
Minimum Concurrency for Assembling Computer Music
Carlos E. Marciano

Federal University of Rio de Janeiro

Rio de Janeiro, RJ

cemarciano@poli.ufrj.br

Abilio Lucena

Federal University of Rio de Janeiro

Rio de Janeiro, RJ

abiliolucena@cos.ufrj.br

Felipe M. G. França

Federal University of Rio de Janeiro

Rio de Janeiro, RJ

felipe@ieee.org

Luidi G. Simonetti

Federal University of Rio de Janeiro

Rio de Janeiro, RJ

luidi@cos.ufrj.br

ABSTRACT
An effective algorithmic solution for resource-sharing problems

in heavily loaded systems is Scheduling by Edge Reversal (SER),
essentially providing some level of concurrency by describing an

order of operation for nodes in a graph. The resulting concurrency
is a hard metric to optimize, as the decision problems associated

with obtaining its extrema have been proved to be NP-complete.

In this paper, we propose a novel approach involving longest

cycles for solving the Minimum Concurrency Problem to proven

optimality. Moreover, we show how this model can be used in

the field of algorithmic composition to assemble a maximum-

length loop of original computer music, capturing fundamental

concepts in music theory. To illustrate this strategy, we present

a complementary simulation accessible through theWeb.

1 INTRODUCTION
Resource-sharing problems arise naturally in many scenarios,

where graph algorithms are often employed to provide a dis-

tributed, asynchronous scheduling solution. By representing each

process as a node, we define that nodes are connected by an edge

if and only if they share a resource. Specifically, in neighborhood-

constrained systems, a process is only allowed to operate if and
only if all of its neighbors are idle, meaning that all of its required

resources must be available at the time of operation. As a conse-
quence, multiple processes requiring the same resource form a

clique, a complete sub-graph in which only one node is allowed

to operate at a time. A connected undirected graph representing

resource dependencies among processes, as illustrated in Figure

1(a), will be referred to as a resource graph throughout this paper.

Under a heavy load assumption, where nodes are constantly de-

manding access to their required resources, an effective schedul-

ing algorithm to ensure fairness and prevent starvation is Schedul-
ing by Edge Reversal (SER). Introduced by Gafni and Bertsekas [7]
in 1981 and later formalized by Barbosa and Gafni [3] in 1989,

SER has inspired many distributed resource-sharing applications

ranging from asynchronous digital circuits [5] to the control of

traffic lights in road junctions [4].

The execution of SERmay be summarized as follows: by taking

a directed acyclic graph (DAG) such as the one in Figure 1(b) as

input, SER simultaneously operates all sinks, meaning that all

nodes with no outgoing edges are allowed to utilize the resources

they demand to perform their corresponding tasks. Once every

sink is done operating, the orientation of their incoming edges

is reverted, effectively allowing other nodes to become sinks

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the

International Network Optimization Conference (INOC), June 12-14, 2019:

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

themselves. This process is repeated indefinitely, as each new

iteration will generate a new DAG, allowing different nodes to
utilize resources and operate. Eventually, orientations will start
repeating themselves, leading to the existence of periods. In fact,

as observed by Barbosa and Gafni [3], all nodes operate the same

number of times within a given period. Figure 1(c) illustrates this

procedure.

In order to apply SER to any resource graph and obtain a corre-

sponding schedule, an initial acyclic orientation must be gener-

ated. This initialDAG will directly impact the overall concurrency

of the edge reversal procedure, leading to periods of different

lengths and of different orientations. Intuitively, a highly concur-

rent dynamic will result in more nodes operating simultaneously

while minimizing the amount of steps where each node is idle.
Although a formal definition of concurrency is kept for Section 2,

it’s already inevitable to inquire about the complexity of problems

such as obtaining the orientations that lead to the extrema of this
metric. In fact, the decision problems associated with identifying

the maximum as well as the minimum concurrency yielded by

a given resource graph have been proved to be NP-complete by

Barbosa and Gafni [3] and by Arantes Jr [11], respectively.

