feasible solutions to the original problem.
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1 INTRODUCTION

Most network flow models are built upon considerations
of the flow as a homogeneous commodity. In many indus-
trial settings, it is however essential to reflect variation in
composition that may occur across the network. Contami-
nation levels of crude oils supplied to a refinery depend on
their sources of origin. Proportions in which major compo-
nents of natural gas, such as methane, ethane, butane and
propane, occur are not equal for all gas wells. For environ-
mental or technical reasons, requirements to the final flow
composition can be imposed at the reception points of the
flow network. In applications of this kind, it is therefore
crucial for network flow models to recognize not only the
total flow, but also how the flow composition evolves from
network sources to sinks. Updates of the composition at
nodes where differently composed flow streams are pooled
must be reflected by the models. A result of this is a com-
putationally challenging problem referred to as the pooling
problem.

The pooling problem resembles well-studied logistics
models like the minimum cost flow problem and the trans-
portation problem. While a bipartite network structure
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means that the problem can be modeled in terms of linear
programming (LP), bilinear formulations appear to be in-
evitable when the network has three layers of nodes. While
large instances of the minimum cost flow problem, with
arbitrary network topology, can be solved fast, exact solu-
tion of pooling problem instances with much fewer nodes
appears to be unrealistic.

Already decades ago, Haverly [19] recognized the pool-
ing problem as a challenge where linear programming ap-
proaches may fail. Because of the anticipated intractability
of the problem, early research was mainly directed towards
heuristic methods [6, 10, 19], where iterative linearization
is the core idea. Floudas and Visweswaran [13] reported
the first exact solution algorithm for the pooling problem.
Later, algorithms based on branch-and-bound [5, 14, 25–27],
Lagrangian relaxation [1, 4, 8], particle swarm optimization
[12], integer programming [11, 16], and semi-definite pro-
gramming [22] have been studied. The industrial relevance
of the problem, notably in petroleum refining [6, 10], the
food industry [20], and in waste water processing [15, 24],
has been acknowledged by many authors. The pooling
problem survey by Misener and Floudas [23] has a compre-
hensive list of references to work in this area.

Standard pooling problems are defined as networks with
three node layers, referred to as sources, pools and sinks,
respectively. Arcs connect either a source to a pool or a pool
to a sink. Quality constraints in terms of bounds on the
composition are imposed at the sinks. Each bound relates
to the relative content of a flow component, referred to as
the quality. Even the class of instances with a unique pool
is strongly NP-hard [2]. The computational complexity is
however favorable if there are additional limitations on
node cardinalities, as polynomial time algorithms have
been developed for the case of a unique pool and an upper
bound on either the number of sinks [17] or the number of
quality constraints at each sink [2]. Polynomial running-
time algorithms for the one-pool instance class also exist
when the number of sources is bounded [9, 18].

The pooling problem remains NP-hard for networks
with only two sources and two sinks, and only one flow
component subject to constraints [17]. Such instances can
be solved in polynomial time when the input data take
values within given bounds [18]. While the algorithms with
polynomial running time mentioned this far are based
on LP, Baltean-Lugojan and Misener [7] prove that also
strongly polynomial solution algorithms exist for a wide
range of network topologies.

In certain applications [21], physical restrictions disallow
flow along more than one arc entering or leaving a pool.
While the pools may have multiple entering and leaving arcs
in the flow network, decisions must be made as to which one
of these to apply. This problem can be rephrased as a bilevel
problem in the realm of network design: Find a subnetwork,
such that each pool has only one entering arc and/or only
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one leaving arc, and solve the pooling problem on the
selected subgraph. In this context, it becomes relevant that
the pooling problem can be formulated as a compact LP if
each pool has either in-degree or out-degree equal to one
[17, Proposition 3]. By introducing design variables for each
arc, the said extension is formulated as a mixed integer
linear program (MILP), and, contrary to the standard
pooling problem, bilinear constraints are easily avoided.

Extensions where restrictions on the number of flow-
carrying arcs incident to each pool are also interesting from
a computational point of view. The feasible region of the
extended version is obviously a subset of its counterpart
in the original version. In instances where the optimal so-
lutions to the original and revised problems are not too
far apart, the latter problem may serve as a close approxi-
mation to the former. If the more restricted version of the
problem is solved with sufficiently smaller computational
burden than what is the case of the original, it may thus
be a key to effective inner approximation of the standard
pooling problem.

In the current work, we consider four different variants
of the pooling problem with constraints on the number of
active arcs (Section 2). The contributions made to the pool-
ing problem literature includes proofs of the NP-hardness
of each of the new problems (Section 3). Further, we give
MILP-formulations for the problems, along with valid in-
equalities and lifting procedures for strengthening the re-
laxations of the formulations (Sections 4–5). Preliminary
experiments are reported (Section 6), demonstrating that
the inner approximation idea enables improvements of the
best known solution to four instances of the standard pool-
ing problem.

