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ABSTRACT
In this work we consider the airline fleet assignment problem and

we experiment with a robust solution where passenger demand

is uncertain. To mitigate conservativeness of the classical robust

optimization we consider a two-stage distributionally robust

objective formulation. Our main contribution with respect to the

airline fleet management problem literature lies in the modeling

characteristics of our proposal.

We benchmark against current deterministic and robust fleet

assignment formulations and verify solution performance results

through simulation.

KEYWORDS
Distributionally robust optimization, Affine decision rules, Inte-

ger Programming, Airline fleet assignment

1 INTRODUCTION
Once an airline decides when and where to fly (flight legs) by de-

veloping its flight schedule, the next decision is determining the

type of aircraft, or fleet, that should be used on each of the flight

legs defined within the flight schedule. This process is called

fleet assignment and its purpose is to assign fleet types to flight

legs, subject to an available number of aircrafts and conservation

of aircraft flow requirements, such as to maximize profits with

respect to captured passenger demand. This decision needs to be

made well in advance of departures when passenger demand is

still highly uncertain. The factors that influence schedulers when

assigning fleet types to various flights are: passenger demand,

seating capacity, operational costs, and availability of mainte-

nance at arrival and departure stations. One important require-

ment of the fleet assignment is that the aircraft must circulate in

the network of flights. These so-called balance constraints are

enforced by using time lines to model the activities of each fleet

type. The period for which the assignment is done is normally

one day for domestic flights.

Profit maximization is normally defined in terms of uncon-

strained revenue minus assignment cost. Unconstrained revenue

of a flight leg is the maximum attainable revenue for that par-

ticular flight regardless of assigned capacity. Assignment cost, a

function of the assigned fleet type, includes the flight operating

cost, passenger carrying related cost and spill cost. Spill cost on

a flight is the revenue lost when the assigned aircraft for that

flight cannot accommodate every passenger. The result is that

either the airline spills some passengers to other flights in its

own network (in which case these passengers are recaptured by

the airline), or they are spilled to other airlines.

In [12] the authors develop a two-stage stochastic program-

ming model for integrated flight scheduling and fleet assignment

where the fleet family assigned to each scheduled flight leg is
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decided at the first-stage. Then, the fleet type to assign to each

flight leg is decided at the second-stage based on demand and

fare realization. Sample average approximation (SAA) algorithm

is then used to solve the problem and provide information on the

quality of the solution.

In [9] the authors propose a new model based on itinerary

grouping to mitigate the effect of demand uncertainty. Their

itinerary group fleet assignment model deals with the difficulties

caused by itinerary forecast by replacing them with aggregated

demand forecasts. The authors affirm that an itinerary-based

representation of demand (see Section 2 for details) has led to a

high granularity of demand, making it hard to predict.

In this work, as an alternative to previous works presented,

we propose a two-stage data-driven distributionally robust opti-

mization model to address the question of airline robust planning

for the fleet assignment problem. Our main contribution with

respect to the airline fleet management problem literature lies in

this novel modeling approach.

We adopt the concept of robust optimization as defined in [5]

and [6] in that the demand uncertainty belongs to a known deter-

ministic uncertainty set. In fact, we consider this uncertainty set

as the support for the family of probability distributions associ-

ated with our random passenger demand parameter. We consider

a data-driven approach by which this uncertainty set is con-

structed from available historical data. We assume that historical

unconstrained (not subject to capacity issues) itinerary demand

data is available and that we can use this historical data to predict

future demand. By constructing the uncertainty set from histor-

ical data we are able to capture correlations between demands

of different itineraries and thus mitigate the granularity demand

effect as pointed out in [9].

On the other hand, we consider different modeling alterna-

tives to mitigate conservatism of a robust approach. Since fleet

assignment is a repetitive process, where fleet assignment deci-

sions are made on daily basis, we mitigate the conservatism of

the worst-case objective of classical robust optimization and con-

sider a distributionally robust optimization approach on which

we optimize the worst case expected performance on a set consti-

tuted by an infinite number of probability distributions, named

ambiguity set (see [10] for main concepts). We also propose a

two-stage model, as introduced in [4] where, although all the

fleet assignments decisions are first stage, the calculation of lost

revenue (spill) is only done after realization of uncertainty.