Contrary to intuition, obtaining the orientations of a resource

graph from which SER will provide minimum concurrency is ad-

vantageous to a number of applications. For instance, Gonçalves

et al. have employed SER under minimum concurrency to di-

minish the amount ofWeb marshalls needed for the distributed

decontamination ofWebgraphs [9, 14, 16], while Alves et al. have
shown, through simulations of real conflagration scenarios, that

less concurrency implies in a reduced number of automated fire-

fighters required to control the flames [2]. However, despite SER’s
intrinsic connection to rhythms, no application in the field of

algorithmic composition exists in the literature. As such, this

paper presents a novel mechanism which, under minimum con-

currency, schedules musical phrases to create the lengthiest pos-

sible original tracks that capture fundamental concepts in music

theory, such as rhythm and polyphony. This is only possible by

developing an optimization strategy for solving the Minimum
Concurrency Problem (MCP), which is also presented in this work

as an original contribution.

The following is how the remainder of this paper is organized.

In Section 2, we recall some graph-theoretic definitions associated

with SER, including a formal metric for concurrency. Section 3, in

turn, describes the concepts involved in our proposed reformula-

tion of MCP. Finally, in Section 4, we show how minimum con-

currency under SER can be used to assemble a maximum-length

loop of computer music, expressing our concluding remarks and

future work suggestions in Section 5.

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 83 DOI: 10.5441/002/inoc.2019.16

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.16

A

DC

E

B

R1, R2
R2, R3

R3

R2 R3

R4 R5

(a) A resource graph. Nodes sharing
resources are connected by an edge.

A

DC

E

B

(b) A given acyclic orientation applied
to the resource graph from (a).

A

DC

E

B

A

DC

E

B

A

DC

E

B

(c) A schedule (from left to right) taking (b) as the initial orientation. Sinks (in black) are allowed
to operate, after which they revert their edges so new sinks may be formed. Once node C is done

operating, the leftmost orientation will be repeated, leading to a period.

Figure 1: Scheduling by Edge Reversal as a distributed solution for scheduling processes (nodes) in a resource-sharing
system.

2 GRAPH-THEORETIC BACKGROUND
Initially, as defined in Barbosa and Gafni [3], we shall characterize

the necessary terminology to define concurrency under SER. As
such, let G = (V ,E) be a connected undirected graph where

|E | ≥ |V | (i.e. G is not a tree). Let κ ⊆ V denote an undirected

simple cycle inG , that is, a set of vertices that form a sequence of

length |κ | + 1 of the form i0, i1, ..., i |κ |−1, i0. If κ is traversed from

i0 to i |κ |−1, we say that it is traversed in the clockwise direction.

Otherwise, we say that it is traversed in the counterclockwise

direction. Let K denote the set of all simple cycles of G.

Moreover, an acyclic orientation of G is a function expressed

as ω : E → V such that no undirected cycle κ of the form

i0, i1, ..., i |κ |−1, i0 exists for which ω(i0, i1) = i1, ω(i1, i2) = i2, ...,
ω(i |κ |−1, i0) = i0. Let Ω denote the set of all acyclic orientations

of G.

Lastly, given an undirected simple cycle κ and an acyclic orien-
tationω, let ncw (κ,ω) be defined as the number of edges oriented

clockwise by ω in κ. Similarly, let nccw (κ,ω) be defined as the

number of edges oriented by ω in the counterclockwise direction.

Therefore, the concurrency of a graph G is defined as a function

γ : Ω → IR such that:

γ (ω) = min
κ ∈K

{
min {ncw (κ,ω),nccw (κ,ω)}

|κ |

}
(1)

In other words, given an orientation ω, we check every simple

undirected cycle κ of G and calculate the number of edges ori-

ented in the clockwise direction as well as the number of edges

oriented in the counterclockwise direction. We take the mini-

mum of these two values and divide the result by the size of the

undirected cycle κ. Whichever κ ∈ K returns the smallest value

will dictate the system’s concurrency.

Finally, we must note that an equivalent result can also be

obtained from a dynamic analysis. Let a period of length p be a

sequence of distinct acyclic orientations α0, ...,αp−1 induced by

the execution of SER. Let m be the number of times a node oper-
ates within a period, which is equal to all nodes. The expression

γ (ω) =m/p is equivalent to Equation 1, despite being less signif-

icant to this paper. As an example, the concurrency provided by

the schedule in Figure 1(c) is equal to 1/3, and can be obtained

through both expressions.