2 NOTATION AND PROBLEM
DEFINITION

Let 𝐷 = (𝑁,𝐴) be a directed acyclic graph with the
node set 𝑁 partitioned into the sets 𝑆 of sources, 𝑃 of
pools, and 𝑇 of sinks. The arc set 𝐴 = 𝐴𝑆 ∪ 𝐴𝑇 is par-
titioned into 𝐴𝑆 ⊆ 𝑆 × 𝑃 and 𝐴𝑇 ⊆ 𝑃 × 𝑇 , connecting
sources with pools and pools with sinks, respectively. Thus,
𝐻 = {(𝑠, 𝑝, 𝑡) ∈ 𝑆 × 𝑃 × 𝑇 : (𝑠, 𝑝), (𝑝, 𝑡) ∈ 𝐴} is the set of
directed paths in 𝐷. Let 𝐾 be a finite set, the elements
of which are referred to as qualities. For each node 𝑖 ∈ 𝑁 ,
define the upper flow bound 𝑏𝑖, let 𝑏𝑖𝑗 = min{𝑏𝑖, 𝑏𝑗} for
each arc (𝑖, 𝑗) ∈ 𝐴, and let 𝑏𝑠𝑝𝑡 = min{𝑏𝑠, 𝑏𝑝, 𝑏𝑡} for each
path (𝑠, 𝑝, 𝑡) ∈ 𝐻. Further, associate the unit cost 𝑐𝑖𝑗 with
arc (𝑖, 𝑗). For each quality 𝑘 ∈ 𝐾, we introduce parameters
for each source and each sink. Let 𝑞𝑘𝑠 be the concentration
of quality 𝑘 at source 𝑠, and let 𝑞𝑘𝑡 be the upper bound on
the concentration of quality 𝑘 at sink 𝑡.

For each 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 , and 𝑡 ∈ 𝑇 , we define the neighbor
sets 𝑃𝑠 = {𝑝 ∈ 𝑃 : (𝑠, 𝑝) ∈ 𝐴}, 𝑆𝑝 = {𝑠 ∈ 𝑆 : (𝑠, 𝑝) ∈ 𝐴},
𝑇𝑝 = {𝑡 ∈ 𝑇 : (𝑝, 𝑡) ∈ 𝐴}, and 𝑃𝑡 = {𝑝 ∈ 𝑃 : (𝑝, 𝑡) ∈ 𝐴}.
Let 𝐹 (𝐷, 𝑏) ⊆ R𝐴

+ be the flow polytope associated with
𝐷 and 𝑏. That is, 𝑥 ∈ 𝐹 (𝐷, 𝑏) means that 𝑥 is a vector
with components 𝑥𝑖𝑗 corresponding to the arcs (𝑖, 𝑗), sat-
isfying the capacity constraints

∑︀
𝑝∈𝑃𝑠

𝑥𝑠𝑝 ≤ 𝑏𝑠 (𝑠 ∈ 𝑆),∑︀
𝑝∈𝑃𝑡

𝑥𝑝𝑡 ≤ 𝑏𝑡 (𝑡 ∈ 𝑇 ), and
∑︀

𝑠∈𝑆𝑝
𝑥𝑠𝑝 ≤ 𝑏𝑝 (𝑝 ∈ 𝑃 ), and

the flow conservation constraints
∑︀

𝑠∈𝑆𝑝
𝑥𝑠𝑝 =

∑︀
𝑡∈𝑇𝑝

𝑥𝑝𝑡

(𝑝 ∈ 𝑃 ). Any flow 𝑥 ∈ 𝐹 (𝐷, 𝑏) induces, for every 𝑘 ∈ 𝐾, a
concentration 𝑤𝑘

𝑖 at node 𝑖 ∈ 𝑁 . In the case of a source

𝑠, 𝑤𝑘
𝑠 = 𝑞𝑘𝑠 . For nodes 𝑗 ∈ 𝑃 ∪ 𝑇 , the concentration is a

solution to

𝑤𝑘
𝑗

∑︀
𝑖∈𝑁 :(𝑖,𝑗)∈𝐴 𝑥𝑖𝑗 =

∑︀
𝑖∈𝑁 :(𝑖,𝑗)∈𝐴 𝑤𝑘

𝑖 𝑥𝑖𝑗 , (1)

reflecting the assumption that 𝑘 represents a chemical
compound, the concentration of which blends linearly when
heterogeneous flow streams meet.

Definition 2.1. The Standard Pooling Problem amounts
to finding a flow 𝑥 ∈ 𝐹 (𝐷, 𝑏) inducing a concentration
𝑤 ∈ R𝑁×𝐾 satisfying 𝑤𝑘

𝑡 ≤ 𝑞𝑘𝑡 for each 𝑡 ∈ 𝑇 and each
𝑘 ∈ 𝐾, such that

∑︀
(𝑖,𝑗)∈𝐴 𝑐𝑖𝑗𝑥𝑖𝑗 is minimized.

In the remainder of the paper, we mainly focus on ex-
tensions of the Standard Pooling Problem, where ad-
ditional constraints on the number of flow streams leav-
ing/entering a pool are imposed.