To facilitate handling large-scale fleet assignment problems,

we propose the use of principal component analysis techniques

to reduce dimension of the uncertainty set and the use of affine

decision rules for our two-stage problem as approximations to

improve time performance of our algorithms.

2 FLEET ASSIGNMENT FORMULATIONS
The fleet assignment model is typically formulated as a mixed-

integer program. One can see the work in [16] for a survey of

different modeling approaches for the problem.
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In [1] the author first introduced for the fleet assignment

problem a time-space network model to represent the availability

of the fleet at each airport in the course of time. The proposed

model resulted in a linear program that could either maximize

profit or minimize operations cost.

In [11] the authors use the time-space network model and

develop a large-scale integer program for fleet assignment. They

propose several preprocessing techniques, namely node aggrega-

tion and isolated islands at stations, in order to reduce problem

complexity.

In these two works demand is expressed for a specific flight

leg and, therefore, these works do not capture demand dependen-

cies between legs. This is because demand is defined for airline

itineraries that can be comprised by multiple flight legs. Varia-

tions of demand in one itinerary flight leg will affect the others

legs. This is called the network effect and it was taken into con-

sideration in the model defined in [2]. There, the authors use the

time-space network model and consider the effect of recapturing,

where passengers spills from one itinerary can be redirected to

alternative itineraries. In their model demand is deterministic.

The above model is reference for our work, with the differ-

ence that we do not consider recapturing. We replicate here the

itinerary based formulation as presented in [9] where the authors

also explicitly deal with itinerary fare classes to better capture the

revenue dimension by favoring higher classes instead of consid-

ering all the fare classes at the same level. We present notations

and formulation used.

Sets

P : the set of itinerary fare classes, indexed by p
A : the set of airports, indexed by o
L : the set of flight legs, indexed by i
K : the set of fleet types, indexed by k
T : the sorted set of all relevant event times (leg departures or aircraft

availability) at all airports, indexed by t
CL(k ) : the set of flight legs that pass the count time when flown by

fleet type k
I (k, o, t ) : the set of inbound flight legs to node (k, o, t )
O (k, o, t ) : the set of outbound flight legs from node (k, o, t )

Decision variables

tp : the number of passengers requesting itinerary fare classp and spilled

by the model because of the capacity limit.

fki : binary variable equal to 1 if fleet type k is assigned to flight leg i , 0
otherwise.

ykot+ : the number of fleet type k that are on the ground at airport o
immediately after time t .

ykot− : the number of fleet type k that are on the ground at airport

o immediately before time t . If t
′
is the time of the first event

occurring after t , then ykot = ykot ′−

Data

SEATSk : the number of seats available on aircraft of fleet type k .
cki : the cost of operating leg i with fleet type k .
Nk : the number of aircraft in fleet type k .
Dp : the unconstrained demand for itinerary fare class p .
f arep : the fare class for itinerary p .
δpi : a binary flag equal to 1 if itinerary fare class includes flight leg i, 0

otherwise.

count time : the time at which a snapshot of fleet utilization is taken

to ensure consistency with the available fleet.

tm : the last event before the count time , tm = count time−.

(I FAM )

min

∑
i∈L,k∈K

cki fki +
∑
p∈P

f arep tp (1)

s.t.

∑
k∈K

fki = 1 ∀i ∈ L

(2)∑
i∈I (k,o,t )

fki + ykot− =
∑

i∈O (k,o,t )

fki + ykot+,

∀k ∈ K, o ∈ A, t ∈ T (3)∑
o∈A

ykotm +
∑

i∈CL (k )

fki ≤ Nk ∀k ∈ K

(4)∑
p∈P

δpi Dp −
∑
p∈P

δpi t
p ≤

∑
k∈K

fki SEATSk ∀i ∈ L

(5)

tp ≤ Dp ∀p ∈ P
(6)

fki ∈ {0, 1}, ykot ∈ {0, 1}, tp ≥ 0,

∀p ∈ P, k ∈ K, i ∈ L, o ∈ A, t ∈ T

The objective function (1) minimizes the total cost of opera-

tions plus the cost related to spilled itinerary fare class demand.

