
Formulation and Branch-and-cut algorithm for the Minimum
Cardinality Balanced and Connected Clustering Problem

Alexandre Salles da Cunha∗
Departamento de Ciência da Computação, Universidade Federal de Minas Gerais

Belo Horizonte, Brazil
acunha@dcc.ufmg.br

ABSTRACT
Given a graph G = (V ,E), integer bounds l ,u : 0 ≤ l ≤ u and
positive integer weights assigned to the vertices V ofG , the Min-
imum Cardinality Balanced and Connected Clustering Problem
(MCBCCP) consists of finding a minimum cardinality partition-
ing of the vertices ofV so that (a) each set in the partition induces
a connected subgraph of G and (b) the sum of the weights of the
vertices in each set belongs to the interval [l ,u]. In this paper, we
present an integer programming formulation, valid inequalities
and a Branch-and-cut algorithm for MCBCCP. Our computa-
tional experiments suggest that the inequalities investigated here
help the overall performance of the algorithm. In addition to the
one tested here, we discuss other formulations, following differ-
ent modeling arguments. Some of them are based on MCBCCP’s
connections to other combinatorial optimization problems found
in the literature.

KEYWORDS
Combinatorial Optimization, Clustering, Spanning forests, Branch-
and-cut algorithms

1 INTRODUCTION
A K partition of the vertex set of an undirected graphG = (V ,E)
(n = |V |,m = |E |) is a collection {V1, . . . ,VK } of K non-empty
pairwise disjoint subsets ofV such that ∪Kj=1Vj = V . The vertices
in the same partition define a cluster. Assume that positive integer
weights {wi ∈ Z : i ∈ V } are assigned to the vertices of G and
that integer bounds l ,u : 0 ≤ l ≤ u are given. Given S ⊆ V ,
definew (S) as ∑i ∈S wi . If the conditions

l ≤ w (Vj) ≤ u, j = 1, . . . ,K , (1)
are satisfied, the clusters are balanced. Define E (S) = {{i, j} ∈
E : i, j ∈ S } as the edges with both endpoints in S and denote
by C the collection of all connected subgraphs of G, including
those with just a single vertex and no edge incident to it. If
{(Vj ,E (Vj)) ∈ C : j = 1, . . . ,K }, the clustering is connected. If
l ≤ w (Vj) ≤ u and (S ,E (Vj)) ∈ C for every j = 1, . . . ,K the
clustering is balanced and connected. Accordingly, each cluster
Vj is balanced and connected.

TheMinimumCardinality Balanced and Connected Clustering
Problem (MCBCCP) consists of finding a balanced and connected
clustering ofG of minimum cardinality. MCBCCP is an NP-Hard
optimization problem, even for series parallel graphs, but is solv-
able in linear time in case G is a path [13].

Our goal is to solve MCBCCP when G does not belong to
a particular graph class. To that aim, we introduce an integer
∗This research is partially funded by CNPq grants 303928/2018-2, 431369/2016-0
and FAPEMIG grants CEX-PPM-00164/17, APQ-02645-16.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

programming formulation, valid inequalities and an exact solu-
tion approach, of the Branch-and-cut type [21]. These topics are
addressed in Sections 2 and 3. Our preliminary computational ex-
periments reported in Section 4 suggest that the valid inequalities
discussed here were of help to enhance the overall performance
of the Branch-and-cut algorithm. In addition to that, we describe,
at the last section of this paper, several other modeling strate-
gies that may lead to effective MCBCCP exact algorithms. We
also highlight connections between MCBCCP and some network
design problems, that may be explored from a modeling and
algorithmic perspective.

In the remaining of this section, we review some clustering
problems, concentrating mostly on those that closely relate to
MCBCCP, and thus, require clusters to be either balanced or to
satisfy some kind of connectivity constraint.

Graph clustering is a central problem in Operations Research,
Computer Science and Artificial Intelligence. They arise in appli-
cations as diverse as circuit board and micro-chip design, parallel
computation, sparse matrix factorization and data mining [12].
Depending on the objective function and on the similarity cri-
teria used to group vertices, different clustering problems arise.
Not surprisingly, the literature on the topic is vast; a review of
several clustering problems can be found, for instance, in [25].