Definition 2.2. Each of the following problems are iden-
tified by a set of constraints in addition to those applying
to Definition 2.1:

∙ The Single-In Pooling Problem: For all 𝑝 ∈ 𝑃 ,
𝑥𝑠𝑝 > 0 for at most one 𝑠 ∈ 𝑆𝑝.

∙ The Single-Out Pooling Problem: For all 𝑝 ∈ 𝑃 ,
𝑥𝑝𝑡 > 0 for at most one 𝑡 ∈ 𝑇𝑝.

∙ The Single-In-And-Out Pooling Problem: For
all 𝑝 ∈ 𝑃 , 𝑥𝑠𝑝 > 0 for at most one 𝑠 ∈ 𝑆𝑝, and
𝑥𝑝𝑡 > 0 for at most one 𝑡 ∈ 𝑇𝑝.

∙ The Single-In-Or-Out Pooling Problem: For all
𝑝 ∈ 𝑃 , 𝑥𝑠𝑝 > 0 for at most one 𝑠 ∈ 𝑆𝑝, or 𝑥𝑝𝑡 > 0
for at most one 𝑡 ∈ 𝑇𝑝.

3 COMPLEXITY

For all the single-flow constrained problems introduced in
the previous section, the following observations are made:
With knowledge to the sources (sinks) from (to) which the
single flows enter (leave) a pool, the remaining problem
can be solved in terms of a compact Linear Program (LP)
[17, Proposition 3]. However, the problems are in general
intractable.

Proposition 3.1. The problems given in Definition 2.2
are NP-hard.

Proof. There exists [17, Theorem 6] a polynomial re-
duction from the Maximum 2-Satisfiability Problem
to an instance class of the Standard Pooling Problem,
in which all feasible solutions satisfy the constraints of
the Single-Out Pooling Problem, and thereby also
the Single-In-Or-Out Pooling Problem. It follows
that the latter two problems are NP-hard. Analogously, a
polynomial reduction [17, Theorem 7] from the Minimum
2-Satisfiability Problem proves the NP-hardness of the
Single-In Pooling Problem. That also the Single-In-
And-Out Pooling Problem is NP-hard, is proved by
the following reduction from the Partition Problem: Let
𝑎1, . . . , 𝑎𝑛 ∈ Z+. Consider the instance of the Single-In-
And-Out Pooling Problem where 𝑆 = {𝑠1, . . . , 𝑠𝑛},
𝑃 = {𝑝1, . . . , 𝑝𝑛}, 𝑇 = {𝑡0, 𝑡1}, 𝐴𝑇 = 𝑃 × 𝑇 , 𝐴𝑆 =
{(𝑠𝑖, 𝑝𝑖)}𝑛𝑖=1, 𝐾 = ∅, 𝑏𝑠𝑖 = 𝑏𝑝𝑖 = 𝑎𝑖 (𝑖 = 1, . . . , 𝑛), 𝑏𝑡0 =

𝑏𝑡1 = 1
2

∑︀𝑛
𝑖=1 𝑎𝑖, 𝑐𝑠𝑖𝑝𝑖 = −1, and 𝑐𝑝𝑡 = 0 for (𝑝, 𝑡) ∈ 𝐴𝑇 . It

follows that {𝑎1, . . . , 𝑎𝑛} is a yes-instance to the Partition
Problem if and only if the minimum cost in the corre-
sponding instance of the Single-In-And-Out Pooling
Problem is −

∑︀𝑛
𝑖=1 𝑎𝑖. �
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4 MIXED INTEGER
PROGRAMMING MODELS

All problems introduced in Definition 2.2 are formulated
in terms of continuous variables representing path flow,
and binary variables representing selection of arcs to carry
the flow. In the models that follow, the flow 𝑥𝑖𝑗 along arc
(𝑖, 𝑗) is not represented by a dedicated variable, but it is
available by summation of all flow variables corresponding
to paths containing (𝑖, 𝑗). In all models, 𝑥𝑠𝑝𝑡 denotes the
flow along path (𝑠, 𝑝, 𝑡) ∈ 𝐻. To model the Single-In-Or-
Out Pooling Problem, let 𝑦 be a binary vector over the
arcs in 𝐷. For any arc (𝑠, 𝑝) ∈ 𝐴𝑆 , pool 𝑝 receives flow
uniquely along (𝑠, 𝑝) if 𝑦𝑠𝑝 = 1. Analogously, if 𝑦𝑝𝑡 = 1,
then pool 𝑝 sends flow uniquely along arc (𝑝, 𝑡) ∈ 𝐴𝑇 .
Letting 𝐻𝑖 denote the set of paths intersecting node 𝑖 ∈ 𝑁 ,
this leads to the formulation:

min
𝑥,𝑦

∑︁
(𝑠,𝑝,𝑡)∈𝐻

(𝑐𝑠𝑝 + 𝑐𝑝𝑡)𝑥𝑠𝑝𝑡 (2)

s.t.
∑︁

(𝑠,𝑝,𝑡)∈𝐻𝑖

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑖 𝑖 ∈ 𝑁 (3)