This minimization is equivalent to profit maximization. Con-

straints (2) are the leg coverage constraints. Each flight leg has

to be operated by exactly one aircraft type. The flow conserva-

tion constraint related to each single event is ensured through

constraints (3). The limited size of each fleet is respected through

constraints (4). The count time can be seen as a fixed time where

a cut is applied on the network to ensure that the total aircraft of

each fleet type k on the ground at all airports plus those flying

at the time must not exceed the total aircraft Nk available for

type k . The capacity constraints (5) ensure that satisfied demand

fits with the number of seats available on any given leg. Last,

constraints (6) ensure that spill does not exceed unconstrained

demand for any given itinerary fare class.

We now propose a two-stage distributionally robust optimiza-

tion formulation derived from IFAM formulation to incorporate

the random nature of passenger demand vector D. Distribution-
ally robust optimization is an emerging and effective method to

address the inexactness of probability distributions of uncertain

parameters.

We formulate our problem assuming that passenger demand

spill decision variable is a second-stage variable. This way passen-

ger demand spill is only defined after realization of uncertainty

and we represent this dependency defining it as a function map

tp (D). We also assume the uncertainty of vector D is represented

through a probability distribution P that belongs to a family of

distributions D.

We present the formulation developed.

67



(DI FAM )

min

∑
i∈L,k∈K

cki fki + sup

P∈D
EP[Q (f , D )] (7)

s.t. ∑
k∈K

fki = 1 ∀i ∈ L

(8)∑
i∈I (k,o,t )

fki + ykot− =
∑

i∈O (k,o,t )

fki + ykot+,

∀k ∈ K, o ∈ A, t ∈ T (9)∑
o∈A

ykotm +
∑

i∈CL (k )

fki ≤ Nk ∀k ∈ K

(10)

fki ∈ {0, 1}, ykot ∈ {0, 1},

∀i ∈ L, k ∈ K, o ∈ A, t ∈ T

where

Q (f , D ) =

min

∑
p∈P

f arep tp (D ) (11)

∑
p∈P

δpi Dp −
∑
p∈P

δpi t
p (D ) ≤

∑
k∈K

fki SEATSk ∀i ∈ L

(12)

tp (D ) ≤ Dp ∀p ∈ P
(13)

tp ≥ 0, ∀p ∈ P

The cost

∑
i ∈L,k ∈K

cki fki incurred during the first stage is deter-

ministic. In progressing to the second-stage, the random passen-

ger demand vector D is realized. We can then determine the cost

incurred at the second-stage. For a given first stage fleet type as-

signment decision, f , and a realization of the random passenger

demand vector,D, we evaluate the second-stage cost via the linear
optimization problem, Q ( f ,D). Since the fleet type assignment

is a repetitive daily process and the true probability distribution

of D is unknown and belong to a family of distributions set D

we are interested in the worst case expectation sup

P∈D
EP[Q ( f ,D)].

Note that it is a relatively complete recourse problem because

any first-stage solution leads to a feasible second-stage solution.

In order to be able to deal with large scale problems, our

two-stage distributionally robust optimization formulation must

admit a tractable reformulation. The reformulation is closely

related to the choices of ambiguity set that we make. On the

other hand these choices must correctly reflect properties of

historical data available.

In the next section we show that defining ambiguity sets by

linear relationships of uncertainty parameters and approximating

second-stage variables as affine functions of uncertainty param-

eters yields a tractable problem. We will also use techniques of

uncertainty dimensionality reduction as a further compromise

between optimality and tractability.

3 TWO-STAGE DISTRIBUTIONAL
REFORMULATION

3.1 Dimensionality reduction
In real case examples, the dimension of the random passenger

demand vector D can be in the range of thousands of itineraries.

This can impact performance of the formulationDIFAM . Employ-

ing dimensionality reduction techniques to reduce the number of

random variables under consideration can improve performance

of our formulations.