3 OBTAINING MINIMUM CONCURRENCY
Ourmain goal in this section is to propose a linear-time algorithm

for obtaining the minimum concurrency yielded by a resource

graph G given one of its longest simple cycles as input. This

reduction will essentially provide a computational model for

the Minimum Concurrency Problem (MCP), allowing previously
developed techniques for the Longest Cycle Problem (LCP [8]) to

also be effective for MCP.

84

Initially, we shall derive a different expression for minimizing

γ (ω) over all ω ∈ Ω. Given that Ω is a finite set, let γ ∗ denote the
minimum value that Equation 1 assumes over all ω ∈ Ω:

γ ∗ = min
ω ∈Ω

{
min
κ ∈K

{
min {ncw (κ,ω),nccw (κ,ω)}

|κ |

} }
(2)

The following lemma holds:

Lemma 3.1. γ ∗ = min
κ ∈K

{
1

|κ |

}
.

Proof. Consider Equation 1. For a given ω ′
, let κ ′ be the

simple cycle that minimizes the internal fraction. Let x be defined

as x =min {ncw (κ ′,ω ′),nccw (κ ′,ω ′)}, bringing Equation 1 to a

value of γ (ω ′) = x/|κ ′ |.
However, for every κ ∈ K , there will always exist an acyclic

orientationω such that ncw (κ,ω) = 1 and nccw (κ,ω) = |κ |−1, or
vice versa (this follows immediately from the fact that a directed

cycle would only exist if and only if either ncw (κ,ω) = 0 or

nccw (κ,ω) = 0).

Therefore, there must also exist an orientation ω for κ ′ such
that either ncw (κ ′,ω) = 1 or nccw (κ ′,ω) = 1. Consequently, if

ω ′
, when applied to κ ′, didn’t produce the result x = 1, there will

necessarily exist another acyclic orientation ω that will lead to

γ (ω) = 1/|κ ′ |.
Now, consider Equation 2. If γ ∗ is less than 1/|κ ′ |, then there

must exist a simple cycle κ∗ which, under an orientation ω∗
,

will produce 1/|κ∗ | < 1/|κ ′ |. As such, Equation 2 has become a

minimization problem over all κ ∈ K . □

Lemma 3.1 is essentially the problem of finding a longest

undirected cycle ofG , whose minimum concurrency will be equal

to the reciprocal of the size of its circumference.

We now show how to obtain ω∗
, an orientation for which

γ (ω∗) = γ ∗. Let κ∗ be a longest simple cycle of G, meaning that

|κ∗ | ≥ |κ | for all κ ∈ K . The following theorem holds:

Theorem 3.2. Given any longest cycle κ∗ ∈ K as input, there
exists a linear-time algorithm for finding an orientation ω∗ ∈ Ω
such that γ (ω∗) is minimum over all ω ∈ Ω.

Proof. The proof of Lemma 3.1 states that minimum concur-

rency will be attained if an orientation ω∗
is applied to G under

the condition that ncw (κ∗,ω∗) = 1 and nccw (κ∗,ω∗) = |κ∗ | − 1

or vice versa, where κ∗ is a longest cycle. Orienting κ∗ under the
aforementioned conditions can be performed in linear-time by

traversing the cycle κ∗ and assigning an increasing identification

number 1, ..., |κ∗ | to each visited vertex, resulting in a topologi-

cal ordering of the cycle. By orienting the corresponding edges

towards the vertices with lower identification numbers, only one

edge (connecting the vertices with the highest and the lowest

identification numbers) will be oriented in the opposite direction

from the other |κ∗ | − 1 edges, fulfilling the requirement.

It is now necessary to prove that it is possible to orient the

remaining edges of G such that the resulting orientation ω∗
is

always acyclic. Let S = V −κ∗ be the set of the remaining vertices

of G. Let us assign an increasing identification number |κ∗ | +
1, ..., |V | to each vertex in S , and then orient all edges ofG towards

the vertices with lower identification numbers. By contradiction,

if the resulting orientation ω∗
were cyclic, there would need

to exist a path i0, i1, ..., i0 (i.e. a directed cycle). However, since

edges always lead to vertices of lower identification numbers, it

is impossible to return to i0 after leaving it, for any i0 ∈ V . As
such, no cycles are formed. □

Algorithm 1: A linear-time algorithm for finding an acyclic
orientation that leads to minimum concurrency given a
longest cycle as input.