Ito et al. [13] discussed three problems related to optimal choos-
ing connected and balanced clusters. One of them consists of de-
ciding whether or notG has a balanced and connected clustering
of fixed size p. The other two are MCBCCP and the problem that
maximizes the number of clusters. All of them arise in practical
applications such as political districting, paging systems of oper-
ation systems and image processing. Ito et al. [13] was concerned
with MCBCCPs defined on trees. To that particular input graph
class, the authors presented the first polynomial time algorithm.

A common sense in graph clustering is that similar vertices
should be grouped together, while dissimilar ones should be
separated. Quite often, the similarity of a pair of vertices i, j is
measured by a weight ci j . Therefore, an objective function that
arises frequently in practice, specially for cardinality constrained
clustering problems, is theminimization of the sum of theweights
of the edges connecting vertices in different clusters [1, 8, 11, 12,
15, 23, 24, 27]. Since ∑{i,j }∈E ci j is a constant, an equivalent
problem consists of maximizing the sum of the weights of the
edges connecting vertices in the same clusters. In general, graph
clustering is NP-Hard [9].

The problem of finding optimal balanced clusterings of fixed
cardinality has received substantial attention in the literature.
Jonhson et al. [14] investigated one such problem. In addition to
integer bounds l ,u and weights {wi : i ∈ V }, costs {ci j : {i, j} ∈ E}
are also assigned to the edges of E. The problem thus consists of
finding a K balanced clustering of G that minimizes the function∑K
k=1
∑
{i,j }∈E (Vk) ci j . In that particular problem, input graphs

are not complete and clusters do not need to induce connected
subgraphs of G.

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 25 DOI: 10.5441/002/inoc.2019.06

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.06

Clustering under some sort of connectivity requirements has
also been a topic of interest [3, 5, 7, 17]. In Lari et al. [17], the
number of clusters K is defined beforehand. There is a subset
S (K = |S |) of V that plays the role of clusters heads. The re-
maining vertices, those in the set U = V \ S , are denoted unit
vertices. The problem asks for a K-centered connected partition
of G: a partition of the vertices of G into K connected subgraphs
{(Vj ,E (Vj)) : j = 1, . . . ,K }, such that |Vj ∩ S | = 1 for each
j = 1, . . . ,K . One cluster head must be assigned to each cluster
and unit vertices must be assigned to one vertex in S , the head of
one cluster. The cost of assigning a unit vertex u ∈ U to a cluster
head i ∈ S is denoted cui . The cost of a component (or cluster)Vj
is ∑i ∈S∩Vj ∑u ∈Vj∩U cui . Additionally, weights {wv : v ∈ V } are
assigned to each vertex ofG . Lari et al. [17] investigated the prob-
lem of finding K centered connected partitions of G for different
min-max objective functions involving either the assignment
costs or the vertices’ weights. The complexity class of each of
these variants was also investigated.

Brucker [3] investigated the problem of clustering the vertices
of V in K or fewer sets such that each vertex set induces a sub-
graph with diameter at most p; the diameter being the longest
minimum shortest path between two vertices in the subgraph.
The problem was proven to be NP-Complete and remains so even
if K = 3 and all edges’ lengths are taken from the set {0,1}. Deo-
gun et al. [6] investigated the same K clustering problem under
binary edge costs. They introduced approximation results and
algorithms, specialized for certain classes of input graphs.

Edachery et al. [7] introduced the Partition into Distance
p−cliques Problem, another optimization problem whose deci-
sion version was proven to be NP-Complete. A vertex set S ⊆ V
is a distance p−clique if, for any pair of vertices i, j ∈ S , there is a
path in the graph (S ,E (S)) that involves at most p edges (or hops).
The Partition into Distance p−cliques Problem thus consists of
partitioning the vertex set ofV in to the least number of distance
p−cliques. For solving the problem, Edachery et al. [7] introduced
heuristics and addressed their performance on various large scale
graphs found in the telecommunication industry.

Nossack and Pesch [20] investigated the acyclic clustering
problem, a problem defined in terms of a vertex and arc weighted
directed graph D = (V ,A). A feasible solution to the problem is
a K balanced clustering, with one additional property: the graph
obtained by shrinking each cluster into a single vertex and by
merging arcs that start and end at the same pair of inbound and
outbound clusters must be a directed acyclic graph. The objective
function consists of maximizing the sum of the weights of the
arcs with both endpoints in the same cluster.