Here we assume there is a setW
′

of N demand data samples

available, W
′

= {D (i ) }Ni=1
, based on historical data, and use

this set to calculate the mean vector D̄, variance vector D̂ and

covariance matrix cov (D (i ) ).
A linear technique for dimensionality reduction, principal

component analysis, performs a mapping of the data to a lower-

dimensional space in such a way that the variance of the data in

the low-dimensional representation is maximized. Intuitively, we

change the system of coordinates and define this system by new

vectors Y , but we select only some of them, therefore reducing

dimension of the system. The new system of coordinates, vectors

{Y c }Cc=1
, are in fact normalized eigenvectors of the covariance

matrix cov (D (i ) ), where c is the index of the selected eigenvectors.
We refer to [17] for more details on principal component analysis

(PCA).

We execute a procedure to express the passenger demand

vectors, D (i )
, in the new system of coordinates, but before we

normalize the vectors D (i )
, using D̄ and D̂. Therefore we define

D (i )
′

= (D (i ) − D̄)./D̂, where ./ is a component wise division of

vectors.

We then compute the coordinates, X
(i )
c , in the system of coor-

dinates of the principal components vectors, {Y c }Cc=1
, where the

principal component vector has dimension |P |. The value of X
(i )
c

results from the expression:

X
(i )
c =< D (i )

′

,Y c >, (14)

where <,> is a dot product.

In the following we need the random vector to be nonnega-

tive, which may not be the case of components X
(i )
c . Hence, we

introduce a new random vector ξ (i ) where each component will

vary in the nonnegative interval [0,1]. Each component of ξ (i ) is
defined as

ξ
(i )
c = (X

(i )
c −max

i
(X

(i )
c ))/(min

i
(X

(i )
c ) −max

i
(X

(i )
c )), (15)

where max

i
(X

(i )
c ), min

i
(X

(i )
c ) are, respectively, the maximum and

minimum projection component values along each vectorY c con-

sidering all instances, i ∈ {1, . . . ,N }. X
(i )
c varies in the interval

[min

i
(X

(i )
c ),max

i
(X

(i )
c )] and as consequence ξ

(i )
c will vary in the

interval [0,1].

Using the above definition of ξ (i ) , we can define the compo-

nents of each demand vector D (i )
as

D
(i )
p = D1p +

C∑
c=1

D2pc ξ
(i )
c , (16)

where

D1p = D̄p + D̂p

C∑
c=1

min

i
(X

(i )
c )Y cp , (17)

D2pc = D̂p (max

i
(X

(i )
c ) −min

i
(X

(i )
c ))Y cp (18)

This is an important step in order to guarantee positive def-

inite matrices in the algorithm developed in Section 4 for our

distributionally robust ambiguity set.
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3.2 Ambiguity set and first-order deviation
moment functions

The tractability of a distributionally robust linear optimization

problem is dependent on the choice of the ambiguity set. Several

ambiguity sets have been proposed in the literature. In particular,

moment-based uncertainty sets assume that all distributions in

the distribution family share the same moment information. By

leveraging conic duality many distributionally robust optimiza-

tion problems with moment-based ambiguity sets can, in general,

be reformulated equivalently as convex problems. Although these

problems can be solved theoretically in polynomial time, they

are not efficient for large-scale instances.

In [8], a moment-based second-order conic representable am-

biguity set, D, is defined as

D =




P ∈ P0 (R
|P | )

�����������

D ∈ R |P |

EP[GD] = µ

EP[дi (D)] ≤ γi ∀i ∈ I

P(D ∈ U ) = 1




.

We assume random passenger demand vector D, but the same

results can be derived substituting for dimensional reduced ran-

dom vector ξ derived in the previous section.P0 (R
|P | ) represents

the set of all probability distributions inR |P | and new parameters

are defined asG ∈ Rn1×|P |
, µ ∈ Rn1

,γ ∈ R |I | , SOC (second-order

conic) representable support setU ∈ R |P | and SOC representable

functions дi ∈ R
|P |×1

.