∑︁
𝑝∈𝑃𝑡

∑︁
𝑠∈𝑆𝑝

(︁
𝑞𝑘𝑠 − 𝑞𝑘𝑡

)︁
𝑥𝑠𝑝𝑡 ≤ 0 𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 (4)

∑︁
𝑠∈𝑆𝑝

𝑦𝑠𝑝 +
∑︁
𝑡∈𝑇𝑝

𝑦𝑝𝑡 = 1 𝑝 ∈ 𝑃 (5)

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑠𝑝𝑡 (𝑦𝑠𝑝 + 𝑦𝑝𝑡) (𝑠, 𝑝, 𝑡) ∈ 𝐻 (6)

𝑥 ∈ R𝐻
+ , 𝑦 ∈ {0, 1}𝐴 (7)

As arc flow is replaced by path flow, there is no need
for flow conservation constraints. Thus, the capacity con-
straints (3) ensure that only solutions in 𝐹 (𝐷, 𝑏) are fea-
sible. Because the concentration of quality 𝑘 ∈ 𝐾 at
sink 𝑡 equals

∑︀
𝑝∈𝑃𝑡

∑︀
𝑠∈𝑆𝑝

𝑞𝑘𝑠𝑥𝑠𝑝𝑡/
∑︀

𝑝∈𝑃𝑡

∑︀
𝑠∈𝑆𝑝

𝑥𝑠𝑝𝑡, con-

straints (4) impose the upper bound 𝑞𝑘𝑡 on the concentra-
tion. Finally, flow on at most one arc entering pool 𝑝 ∈ 𝑃 ,
or at most one arc leaving 𝑝, is achieved by (5)–(6).

By addition of 𝑦𝑝𝑡 = 0 ((𝑝, 𝑡) ∈ 𝐴𝑇 ) and 𝑦𝑠𝑝 = 0 ((𝑠, 𝑝) ∈
𝐴𝑆), respectively, (2)–(7) also becomes a formulation of
the Single-In Pooling Problem and the Single-Out
Pooling Problem.

The Single-In-And-Out Pooling Problem is formu-
lated in terms of the binary path selection variables 𝑦𝑠𝑝𝑡
((𝑠, 𝑝, 𝑡) ∈ 𝐻). The objective is to minimize (2) subject to
(3)–(4) and ∑︁

(𝑠,𝑝,𝑡)∈𝐻𝑝

𝑦𝑠𝑝𝑡 = 1 𝑝 ∈ 𝑃 (8)

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑠𝑝𝑡𝑦𝑠𝑝𝑡 (𝑠, 𝑝, 𝑡) ∈ 𝐻 (9)

𝑥 ∈ R𝐻
+ , 𝑦 ∈ {0, 1}𝐻 (10)

5 STRENGTHENING THE
FORMULATIONS

This section gives some simple techniques for strengthening
the continuous relaxations of the MILP-formulations. First,
observe that for pools with only one entering or one leaving
arc, the 𝑦-variables and corresponding constraints are not
needed.

Observation 1. Deletion of variables 𝑦𝑠𝑝 (𝑠 ∈ 𝑆𝑝) and
𝑦𝑝𝑡 (𝑡 ∈ 𝑇𝑝), as well as constraints (5)–(6), for all 𝑝 ∈ 𝑃

such that min {|𝑆𝑝| , |𝑆𝑝|} = 1, does not alter the optimal
solution to (2)–(7).

5.1 Lifted Inequalities

By a maximum flow instance of (2)–(7), we mean an in-
stance in which 𝑐𝑝𝑡 = −1 for a unique sink 𝑡 ∈ 𝑇 and all
neighboring pools 𝑝 ∈ 𝑃𝑡, whereas 𝑐𝑖𝑗 = 0 for all other
arcs (𝑖, 𝑗) ∈ 𝐴. That is, the problem is to maximize the
flow entering 𝑡, subject to the imposed constraints. Anal-
ogously, if all arcs leaving a given source 𝑠 ∈ 𝑆 have cost
−1, whereas other costs are zero, we face a maximum flow
instance corresponding to source 𝑠.

When the inducing node is a sink, the maximum flow
instance is particularly easy to solve:

Proposition 5.1. Any maximum flow instance of (2)–
(7) corresponding to 𝑡 ∈ 𝑇 has an optimal solution (𝑥, 𝑦)
where 𝑦𝑝𝑡 = 1 for all 𝑝 ∈ 𝑃𝑡, and 𝑥𝑠𝑝𝑡 = 0 for all (𝑠, 𝑝, 𝑡) ∈
𝐻 where 𝑡 ̸= 𝑡.