Finally, Aragão and Uchoa [5] investigated the γ -Connected
Assignment Problem (γ−CAP). Given G = (V ,E), a set of colors
K = {1, . . . ,k }, a vector γ = (γ1, . . . ,γk) of positive integers and
costs {ciq : i ∈ V ,q ∈ K }, the γ -Connected Assignment Problem
consists of finding a minimum cost assignment of colors to the
vertices in such a way that no set of vertices assigned to the same
color q induces a subgraph of G with more than γq connected
components. Applications of the γ−CAP can be seen as variants
of the Contiguity Constrained Clustering Problem [18, 19].

2 MCBCCP FORMULATION
Among other decision variables to be defined shortly, the model
uses an integer variable K to denote the cardinality of the cluster-
ing we are looking for. Assuming that l > 0 holds, feasible values

for K must satisfy
⌈

n
⌊ u
min{wi :i∈V }

⌋

⌉
≤ K ≤

⌊
n

⌈ l
max{wi :i∈V }

⌉

⌋
. Let K

denote an upper bound on the maximum number of balanced
clusters of G. If l > 0, K can be taken as the upper bound in the
previous expression. If l = 0, K = n.

The idea behind the formulation is to find a spanning forest
of G with precisely n − K edges, such that the vertices in each
of its K trees define balanced clusters. Define Ki = min{i,K }.
For a given i ∈ V , the set {1, . . . ,Ki } gives the indexes of con-
nected components where i can be placed in. In addition to K ,
the formulation uses the following decision variables:
• x = {xi j ∈ B : {i, j} ∈ E}. Variable xi j assumes value 1 if
edge {i, j} belongs to the forest and 0 if otherwise applies.
For any subset E ′ ⊆ E, define x (E ′) = ∑{i,j }∈E′ xi j .
• y = {yki ∈ B : i ∈ V ,k = 1, . . .Ki }. Variable yki assumes
value 1 if vertex i belongs to the k−th connected compo-
nent of the forest.
• z = {zk ∈ B : k = 1, . . . ,K }. Variable zk assumes value 1 if
and only if the forest has k or more connected components.

The formulation is:

min
{
K : (K ,x,y,z) ∈ P ∩ (R × Bm × Bσ × BK)

}
, (2)

where σ := ∑ni=1 Ki and P is the polyhedral region defined by:

x (E) + K = n (3)
x (E (S)) ≤ |S | − 1 S ⊂ V , |S | ≥ 2 (4)

x ≥ 0 (5)
Ki∑
k=1

yki = 1 i ∈ V (6)

n∑
i=k

yki ≥ zk k = 1, . . . ,K (7)

n∑
i=k

wiy
k
i ≤ uzk k = 1, . . . ,K (8)

n∑
i=k

wiy
k
i ≥ lzk k = 1, . . . ,K (9)

xi j + y
τ
i +

τ−1∑
k=1

ykj +

Kj∑
k=τ+1

ykj ≤ 2 {i,j }∈E,i<j
τ=1, ...,Ki (10)

Ki∑
k=1

kyki −

Kj∑
k=1

kykj ≥ −Mi j (1 − xi j) {i, j} ∈ E (11)

Ki∑
k=1

kyki −

Kj∑
k=1

kykj ≤ Mi j (1 − xi j) {i, j} ∈ E (12)

K∑
k=1

zk = K (13)

zk ≤ zk−1 k = 2, . . . ,K (14)

yki ≤ zk i ∈V
k=1, ...,Ki (15)

yki ≥ 0 i ∈V
k=1, ...,Ki (16)

Aiming to cope with formulation symmetries, variables yki for
k > Ki are not used; only yki for k = 1, . . .Ki are in place.

Constraints (3)-(5) model the spanning forest with n−K edges
of G. Subtour elimination constraints (SECs) (4) avoid that K is

26

decreased to an infeasible value, by selecting edges in excess of
what an acyclic subgraph (S ,E (S)) of G allows.