D only contains valid distributions supported over the support

setU and moment information of uncertainties are characterized

via functions дi . The equality expectation expression allow the

modeler to specify the mean values of D.
The authors of [8] further reformulate the ambiguity set D as

a projection of an extended ambiguity set
¯D by introducing an

I -dimensional auxiliary random vector u in

¯D =




Q ∈ P0 (R
|P | × R |I | )

�����������

(D,u) ∈ Rp × R |I |

EQ[GD] = µ

EQ[u] ≤ γi ∀i ∈ I

P((D,u) ∈ Ū ) = 1




where Ū is the lifted support set defined as

Ū =


(D,u) ∈ R |P | × R |I |

������

D ∈ U

дi (D) ≤ ui ∀i ∈ I




They observe that the lifted ambiguity set has only linear expec-

tation constraints and show that the adaptive distributionally

robust optimization problem can be reformulated as a classical

robust optimization problem with uncertainty set Ū .

To be able to reformulate adequately our fleet assignment

problem DIFAM we must then define an ambiguity set D that

will lead to a polyhedron lifted support set Ū .

In [15] the authors define first-order deviation moment-based

functions дi (.) that are second-order conic representable as piece-
wise linear functions

дi (D) = max{hTi D − qi ,0} ∀i ∈ I .

They can be understood as the first-order deviation of uncer-

tain parameters along a certain projection hi truncated at qi . We

apply these moment-based functions to our problem and also

assume that the support setU is a polyhedron. We then define

our ambiguity set D as

D =




P ∈ P0 (R
|P | )

���������

D ∈ R |P |

EP[max{hTi D − qi ,0}] ≤ γi ∀i ∈ I

P(D ∈ U ) = 1




and the lifted support set Ū will be a polyhedron given as

Ū =




(D,u) ∈ R |P | × R |I |

���������

D ∈ U

0 ≤ ui ∀i ∈ I

hTi D − qi ≤ ui ∀i ∈ I




3.3 Affine decision rules
With the above definition of lifted support set we can apply,

to our DIFAM formulation, the reformulation proposed by [8]

for the adaptive distributionally robust optimization problem,

approximating second-stage variables tp as affine functions of the

lifted support set parameters (D,u), tp (D,u) = t0

p +
∑
i ∈P t

1

piDi +∑
i ∈I t

2

piui .

This reformulation is based on the dualization of the inner

problem of DIFAM , supP∈D EP[Q ( f ,D)], and by introducing

Lagrangian multipliers r and β to it (alternatively see [15] for

a summarized proof of this reformulation). This leads to the

following classical robust optimization problem:

(RRI FAM )

min

∑
i∈L,k∈K

cki fki + r +
∑
i∈I

γi βi

s.t.

r +
∑

ui βi ≥
∑
p∈P

f arep tp (D, u ),

∀(D, u ) ∈ Ū∑
p∈P

δpi Dp −
∑
p∈P

δpi t
p (D, u ) ≤

∑
k∈K

fki SEATSk ,

∀i ∈ L, ∀(D, u ) ∈ Ū

tp (D, u ) ≤ Dp ,

∀(D, u ) ∈ Ū∑
k∈K

fki = 1,

∀i ∈ L∑
i∈I (k,o,t )

fki + ykot− =
∑

i∈O (k,o,t )

fki + ykot+,

∀k ∈ K, o ∈ A, t ∈ T∑
o∈A

ykotm +
∑

i∈CL (k )

fki ≤ Nk ,

∀k ∈ K

tp (D, u ) = t 0

p +
∑
i∈P

t 1

piDi +
∑
i∈I

t 2

piui ,

∀p ∈ P

r ∈ R, βi ≥ 0, fki ∈ {0, 1}, ykot ∈ {0, 1}, tp ≥ 0,

∀p ∈ P, k ∈ K, i ∈ L, o ∈ A, t ∈ T

4 DATA-DRIVEN AMBIGUITY SET
A desirable ambiguity set should flexibly adapt to the intrinsic

structure behind real data, thereby well characterizing P and

attempting to reduce natural conservatism of robust solutions.

In face of complicated distributional geometry, making prior
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assumptions on the form of probability distribution or using clas-

sical uncertainty sets to describe their support have limited mod-

eling power. With this in mind we adopt a data-driven method-

ology to construct and define parameters of the support set and

moment-based functions associated with our ambiguity set.