Input : Undirected graph G = (V,E) and longest
cycle κ∗ ⊆ V

Output: Acyclic orientation ω∗ for which γ(ω∗) is
minimum

id = 1

v = κ∗.getF irstV ertex()

for i=1 to κ∗.size() do
Assign id to v
Increment id
v = κ∗.getClockwiseNeighborOf(v)

end
while a vertex v ∈ V with no id exists do

Assign id to v
Increment id

end
Create an empty orientation ω∗

foreach undirected edge uv ∈ E do
if id(v) > id(u) then

Orient edge such that ω∗(u, v) = u

end
else

Orient edge such that ω∗(u, v) = v

end
end
return ω∗

Finally, we structure the proof discussed in Theorem 3.2 as the

algorithmic procedure presented in Algorithm 1. Its correctness

relies on the aforementioned proof. Note that linear-time is at-

tained only if the method дetClockwiseNeiдhborO f (v) is O(1).
This will depend on the data structure used for storing κ∗, which
is usually an array containing the vertices of the cycle in the order

they should be visited. In this case, дetClockwiseNeiдhborO f (v)
will simply return the next element in the array and fulfill the

O(1) requirement. Since G is always a connected graph where

|E | ≥ |V | as defined in Section 2, the overall time complexity of

the algorithm is O(m), wherem = |E |.

4 ASSEMBLING COMPUTER MUSIC
As expressed by Shan and Chiu [19], effective computer music

generation is the dream of computer music researchers. Previous

explicit approaches (where composition rules are specified by

humans) have resorted to Hidden Markov Models to capture the

sequence requirements of melody [17], but are usually limited

to composing counterpoint or harmonization for already existing

tunes [6].

In this section, we show how a system under SER’s minimum

concurrency is capable of generating a maximum-length loop

of pre-recorded musical phrases, while respecting fundamental

concepts in music theory and creating original melodies for blues,

jazz and rock music. In Subsection 4.1, we introduce the termi-

nology that will be used throughout Subsection 4.2 to provide

a strategy for representing musical phrases as graphs. Lastly, in
Subsection 4.3, we discuss implementation-specific details for a

complementary simulation included in Appendix A.

85

Blues Transit.

Jazz

A

A

C

C

A

C

A

A

C

C

A

C

C

Figure 2: A resource graph where nodes marked as “A” and “C” represent antecedent and consequent phrases, respectively.
Nodes connected by an edge are unable to be executed simultaneously, but are allowed to be played in sequence.

4.1 Music Theory Definitions
Initially, we shall define the necessary terminology from music

theory employed throughout this section, for which we resort

to Schmidt-Jones’ book [18]. A musical phrase corresponds to a

group of individual notes that, together, express a definitemelodic

idea. It is customary for phrases to appear in pairs: the first phrase
often sounds unfinished until it is completed by the second, al-

most as if the latter were answering a question posed by the

former. Phrases that respect this dynamic are called antecedent
and consequent, respectively.

A bar (or measure) is a group of beats that occur during a

segment of time. When more than one independent melody takes

place during the same bar, we call a piece of music polyphonic
(e.g. Pachelbel’s “Canon”; last chorus of “One Day More”, from

the musical “Les Miserables”). Finally, a lick, or short motif, cor-
responds to a brief musical idea that appears in many pieces of

the same genre. In this work, a pair of antecedent and consequent
phrases, when played sequentially, will also be referred to as a

lick.

4.2 Graph Representation
Although we believe that music generation through SER can

be employed to assemble any musical unit (such as chords or

individual notes) into a composition, the application we propose

revolves around scheduling phrases. Specifically, we would like

to capture the following requirements:

(i) A consequent phrase may only be played after an an-
tecedent phrase, forming a lick;

(ii) If two or more phrases are playing at the same time, either

they are all antecedent or all consequent;

(iii) Phrases of different intensities (e.g. number of notes) may

not go well together;

(iv) The final composition must be a loop, contain all available

phrases and be of maximum length.