Constraints (6) enforce that each vertex must be assigned to
one connected component of G. These constraints make a clear
distinction of the indexes of components that can be assigned to
the vertices. More precisely, they state that vertex i = 1 can only
belong to the first connected component (K1 = {1}). Likewise,
vertex i = 2 either belongs to the first connected component or to
the second, and so on. Constraints (8)-(9) enforce that the sum of
weights of each connected component lies in the desired interval
[l ,u]. Constraints (7) impose that each cluster must include at
least one vertex of V .

Note that inequalities (10) are a lifting of the logical constraints

xi j + y
k1
i + y

k2
j ≤ 2,k1 ∈ Ki ,k2 ∈ Kj ,k1 , k2, {i, j} ∈ E. (17)

The latter, as well as its stronger version (10), enforces that
edge {i, j} cannot belong to the forest if its endpoints are assigned
to two different connected components. Disjunctive constraints
(11) and (12) serve the same purpose, but use different modeling
arguments; they enforce that an edge {i, j} can only be included
in the forest if its endpoints are assigned to the same connected
component index. For these constraints, big-M parameter Mi j
represents the maximum difference between the indexes of the
clusters where vertices i and j are placed in and is given by

Mi j = min{max{i, j},K } − 1.

Note that if xi j = 0, constraints (11) and (12) are trivially
satisfied. However, if xi j = 1, ∑Ki

k=1 ky
k
i =
∑Kj
k=1 ky

k
j must hold.

Because of the discreteness of y and due to (6), yki = ykj must
hold, for a given k = 1, . . . ,min{Ki ,Kj }. Although we do not
have numerical or theoretical evidence showing that constraints
(11) and (12) improve the linear programming bounds, provided
that (10) are in place, they were kept in the model. We decided
to do so, since we empirically found that their inclusion helped
the overall performance of the Branch-and-cut algorithm.

Constraints (13) state that the number of clusters is precisely
the number of variables zk activated. Constraints (15) impose
that a vertex i cannot belong to a cluster k unless the forest has
at least k components.

2.1 Additional valid inequalities
In the remaining of the text, assume thatU (S) denotes the min-
imum number of bins of size u, required to fit the vertices in
S ⊆ V . Accordingly, let U (S) denote any valid lower bound on
U (S). A widely known lower bound onU (S) is ⌈w (S)

u ⌉.
Subtour elimination constraints (4) can be lifted to the capacity

constraints (CC)

x (E (S)) ≤ |S | −U (S), ∀S : S ⊂ V , |S | ≥ 2. (18)

To the best of our knowledge, capacity constraints (18) were
introduced for the Capacitated Vehicle Routing Problem in [16].
In that context, weights {wi : i ∈ V } represent demands that
must be collected by a vehicle of capacity u andU (S) denotes the
minimum number of vehicles of capacity u needed to collect the
total demandw (S) associated to S . Here, these inequalities avoid
that clusters with weights exceeding u induce trees of the forest.
Although such conditions are already granted by constraints (8),
the inclusion of CCs (18) improves linear programming relaxation
bounds. From now on, assume that P+ denotes the intersection
of polytope P with capacity constraints (18).

The formulation can also be strengthened by the capacity
cutset constraints (CCC)

x (δ (S)) ≥ 1 (19)

defined by sets S , ∅,S ⊂ V , satisfying the following conditions:
(1) (S ,E (S)) ∈ C;
(2) w (S) < l .
In inequalities (19), δ (S) = {{i, j} ∈ E : i ∈ S , j < S } stands for

the subset of edges with exactly one endpoint in S ⊂ V . Validity
of inequalities (19) for MCBCCP comes from the following ob-
servations. Let V1 ⊂ V be a balanced and connected cluster such
that S ∩V1 , ∅. Since w (S) < l , it is clear that V1 \ S , ∅ since
otherwisew (V1) < l would hold. Since (V1,E (V1)) is connected,
at least one edge connecting S to V1 \ S must be chosen.

CCCs are also valid for subsets S : w (S) < l whose subgraphs
(S ,E (S)) are not connected. However, for this case, the right
hand side can be lifted to the number of connected components
of (S ,E (S)) and the inequality can be seen as a (weaker) surrogate
version of those defined by the connected subsets contained in
S . For the remaining of the text, assume that P++ denotes the
intersection of P+ with CCCs (19).