Proof. Let (𝑥, 𝑦) be a feasible solution to (2)–(7). As-
sume that

∑︀
(𝑠,𝑝,𝑡)∈𝐻𝑡

𝑥𝑠𝑝𝑡 > 0 for some sink 𝑡 ̸= 𝑡. Then,

for a sufficiently small 𝛿 > 0, also (𝑥′, 𝑦), where 𝑥′
𝑠𝑝𝑡 =

(1−𝛿)𝑥𝑠𝑝𝑡 for all (𝑠, 𝑝, 𝑡) ∈ 𝐻𝑡 and 𝑥′
𝑠𝑝𝑡 = 𝑥𝑠𝑝𝑡 for (𝑠, 𝑝, 𝑡) ∈

𝐻∖𝐻𝑡, is also feasible. Further, the objective function value
at (𝑥′, 𝑦) is identical to the one at (𝑥, 𝑦). For the largest
such 𝛿, 𝑥′

𝑠𝑝𝑡 = 0 for some (𝑠, 𝑝, 𝑡) ∈ 𝐻𝑡. It follows by in-

duction that (2)–(7) has an optimal solution where 𝑡 is the
sole sink to receive non-zero flow. In such a solution, it is
optimal to assign the value 1 to 𝑦𝑝𝑡 for all 𝑝 ∈ 𝑃𝑡, which
completes the proof. �

The tractability of sink-induced maximum flow instances
is contrasted by their source-induced counterparts:

Proposition 5.2. The Single-In-Or-Out Pooling
Problem is NP-hard for maximum flow instances corre-
sponding to a source.

Proof. The proof is by reduction from the Partition
Problem: Let 𝑎1, . . . , 𝑎𝑛 ∈ Z+. Consider the instance of
the Single-In-Or-Out Pooling Problem where 𝑆 ={︀
𝑠+1 , . . . , 𝑠

+
𝑛 , 𝑠

−
1 , . . . , 𝑠

−
𝑛 , 𝑠

}︀
, 𝑃 = {𝑝1, . . . , 𝑝𝑛, 𝑝},

𝑇 = {𝑡0, 𝑡1}, 𝐴𝑇 = 𝑃 × 𝑇 , 𝐴𝑆 =
{︀
(𝑠+𝑖 , 𝑝𝑖), (𝑠

−
𝑖 , 𝑝𝑖)

}︀𝑛

𝑖=1
∪

{(𝑠, 𝑝)}, 𝐾 = {𝑘}, 𝑏
𝑠+𝑖

= 𝑏
𝑠−𝑖

= 𝑎𝑖, 𝑏𝑝𝑖 = 2𝑎𝑖 (𝑖 = 1, . . . , 𝑛),

𝑏𝑠 = 𝑏𝑝 = 2
∑︀𝑛

𝑖=1 𝑎𝑖, 𝑏𝑡0 = 𝑏𝑡1 = 2
∑︀𝑛

𝑖=1 𝑎𝑖, 𝑞
𝑘

𝑠+𝑖
= 𝑞𝑘

𝑠−𝑖
= 0

(𝑖 = 1, . . . , 𝑛), 𝑞𝑘𝑠 = 1, 𝑞𝑘𝑡0 = 𝑞𝑘𝑡1 = 1
2
, 𝑐𝑠𝑝 = −1, and 𝑐𝑖𝑗 = 0

for all (𝑖, 𝑗) ∈ 𝐴 ∖ {(𝑠, 𝑝)}.
The quality constraints at sinks 𝑡0 and 𝑡1 ensure that

the flow along arc (𝑠, 𝑝) is at full capacity 2
∑︀𝑛

𝑖=1 𝑎𝑖 only
if both sinks receive

∑︀𝑛
𝑖=1 𝑎𝑖 flow units from 𝑆 ∖ {𝑠}. Then

the flow along the arcs entering 𝑝1, . . . , 𝑝𝑛 are at full capac-
ity. From the single-flow constraints, it follows that each
pool 𝑝1, . . . , 𝑝𝑛 delivers flow to exactly one sink. Hence,
(𝑎1, . . . , 𝑎𝑛) is a yes-instance if and only if the maximum
flow leaving 𝑠 is 2

∑︀𝑛
𝑖=1 𝑎𝑖. �

Observation 2. If (𝑥, 𝑦) is an optimal solution to (2)–
(7), then ∑︁

𝑝∈𝑃𝑡

∑︁
𝑠∈𝑆𝑝

(𝑐𝑠𝑝 + 𝑐𝑝𝑡)𝑥𝑠𝑝𝑡 ≤ 0 (11)

for all 𝑡 ∈ 𝑇 .
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Proof. Assume (11) is violated for some 𝑡′ ∈ 𝑇 . Define
𝑥′ ∈ R𝐻

+ such that 𝑥′
𝑠𝑝𝑡′ = 0 (𝑝 ∈ 𝑃𝑡′ , 𝑠 ∈ 𝑆𝑝) and 𝑥′

𝑠𝑝𝑡 =

𝑥𝑠𝑝𝑡 (𝑡 ∈ 𝑇 ∖ {𝑡′}, 𝑝 ∈ 𝑃𝑡, 𝑠 ∈ 𝑆𝑝). Then, (𝑥
′, 𝑦) is feasible,

and
∑︀

(𝑠,𝑝,𝑡)∈𝐻 (𝑐𝑠𝑝 + 𝑐𝑝𝑡)𝑥
′
𝑠𝑝𝑡 <

∑︀
(𝑠,𝑝,𝑡)∈𝐻 (𝑐𝑠𝑝 + 𝑐𝑝𝑡)𝑥𝑠𝑝𝑡,

contradicting the optimality assumption. �

It follows from Observation 2 that, for any (𝑠, 𝑝, 𝑡) ∈ 𝐻,
we can lift inequality (6) to