4.1 Support Set
In what follows, we use the technical approach of [14] to con-

struct a support setU from data samples of the random variable

ξ . We assume there is a set W of N data samples available,

W = {ξ (i ) }Ni=1
, and this set is constructed from the sample of

demand vectors, D (i )N
i=1

, as explained in Subsection 3.1.

In [14] the authors propose piecewise linear kernel-based sup-

port vector clustering (SVC) as a machine learning technique

tailored to data-driven robust optimization. They explore the

SVC’s secondary effect that evolves the data samples inside a

sphere in a high-dimensional space [3]. They use this sphere to

characterize the uncertainty set. This mapping of data points to

a high-dimensional space is done by means of a kernel function.

Using well known techniques of machine learning they define a

linear kernel that, in turn, is used to define a polyhedral region

evolving the data in the original space.

Using these techniques, we define our data-driven support

setU as the region inside or in the borders of this sphere. This

sphere is given by the expression

U = {ξ | K (ξ ,ξ ) − 2

N∑
i=1

αiK (ξ ,ξ (i ) )+

+

N∑
i=1

N∑
k=1

αiαkK (ξ (i ) ,ξ (k ) ) ≤ R2}

Parameters α and R are derived by applying Lagrangian relax-

ation to the original formulation and the linear kernel is given

by

K (ξ (i ) ,ξ (j ) ) =
N∑
k=1

lk − |ξ
(i ) − ξ (j ) |1,

where lk = max1≤i≤N ξ
(i )
k −min1≤i≤N ξ

(i )
k . We refer to [3] for

details.

4.2 Moment-based functions
For moment-based functions we adopt the work of [15] where the

authors define a two-step procedure for determining parameters

hi and qi of our piecewise linear functions in order to capture

meaningful information from available data.

The directions hi are based on principal component analy-

sis (PCA) such that the data space becomes decorrelated along

each direction and the information overlap between different

directions is slight. Since our random vector ξ already comprises

decorrelated components we adopt vector hi as standard unit

vectors ei .
After that, several truncation points {qi } are set along each di-

rection hi . For each direction hi we choose 2J +1 well-distributed

truncation points. The first truncation point is set as the mean

value
¯ξi and the remaining 2J ones around the mean

¯ξi symmet-

rically based on a fixed step-size given as the variance
ˆξi along

the i-th direction.

In this way, we will have C (2J + 1) piecewise functions дi (.)
in total in the ambiguity set.

Intuitively, the parameter J can be deemed as the "size" of the

ambiguity set, which can be manipulated to adjust the conser-

vatism of the model. The more truncation points we have, the

more statistical information will be incorporated, which leads to

a smaller ambiguity set as well as a less conservative solution.

After determining the value of hi and qi , the next step is to

estimate the parameters γi empirically based on N available data

samples:

γi =
1

N

N∑
j=1

max(hTi ξ
(j ) − qi ,0)

Intuitively, with the values of size parameters γi increasing,
the DRO model becomes more conservative.

5 IMPLEMENTATION AND RESULTS
5.1 Implementation details
We report on experiments conducted with the formulations pro-

posed for the airline fleet assignment problem. Our objective is to

verify the performance of each solution in a long run operation

since fleet assignment is a daily repetitive process.

For our purposes, we create a small-sized hub-and-spoke air-

line instance, in which a unique major airport serves as a central

point for coordinating flights to and from other airports. This

way all our itineraries are composed of a maximum of two flight

legs. We consider a structure of 9 airports, 3 fleet types and 24

daily itineraries based on three fare classes. A flight schedule

with 21 flight legs is created and they are used to compose the

daily itineraries.

We test this operation under four different problem formula-

tions: IFAM , RRIFAM , as already presented in this study and two

other formulations RIFAM and RIFAM2. Formulation RIFAM
is a standard two-stage robust formulation where the objective

is given as the worst case performance and dimensionality re-

duction is performed the same way as for RRIFAM . Formulation

RIFAM2 is the same as RIFAM where no dimensionality reduc-

tion is performed.