When arranging previously recorded (or generated) phrases
into a graph, our goal is to structure which phrases can be played

sequentially and which can be played simultaneously, creating a

polyphony. By representing each phrase as a node, we are able to

capture the aforementioned restrictions through the insertion of

edges. In a resource graph, an edge between two nodes represents

the inability of those nodes to operate at the same time. As such,

an edge between two phrases is able to prevent them from occur-

ring during the same bar, while allowing each separate phrase to
be played in sequence.

A

(a) An antecedent phrase.

Property Value

Type Antecedent
Genre Blues

Note Count 8
File antec02.mp3

(b) Node attributes.

Figure 3: An example of a node and its attributes.

Above, in Figure 3, we present the information contained

within each node. A note count, corresponding to the number of

notes within a phrase, is used to measure its intensity. For this

specific example, two nodes will be connected to each other if

and only if:

(1) they’re of different types (antecedent and consequent);

(2) their note count is within a specified threshold;

(3) and they belong to the same genre.

Moreover, we’d like to make this example more interesting

by allowing a transition between two different genres: blues
and jazz. By introducing transitional phrases that incorporate
elements from both genres, a more seamless changeover can be

achieved.Antecedent phrases from blues and jazz, when connected
to transitional nodes, can act as gateways that allow access to

their respective genres.

Figure 2 illustrates all the previously discussed components.

Nodes marked as “A” and “C” represent antecedent and consequent
phrases, respectively. The further a node is from a transitional
node, the more intense is the phrase it represents. Due to the

antecedent / consequent dynamic, the resulting graph is bipartite,
for which MCP remains NP-complete [12].

86

4.3 Implementation Details
In order to demonstrate the ideas discussed in Subsection 4.2, we

have developed a simulation showing how the phrase-scheduling
dynamic, when applied to a graph such as the one in Figure 2, is

able to produce musical loops of maximum length. In this subsec-

tion, we document our steps and discuss implementation details

that may be useful for future work. The final result, featuring the

resource graph from Figure 2, is presented in Appendix A.

As discussed in Section 3, the first step in the process of ob-

taining minimum concurrency is identifying a longest simple

cycle. Although this task is visually straightforward when consid-

ering the resource graph from Figure 2, larger instances require a

computational approach. As such, we relied on the Simple Cycle
Problem branch-and-cut strategy proposed in Lucena, Cunha and

Simonetti [15], which is based on a formulation that decomposes

simple cycles into one simple path and an additional edge. We

implemented this procedure in the C programming language and

used the XPRESS Mixed Integer Programming package to solve

linear programs and manage the branch-and-cut tree.

Despite the example from Figure 2 only containing 15 nodes,

our computational results have shown that the aforementioned

strategy is able to solve, in under 1 hour, instances of random

graphs with as many as 2 000 nodes and 40 034 edges (probability

p = 0.01 for an edge to exist between two nodes), being an

appealing approach for larger instances. In turn, a linear-time

implementation of Algorithm 1 is employed to provide an acyclic

orientation for the resource graph, yieldingminimum concurrency.

The pipeline presented in Figure 4 summarizes this process.

Problem

Modelling

LCP
Solver

Algorithm

1

Resource
Graph

Longest
Cycle

Figure 4: Implementation pipeline for solvingMCP.

Note, however, that initial orientations may violate require-

ment (ii), which states that antecedent and consequent phrases
are not allowed to be played together. This is because sinks may

be formed anywhere in the graph when orienting nodes outside

the original longest cycle. However, this is merely an initializa-

tion issue: once a SER period is reached, the system will enforce,

through the edge-reversal dynamic, that antecedent phrases will
only become sink nodes when a consequent phrase reverts its
edges, and vice versa.

Having attained minimum concurrency for the resource graph
in Figure 2, we switched our attention to developing a visualiza-

tion strategy. From a compatibility perspective, a web simulation

built in JavaScript is both lightweight and easy to access onmost

platforms. Moreover, two convenient libraries, available under

theMIT License, made this choice even more appealing:Vis.js [1],
which enabled us to visually represent any graph and handle the

necessary edge-reversal dynamics; and Howler.js [20], provid-
ing a reliable audio interface when dealing with multiple files.