𝑥𝑠𝑝𝑡 ≤ 𝛼𝑠𝑝𝑡𝑦𝑠𝑝 + 𝛽𝑠𝑝𝑡𝑦𝑝𝑡,

where 𝛼𝑠𝑝𝑡 and 𝛽𝑠𝑝𝑡 are upper bounds on the optimal
flow along (𝑠, 𝑝, 𝑡) under the mutually exclusive conditions
𝑦𝑠𝑝 = 1 and 𝑦𝑝𝑡 = 1, respectively. The latter bound is
identified by the linear program

𝛽𝑠𝑝𝑡 = max
𝑥

𝑥𝑠𝑝𝑡 (12)

s.t.
∑︁

𝑝∈𝑃𝑠∩𝑃𝑡

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑠 𝑠 ∈ 𝑆 (13)

∑︁
𝑠∈𝑆𝑝

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑝 𝑝 ∈ 𝑃𝑡 (14)

∑︁
𝑝∈𝑃𝑡

∑︁
𝑠∈𝑆𝑝

(︁
𝑞𝑘𝑠 − 𝑞𝑘𝑡

)︁
𝑥𝑠𝑝𝑡 ≤ 0 𝑘 ∈ 𝐾 (15)

∑︁
𝑝∈𝑃𝑡

∑︁
𝑠∈𝑆𝑝

(𝑐𝑠𝑝 + 𝑐𝑝𝑡)𝑥𝑠𝑝𝑡 ≤ 0 (16)

𝑥 ∈ R𝐻𝑡
+ , (17)

while 𝛼𝑠𝑝𝑡 is the optimal objective function value to the
same LP, with the additional constraints that 𝑥𝑠𝑝𝑡 = 0 for
all 𝑠 ∈ 𝑆𝑝 ∖ {𝑠}.

Recently, a procedure for eliminating sinks at which
the quality constraints (4) can be met only by the zero
flow, has been suggested [11, Observation 1]. The above
lifting techniques is built upon analogous principles, and
has a corresponding elimination effect since 𝛽𝑠𝑝𝑡 = 0 for
all (𝑠, 𝑝, 𝑡) ∈ 𝐻𝑡 if (4) is too strict at 𝑡. By virtue of the
profitability condition (16), however, the lifting procedure
is capable of eliminating more sink nodes, and it is conse-
quently more selective than [11].

A stronger relaxation of the formulation for the Single-
In-And-Out Pooling Problem is obtained by lifting
constraint (9) to

𝑥𝑠𝑝𝑡 ≤ 𝛼𝑠𝑝𝑡𝑦𝑠𝑝𝑡 (𝑠, 𝑝, 𝑡) ∈ 𝐻.

5.2 Valid Inequalities

Because the flow along arc (𝑠, 𝑝) cannot exceed 𝑏𝑠𝑝, and
because it is non-zero only if 𝑦𝑠𝑝 or

∑︀
𝑡∈𝑇𝑝

𝑦𝑝𝑡 equals one,

the following inequalities are valid in all problems (the
Single-In-And-Out Pooling Problem disregarded):

∑︁
𝑡∈𝑇𝑝

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑠𝑝

⎛⎝𝑦𝑠𝑝 +
∑︁
𝑡∈𝑇𝑝

𝑦𝑝𝑡

⎞⎠ (𝑠, 𝑝) ∈ 𝐴𝑆 (18)

∑︁
𝑠∈𝑆𝑝

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑝𝑡

⎛⎝𝑦𝑝𝑡 +
∑︁
𝑠∈𝑆𝑝

𝑦𝑠𝑝

⎞⎠ (𝑝, 𝑡) ∈ 𝐴𝑇 (19)

The arguments leading to (19) are analogous to those
yielding (18).

When the capacities at the sinks 𝑇𝑝 are large compared
with capacities 𝑏𝑠 and 𝑏𝑝, (18) becomes particularly effec-
tive. In the extreme case, when min {𝑏𝑡 : 𝑡 ∈ 𝑇𝑝} ≥ 𝑏𝑠𝑝,

we have 𝑏𝑠𝑝𝑡 = 𝑏𝑠𝑝 for all 𝑡 ∈ 𝑇𝑝. Summating (6) over all
𝑡 ∈ 𝑇𝑝 then yields∑︁

𝑡∈𝑇𝑝

𝑥𝑠𝑝𝑡 ≤ |𝑇𝑝| 𝑏𝑠𝑝𝑦𝑠𝑝 + 𝑏𝑠𝑝
∑︁
𝑡∈𝑇𝑝

𝑦𝑝𝑡,

which obviously is weaker than (18). Analogously, (19)
becomes effective when 𝑏𝑠 (𝑠 ∈ 𝑆𝑝) is large compared with
𝑏𝑝 and 𝑏𝑡.