3 BRANCH-AND-CUT ALGORITHM
In this section, we describe the main features of the MCBCCP
Branch-and-cut algorithm BC++ based on formulation P++. The
algorithm dynamically separates two classes of MCBCCP valid
inequalities, CCs (18) and CCCs (19). BC++ first solves the Linear
Program (LP)

min
{
K : (K ,x,y,z) ∈ P̂

}
, (20)

where P̂ is the polytope given by the intersection of constraints
(3), SECs (4) defined by sets S = {i, j} ∈ E, (5)-(16) and

x (δ (S)) ≥ 1, S ∈ S, (21)

where S = {S ⊂ V : w (S) < l ,1 ≤ |S | ≤ Max , (S ,E (S)) ∈ C}.
We found advantageous to include all CCCs defined for sets
S : |S | ≤ Max in the very first linear programming relaxation (in
our implementation,Max = 4). CCCs defined by sets with more
than Max vertices are identified on-the-fly, as described in the
sequence.

Assume that the LP (20) is feasible and denote by (K̂ , x̂, ŷ, ẑ)
an optimal solution to it. BC++ then attempts to strengthen the
relaxation P̂ by appending to it some CCs and CCCs, violated by
x̂. The separation procedures for these two sets of valid inequali-
ties makes use of a separation engine designed for the SEC (4)
separation problem, outlined in [2]. The engine comprises heuris-
tic and exact algorithms for the identification of violated SECs.
The idea is to use these SEC separation procedures to provide
candidate sets of vertices for which the violation of CCCs and
CCs can be checked.

More precisely, the SEC separation engine involves a Kruskal
like heuristic and the exact SEC separation algorithm introduced
in [22]. The heuristic first sorts the edges in Ê = {{i, j} ∈ E :
x̂i j > 0}, in a non increasing order of their linear programming
relaxation values {x̂i j : {i, j} ∈ Ê}. In turn, edges in the list are
used to find a maximum cardinality spanning forest of G, in a
Kruskal like fashion. Assuming that e = {i, j} is the edge to be
processed, the heuristic merges the connected components where
i and j are placed into a single subset S of vertices. The lower
bound U (S) = ⌈

w (S)
u ⌉ is computed and the corresponding CC

(18) is checked for violation. The same set S is checked for the

27

identification of a violated CCC (19): whenever w (S) < l , we
check if x̂ (δ (S)) < 1 applies.

Violated CCs and CCCs are stored in two separate lists. At
the end of the application of the heuristic, the most violated
inequality in each list reinforces the relaxation P̂. Remaining
inequalities in the list are only included in P̂ if they are suffi-
ciently orthogonal to the most violated inequality of its class,
found at that separation round. To be more specific, assume that
aT1 x ≥ b1 and aT2 x ≥ b2 are two violated valid inequalities of
the same class, CC or CCC, stored in the list, at that separa-
tion round. Assume as well that the first is the most violated
inequality of that class. Inequality aT2 x ≥ b2 is only added to P̂ if
|⟨a1,a2⟩ |
∥a1 ∥2 ∥a2 ∥2

≤ ϵ , where ϵ ∈ [0,1) is an implementation parameter
that controls the desired level of orthogonality (in our implemen-
tation, ϵ = 0.5). Inequalities that do not satisfy the orthogonality
criteria are discarded.

The exact SEC separation algorithm in [22] is called next, only
if no violated inequalities were found by the SEC separation
heuristic. Without giving much of the details of that procedure,
it suffices to mention that the algorithm solves a series of n − 2
max-flow (min-cut) problems in a conveniently defined directed
network, obtained from x̂ and Ê, in order to find violated SECs.
The optimal set of vertices in each of these min-cut problems
is checked for the violation of CCs and CCCs. Again, the same
orthogonality criteria is applied in order to decide which inequal-
ities stored in the lists are discarded or used to reinforce the
relaxation P̂.

The process outlined above is carried out for each BC++ node,
until no violated inequalities are found by the separation engine.
If the solution to that linear programming relaxation is integer
feasible, the optimal solution to the node under investigation was
found, and the node is pruned by optimality. Being fractional,
BC++ branches on variables, giving preference to branch first on
variables x.