Finally, we curated audio recordings responsible for the rhythm
sections (also known as backing tracks) and recorded all an-
tecedent and consequent phrases on an electric guitar. Given that

this small simulation is comprised of only 15 nodes, the process

of syncing each phrase to their corresponding backing track was

performed manually. For instance, a 12-Bar Blues composition

may alternate between antecedent and consequent phrases every
2 bars. Different phrases have different starting points within this

window, requiring an offset to account for synchronization. How-

ever, once synced, phrases may be played whenever a new 2-bar
window starts. As such, by setting the edge-reversal frequency to

2 bars, every phrase will sound natural when their corresponding

node becomes a sink.

5 CONCLUSION
In this paper, two main contributions to SER were presented:

first, we reformulated the Minimum Concurrency Problem, pro-

viding a viable approach for its optimization and allowing many

empirically attractive LCP solvers to also be effective for MCP.
Secondly, we proposed a novel strategy for assembling original

computer music, which schedules all available building blocks (in
our example, musical phrases) into a maximum-length loop, all

the while incorporating essential music-theoretical restrictions.

Regarding SER’s debut in algorithmic composition, we are ea-

ger to discover how other researchers and musicians may employ

this technique and its variations to create unique songs. We note

that the Web is a never-ending repository of musical phrases,
many of which are encoded in MIDI format. MIDI is a techni-
cal standard that allows a musical pattern to be described and

synthesized by a computer [10], replacing the need for physical

recording and manual synchronization. This gain in development

speed can allow for the modelling of truly large resource graphs,
producing hour-long tracks of exclusively distinctive music.

Another aspect that can be investigated is controlling the level

of polyphony within a song. For instance, higher concurrency

values imply in a large number of independent melodies occur-

ring during the same bar, which may lead to undesirable noise

throughout the composition. As such, minimum concurrency

not only provides a maximum-length loop of music, but also

avoids an oversaturation of sounds that may lead to low-quality

polyphony. Currently, we investigate how octave information

(the frequency range in which the fundamental pitch of each

note is found) can be used to control which sounds should be

played simultaneously (e.g.: a phrase whose notes were recorded
near octave C3 could be played alongside a phrase with notes

situated around octave C5). This approach would avoid melody

lines competing for the same frequency range, leading to more

distinguishable and pleasant sounds.

Lastly, we invite other researchers to investigate a viable com-

putational model for the Maximum Concurrency Problem, which

consists of maximizing Equation 1 over the set of acyclic orien-

tations Ω. This breakthrough would impact many distributed

resource-sharing applications, such as routing Automated Guided
Vehicles (AGVs) [13], scheduling job shop tasks [13] and control-

ling traffic lights in road junctions [4]. Naturally, new engaging

applications that could benefit from SER’s simplicity are also an

interesting theme for future research, especially when combined

with new theoretical advancements for this technique.

A MUSICAL SIMULATION
The musical simulation referred to throughout this paper is avail-

able online at the following website, and can be viewed in any

browser: https://cemarciano.github.io/Song-Generator/.

This simulation is an open-source project distributed under the

GNU GPL v3.0 License. Source code is available at the following
website: https://github.com/cemarciano/Song-Generator.

87

REFERENCES
[1] B. V. Almende et al. 2015. vis.js - A dynamic, browser based visualization

library. (2015). Retrieved February 22, 2019 from http://visjs.org/

[2] Daniel S. F. Alves et al. 2012. A Swarm Robotics Approach To Decon-

tamination. In Mobile Ad Hoc Robots and Wireless Robotic Systems: De-
sign and Implementation. IGI Publishing, Hershey, PA, USA, 107–122. https:
//doi.org/10.4018/978-1-4666-2658-4.ch006

[3] Valmir C. Barbosa and Eli M. Gafni. 1989. Concurrency in Heavily Loaded

Neighborhood-Constrained Systems. ACM Transactions on Programming
Languages and Systems 11, 4 (Oct. 1989), 562–584. https://doi.org/10.1145/

69558.69560

[4] D. Carvalho, Fábio Protti, Massimo De Gregorio, and Felipe M. G. França.

2004. A Novel Distributed Scheduling Algorithm for Resource Sharing Under

Near-Heavy Load. Lecture Notes in Computer Science 3544 (2004), 431–442.
https://doi.org/10.1007/11516798_31

[5] Ricardo F. Cassia, Vladmir C. Alves, Frederico G. Besnard, and Felipe M. G.