A valid formulation of the Single-In-Or-Out Pooling
Problem is obtained if (6) is replaced by (18)–(19). How-
ever, in the continuous relaxations of the formulations, in-
equalities (18)–(19) and constraints (6) complement rather
than replace each other. This is seen by observing that for
fractional values of 𝑦, (18)–(19) do not necessarily imply
(6).

Inequality (19) is lifted to∑︁
𝑠∈𝑆𝑝

𝑥𝑠𝑝𝑡 ≤ 𝜎𝑝𝑡𝑦𝑝𝑡 +
∑︁
𝑠∈𝑆𝑝

𝛼𝑠𝑝𝑡𝑦𝑠𝑝 (𝑝, 𝑡) ∈ 𝐴𝑇 ,

in a way analogously to what is outlined in Section 5.1.
The upper bound 𝜎𝑝𝑡 on the optimal flow along a given arc
(𝑝, 𝑡) ∈ 𝐴𝑇 , is given by the maximum value of

∑︀
𝑠∈𝑆𝑝

𝑥𝑠𝑝𝑡,

subject to constraints (13)–(17).
According to Proposition 5.1, maximizing the flow along

an arc entering a sink does not involve consideration of
other sinks. Consequently, the LP (12)–(17) has variables
corresponding exclusively to paths in 𝐻𝑡. Unfortunately,
an analogous network reduction is not achieved when the
maximum flow 𝜎𝑠𝑝 along (𝑠, 𝑝) ∈ 𝐴𝑆 is to be maximized.
Proposition 5.2 suggests that lifting of inequality (18) anal-
ogously to the lifting of (19) is considerably more expensive,
and computing 𝜎𝑠𝑝 is unlikely to be worth the computa-
tional cost.

With no efforts beyond those required in the lifting of
(6) and (19), (18) is however lifted to∑︁

𝑡∈𝑇𝑝

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑠𝑝𝑦𝑠𝑝 +
∑︁
𝑡∈𝑇𝑝

𝛽𝑠𝑝𝑡𝑦𝑝𝑡 (𝑠, 𝑝) ∈ 𝐴𝑆 .

In the Single-In-And-Out Pooling Problem, the
valid inequalities∑︁

𝑡∈𝑇𝑝

𝑥𝑠𝑝𝑡 ≤ 𝑏𝑠𝑝
∑︁
𝑡∈𝑇𝑝

𝑦𝑠𝑝𝑡 (𝑠, 𝑝) ∈ 𝐴𝑆

become effective when the sinks have relatively large ca-
pacities.

6 PRELIMINARY EXPERIMENTS

Feasible solutions to any of the problems of Definition 2.2
are also feasible in the Standard Pooling Problem. So-
lution algorithms for the single-flow constrained problems,
possibly with time interruption, can thus be considered as
heuristic methods for the standard version of the problem.
This section reports some preliminary experiments where
this approach is benchmarked against other heuristics that
recently have been analyzed in the literature.

6.1 Test Instances and Experimental
Setup

The Single In-Or-Out Pooling Problem is the variant
which preserves the largest part of the feasible region in the
standard problem. Therefore, our experiments amount to
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submitting instantiations of model (2)–(7), with the addi-
tion of the valid inequalities (18)–(19), to a generic MILP-
solver. Twenty publicly available benchmark instances are
considered, each of which has previously [3, 11, 16] been an-
alyzed in studies of heuristics for the Standard Pooling
Problem. Dey and Gupte [11] report extensive experi-
ments on 50 additional randomly generated instances, to
which we do not have access. They compare variants of
their MIP-techniques, based on discretization of the solu-
tion set, with various heuristics. Amongst these is the time-
interrupted application of a generic global solver (BARON).
As detailed reports on the solutions produced by all in-
vestigated methods are provided [11], the capabilities of
the current approach to generate good feasible solutions is
benchmarked against these.

The test instances are partitioned into three groups,
where the node and quality cardinalities, |𝑆|, |𝑃 *|, |𝑇 |,
and |𝐾| are constant within each group. Here, 𝑃 * =
{𝑝 ∈ 𝑃 : max {|𝑆𝑝| , |𝑇𝑝|} > 1} is the set of pools with more
than one incident arc on at least one side. In instances
A0, . . . ,A9, we have |𝑆| = 20, |𝑃 *| = 10, |𝑇 | = 15, and
|𝐾| = 12, in instances B0, . . . ,B5, |𝑆| = 35, |𝑃 *| = 17,
|𝑇 | = 21, and |𝐾| = 17, and in instances C0, . . . ,C3,
|𝑆| = 60, |𝑃 *| = 30, |𝑇 | = 40, and |𝐾| = 20. More de-
tails about the instances are given in [3]. Henceforth, this
set of instances is denoted 𝐼.