BC++ makes use of the XPRESS mixed integer optimization
package (release 27.01.02) in charge of managing the search tree.
All pre-processing and cutting plane generation procedures em-
bedded in the solver are turned off. No multi-threading is allowed.
Since we still have not implemented MCBCCP primal heuristics
to speed up the search, preference is given to find feasible solu-
tions as early as possible. Thus, BC++ implements a depth-first
search and the solver’s linear programming heuristics are turned
on.

4 COMPUTATIONAL EXPERIMENTS
Our computational experiments were conduced with two sets of
test instances: cb and g. The first one, cb, comprises benchmark
instances for the min-cut problem addressed by Johnshon et al.
[14]. They represent real compiler construction problems, where
each vertex in the (typically very sparse) input graph represent
modules of code that need to be combined to form clusters. In
total, five graphs representing the compiler construction problem
were used. Each of these instances are indicated by cb_id , where
id represents one of the five graphs. In that application, edges’
weights represent the communication cost between modules of
code. In theMCBCCP case, theseweights are not applicable, being
simply ignored. In the application described in [14], clusters are
restricted in their total memory storage. We used the same values
of u ∈ {450,512} considered in [14]. Since in that reference l was
assumed to be zero, we used l = ⌊10%u⌋ and l = ⌊20%u⌋.

The second set of instances considered here, g, represent grid
graphs. These instances were generated here, in an attempt to
address another application of MCBCCP, that of clustering geo-
graphical contiguous areas into political districts. Each grid has
s ∈ {8,12} rows and columns. For each value of s , five instances
were generated. Each instance is identified by the word g_s_id,
where id ∈ {1, . . . ,5} is an integer representing a particular in-
stance of size s . One vertex, placed at the center of each of these
s2 grid cells, represents the cell. The set E includes one edge
{i, j} for each pair of neighboring cells i and j. Integer weights
{wi : i ∈ V } were randomly chosen in the interval [10,100], with
uniform probability. Depending on the values of s , different val-
ues of u were chosen: for s = 8, u = 350 and for s = 12, u = 650.
These values of u account for about 10% ofw (V). The values of l
were chosen as before: l = ⌊10%u⌋ and l = ⌊20%u⌋. Considering
the different values of u and l involved in our experiments, 40
MCBCCP instances were tested. Data for the instances used in
our testings are given in Table 1. That table provides, for each
instance, the corresponding values of n,m, the minimum and the
maximum values ofwi and, finally,w (V).

The algorithms outlined in this paper were implemented in
C and compiled with gcc with optimization flags -O3 turned
on, under Linux OS. Experiments were conducted with a Intel
i7-5820K processor, running at 3.3GHz, with 32Gbytes of RAM
memory.

In Table 2, we present computational results of two Branch-
and-cut implementations: BC++ and BC+. The first one is based
on formulation P++ and, thus, makes use of CCCs (19). The other
one does not, being based on the (weaker) model P+. Therefore,
BC+ neither includes inequalities (21) in its first linear program-
ming relaxation nor calls the procedures for the indentification
of violated constraints (19), within the separation engine we de-
scribed earlier. Apart from that, the two algorithms share every
other implementation strategy.

The first two columns of the table provide the instance and the
value of u under consideration. The table is divided in two sets of
rows; the upper part of the table is dedicated to the l = ⌊20%u⌋
instances, while the bottom reports results for l = ⌊10%u⌋. For
each BC implementation, the table presents: the root node lower
bound (LB), the best lower (BLB) and upper bound (BUB) found at
the end of the search or when the time limit of 1800 seconds was

Table 1: Data for the instances used in the computational
experiments.