França. 2009. Synchronous-To-Asynchronous Conversion of Cryptographic

Circuits. Journal of Circuits, Systems and Computers 18, 2 (2009), 271–282.

https://doi.org/10.1142/S0218126609005058

[6] Jose D. Fernandez and Francisco Vico. 2013. AI Methods in Algorithmic Com-

position: A Comprehensive Survey. Journal of Artificial Intelligence Research
48, 1 (Nov. 2013), 513–582. https://doi.org/10.1613/jair.3908

[7] Eli M. Gafni and Dimitri P. Bertsekas. 1981. Distributed Algorithms for

Generating Loop-Free Routes in Networks with Frequently Changing Topol-

ogy. IEEE Transactions on Communications 29, 1 (Jan. 1981), 11–18. https:

//doi.org/10.1109/TCOM.1981.1094876

[8] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,

USA, page 213.

[9] Vanessa C. F. Gonçalves, Priscila M. V. Lima, Nelson Maculan, and Felipe

M. G. França. 2010. A Distributed Dynamics for WebGraph Decontamination.

Lecture Notes in Computer Science 6415 (2010), 462–472. https://doi.org/10.

1007/978-3-642-16558-0_39

[10] David Miles Huber. 2007. The MIDI Manual (3rd ed.). Routledge, New York,

NY, USA. https://doi.org/10.4324/9780080479460

[11] Gladstone M. Arantes Jr. 2006. Trilhas, Otimização de Concorrência e Ini-
cialização Probabilística em Sistemas sob Reversão de Arestas. Ph.D. Disser-
tation. Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. https:

//www.cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa/details/15/2039

[12] M. S. Krishnamoorthy. 1975. An NP-hard problem in bipartite graphs. SIGACT
News 7, 1 (Jan. 1975), 26–26. https://doi.org/10.1145/990518.990521

[13] Omar Lengerke, HernÃąn G. AcuÃśa, Max S. Dutra, F. M. G. FranÃğa, and

Felix A. C. Mora-Camino. 2012. Distributed control of job-shop systems

via edge reversal dynamics for automated guided vehicles. International
Conference on Intelligent Systems and Applications 1 (April 2012), 25–30. https:
//doi.org/10.13140/RG.2.1.3054.5127

[14] Linda Luccio, Fabrizio annd Pagli. 2007. Web Marshals Fighting Curly Link

Farms. Lecture Notes in Computer Science 4475 (2007), 240–248. https://doi.
org/10.1007/978-3-540-72914-3_21

[15] Abilio Lucena, Alexandre Cunha, and Luidi G. Simonetti. 2013. A New For-

mulation and Computational Results for the Simple Cycle Problem. Electronic
Notes in Discrete Mathematics 44 (Nov. 2013), 83–88. https://doi.org/10.1016/j.
endm.2013.10.013

[16] Marina Moscarini, Rossella Petreschi, and Jayme L. Szwarcfiter. 1998. On node

searching and starlike graphs. Congressus Numerantium 131 (1998), 75–84.

DOI unavailable, must be requested directly from authors.

[17] Gerhard Nierhaus. 2009. Algorithmic Composition: Paradigms of Automated
Music Generation. Springer-Verlag, Vienna, Austria. https://doi.org/10.1007/
978-3-211-75540-2

[18] Catherine Schmidt-Jones. 2007. Understanding Basic Music Theory. OpenStax
CNX, Houston, TX, USA. http://cnx.org/content/col10363/1.3/

[19] Man-Kwan Shan and Shih-Chuan Chiu. 2010. Algorithmic compositions based

on discovered musical patterns. Multimedia Tools and Applications 46, 1 (Jan.
2010), 1–23. https://doi.org/10.1007/s11042-009-0303-y

[20] James Simpson et al. 2013. howler.js - JavaScript audio library for the modern

Web. (2013). Retrieved February 22, 2019 from https://howlerjs.com/

88

	Minimum Concurrency for Assembling Computer MusicCarlos E. Marciano, Abilio Lucena, Felipe M. G. França, Luidi G. Simonetti