To solve the MILP-instances, CPLEX (version 12.5.1.0)
is used. Time bounds of 30 CPU-minutes (instances A0–A9
and B0–B5) and 60 CPU-minutes (instances C0–C3) are
imposed. All runs are made on a Linux machine (64-bit)
with two x86-processors (2.40 GHz) and 1.9GB of RAM.

6.2 Numerical Results

Following [11], a summary of the performance of the ap-
proach under study is given in terms of performance profiles.
Let 𝑀 be the set consisting of the 13 methods compared
in [11], in addition to the current one. For each 𝑚 ∈ 𝑀 ,
let 𝑧(𝑚, 𝑖) be the cost of the solution that method 𝑚 pro-
duced in instance 𝑖 ∈ 𝐼, and define the corresponding

score 𝜂(𝑚, 𝑖) = 𝑧(𝑚,𝑖)−min{𝑧(𝑛,𝑖):𝑛∈𝑀}
max{𝑧(𝑛,𝑖):𝑛∈𝑀}−min{𝑧(𝑛,𝑖):𝑛∈𝑀} . That is,

𝜂(𝑚, 𝑖) ∈ [0, 1], with lower values indicating better per-
formance. A point (𝜅, 𝛾) intersected by the performance
profile of 𝑚 tells that there exist |𝐼|𝛾 instances 𝑖 (but not
more), in which 𝜂(𝑚, 𝑖) is no more than 𝜅. Hence, higher
profiles indicate stronger performance than lower ones.

Performance profiles obtained from previously reported
experiments [11] are depicted in Fig. 1. Additionally, the
red dashed profile represents the performance of the ap-
proach taken in the current work. We observe that for small
values of 𝜅, the red profile is dominated by the blue dotted
profile, which represents the performance of BARON when
assigned a time bound of 60 CPU minutes. This reflects
the fact that BARON more often (in 9 instances) than
the current method (in 6 instances) is the best-performing
method. However, in the larger instances, the global solver
struggles to find good feasible solutions, and finds only
the zero solution in three of them. Modest growth in the
corresponding profile is accordingly observed. Further ex-
periments [11] focused on larger instances, demonstrate
that BARON gets outperformed by the MILP techniques
introduced in [11].

Figure 1: Performance profile of the current IP-
approach (red dashed line) matched with BARON
(blue dotted line), and other methods (green solid
lines) from [11]

A feature of the solution approach analyzed in the cur-
rent work is that only sparse solutions, in the sense of
Definition 2.2, are considered. The high positions of the
corresponding profile in Fig. 1 suggests that, in the in-
stances under study, there exist near-optimal solutions to
the Standard Pooling Problem featuring sparsity. At
worst (𝑖 = A4), the score is 𝜂(𝑚, 𝑖) = 0.23 (𝑚 denoting the
current method). The largest optimality gap, relative to
the lower bounds computed by BARON within one CPU
hour [11], is in no instance above 17%. In one instance
(A9), optimality in the Standard Pooling Problem is
proved. The strength of the approach appears to be good
worst-case performance, as only the profile of the method
A(4) [11] has higher positioned points beyond 𝜅 = 0.02. In
four of the instances (B3, B4, B5, and C2), the approach
under study finds better solutions to the Standard Pool-
ing Problem than the previously best known, reported in
[11, 16].

Four of the test instances (A0–A3) are solved to integer
optimality in less than 20 CPU seconds, three more (A4, A7,
and A9) are solved in less than 7 CPU minutes, and another
two instances (A5 and B1) are solved in less than 12 CPU
minutes. In all the remaining 11 instances (A6, A8, B0, B2–
B5, and C0–C3), the solver is interrupted because the time
limit (30 and 60 CPU minutes, respectively) is reached.
Upon interruption, the remaining relative optimality gap
is below 1% in four instances (A6, A8, B4, and B5), and
at most 17% (instance C1).

7 CONCLUSIONS

Although much progress on solution algorithms for the
Standard Pooling Problem has been made over the
last decade, it is still to be judged as a considerably diffi-
cult problem to solve. Restricted versions of the problems
introduced in the current text are also shown to be NP-
hard. Unlike their parent problem, however, the single-flow
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constrained pooling problems admit very natural MILP-
formulations. By virtue of this, powerful MILP-solvers can
provide non-trivial feasible solutions, at least in instances
of modest size.

The Single-In-Or-Out Pooling Problem, which has
received most of the attention in this work, has a potential
to serve as an inner approximation of the standard problem.
Some progress towards strong MILP-formulations for the
problem has been made, and preliminary computational
tests are encouraging. In the instances tested in the current
work, the sparse solutions obtained are good approxima-
tions of the optimal solutions to the Standard Pooling
Problem. To what extent the approximation capability
is a general or an instance-specific property is a research
question worthy of being investigated, both theoretically
and experimentally.

An adequate experimental evaluation of the approach is
left to be made. Numerical experiments reported so far are
insufficient to conclude about strengths and weaknesses,
and should not be considered as a complete assessment. In
the full-length version of this paper, we will carry out a more
thorough study of the theory and the solution methods for
the pooling problem with single-flow constraints.
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