We randomly generate a set of 400 demand vectors. They

are designed in a way that many itinerary demands are highly

correlated.

We use 100 demand vectors as historical training data to create

the ambiguity set of formulation RRIFAM and the 300 others to

simulate the airline operating period.

We use naive approaches to determine demand vectors for for-

mulations IFAM , RIFAM and RIFAM2. For formulation IFAM
we consider three demand scenarios of low, medium and high

total demand and consider the average of these three scenarios as

input to our IFAM formulated problem. For formulation RIFAM
and RIFAM2 we consider maximum and minimum demand val-

ues for each leg and consider a box uncertainty set where each

demand component varies within this interval.

With the solution of formulations IFAM ,RIFAM and RRIFAM
we simulate an airline operating period of 300 days and calculate

an objective of total operating costs plus total loss revenue. We

compare simulation results of the three formulations where our

focus is on analyzing objective value and time performance.

Conservatism regulation parameters of our ambiguity set are

fixed as v = 0.6 and J = 0. With v = 0.6, 100% of demand vectors

were considered inside or in the border of the support set (no

outliers). We calculate parameter C so that the sum of variances

in the direction of each principal component considered sums
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IFAM RIFAM RIFAM2 RRIFAM

Objective value 335747 638817 651081 488135

Total Time (s) 4.5 239.77 10950.47 9041.14

Number of variables 789 982 1366 1181

Number of constraints 450 - - -

Number of iterations - 32 49 81

Simulation Total cost* 1.38e8 1.35e8 (2.2%) - 1.32e8 (4.3%)

*In parenthesis percentage gain when compared to worst result

Table 1: Implementation and performance comparison of
fleet assignment formulations

up to a minimum of 90% of the sum of variances considering all

principal components. For the instance we created, C = 8 of 24.

To solve formulations RIFAM , RIFAM2 and RRIFAM we use a

master and adversarial problem approachwhere, at each iteration,

we use the adversarial problems to search for a demand scenario

instance that invalidates the master problem solution. See [7] for

more details on this solution approach.

Algorithms were coded in Julia [13] using JuMP and Cplex 12.7.

All algorithms were run in an Intel CORE i7 CPU 3770 machine.

5.2 Comparative performance of the
formulations

Table 1 presents the results of the implementation and solution

for the four different formulations. The relation between objec-

tive values are as expected since formulation IFAM is optimizing

against a specific demand scenario, formulations RIFAM and

RIFAM2 are optimizing against a worst case scenario and formu-

lation RRIFAM is optimizing an expected performance (worst-

case). RIFAM is designed to be a lower bound of RIFAM2 since it

considers less constraints (restricted uncertainty set), but the re-

sults show thatRIFAM is a reasonable approximation ofRIFAM2.

Since we use affine decision rules, formulations RIFAM , RIFAM2

and RRIFAM are themselves upper bound approximations of the

true optimal worst-case or worst-case expected performance.

Since we use auxiliary variables to compose affine decision rules

for formulation RRIFAM , it leads to more flexible results than

affine decision rules use original demand uncertainty.

The total time performance result is in direct link with the

number of variables of each formulation, although the number of

iterations for each of the robust formulations varies. In terms of

time performance, dimensionality reduction has been effective to

reduce total time. On the other hand, since the size of our airline

instance is small, additional measures should be put in place to

be able to deal with real large airline instances.

The simulation results are also as expected since the formu-

lation RRIFAM , in the long run, leads to the less costly total

solution. We note that there are no guarantees, in terms of the

mathematical model proposed, on how formulations IFAM and

RIFAM would perform in the long simulation run. We also note

that formulationRRIFAM is an approximation of the true optimal

result. Even though we would expect that, in the long simulation

run, result of worst-case expected performance of formulation

RRIFAM would out perform the two other formulations, and that

is the case.

6 CONCLUSION
Initial computational results have shown that our proposedmodel

can improve over other more traditional approaches. A further

study can analyze the quality of the approximations performed,

using real life data and comparing with data-driven stochastic

optimization approximation algorithms.
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