Inst. n m min wi max wi w (V)
cb_1 30 47 19 298 2497
cb_2 45 98 14 298 3325
cb_3 47 99 14 298 3425
cb_4 47 101 14 278 3890
cb_5 61 187 15 165 3704
g8_1 64 112 11 99 3472
g8_2 64 112 13 100 3732
g8_3 64 112 10 100 3272
g8_4 64 112 10 100 3411
g8_5 64 112 12 100 3757
g12_1 144 264 10 100 8000
g12_2 144 264 10 99 7999
g12_3 144 264 11 100 8013
g12_4 144 264 10 100 8153
g12_5 144 264 10 100 7997

28

hit, the CPU times (in seconds) needed to obtain these bounds,
t (s), and finally the number of nodes explored by the search trees.
An indication “-” is provided in the CPU time columns, whenever
the time limit was hit and the corresponding BC implementation
either did not prove the instance infeasibility or did not solve it to
proven optimality. Whenever an algorithm did not find a feasible
solution within the time limit,∞ is reported in the corresponding
BUB column entry.

The values of l and u involved in our testings led to 39 feasible
instances out of the 40 available. BC++ managed to prove the
infeasibility of that instance quite fast, right at the root node, in
contrast to BC+, that spent the entire time limit without conclud-
ing so. Considering the 39 feasible instances of our study, better
results were also obtained by BC++. While it managed to solve 24
out of the 39 feasible instances to proven optimality within the
1800 seconds time limit, BC+ solved only 12. Considering the 11
instances solved to optimality by both methods, computational
results also lean in favor of BC++. It was faster than BC+ in 7
out of these 11 cases. BC++ was also capable of delivering higher
quality integer feasible solutions, if our attention now moves to
the 14 instances left unsolved by both methods. In all these cases,
BC++ found sharper upper bounds than BC+. The latter did not
find a feasible solution within the time limit for 14 out of the 39
feasible instances of our test set.

It is worthwhile mentioning that the inclusion of inequalities
(19) resulted in small (if any) increases in the root node linear
programming bounds, for the lowest values of l . That comes as
a result of two aspects. The first is the nature of the objective
function, that involves the minimization of K , while every other
variable has the same null cost. The second is the heuristic nature
of our separation engine for the separation problem associated
to CCs (18) and to CCCs (19). As a consequence of that, there is
no guarantee that the cutting plane algorithm of BC++ delivers a
stronger bound even if, for a particular instance, the optimal so-
lution x++ to the linear programming relaxation defined by P++
does not belong to P+. That explains why, for two cases, BC+
delivered root node lower bounds slightly stronger than those
provided by BC++. Nevertheless, the inclusion of (19) as well as
the lifting (17) of (10) had a positive impact on the performance
of the full search tree. In general, fewer nodes are investigated in
less CPU time.

5 CONCLUSIONS AND FUTURE WORK
In this paper, we investigated the Minimum Cardinality Balanced
and Connected Clustering Problem (MCBCCP). We introduced
an integer programming formulation along with valid inequali-
ties for the problem. Additionally, we implemented and tested a
Branch-and-cut algorithm based on that model.

Our preliminary numerical experiments indicated that the
valid inequalities introduced here, the lifting (10) of the logi-
cal constraints (17) and the capacity cutset constraints (19), had
a positive impact on the computational results. In particular,
the Branch-and-cut algorithm that separates capacitated cutset
inequalities (19) obtained more optimality certificates than its
version that does not. It also found higher quality solutions for
those instances left unsolved when the time limit is hit.

The capacity cutset constraints (19) introduced here, alongside
capacity constraints (18), allows the problem to be formulated
without the need of variables y,z. To be more specific, denote by
Px ⊂ Rm+1 the intersection of (3) and (5) alongside the capacity

Table 2: Branch-and-cut algorithm:Computational results
with and without inequalities (19)

l = ⌊20%u⌋
BC++ BC+

Inst. u LB BLB BUB t (s) nodes LB BLB BUB t (s) nodes
cb_1 450 infeasible 0.2 1 7 9 ∞ - 57002
cb_2 450 9 10 10 163.0 7376 8.5 9 ∞ - 26262
cb_3 450 9 10 10 106.6 3517 8.2 9 ∞ - 30337
cb_4 450 9 9 9 439.6 8556 9 9 10 - 16424
cb_5 450 9 9 9 44.9 818 9 9 ∞ - 20373
cb_1 512 6 6 6 0.6 9 5.3 6 6 33.7 7028
cb_2 512 7.5 8 8 80.6 3564 7.3 8 ∞ - 28250
cb_3 512 7 8 8 124.2 3145 7 7 ∞ - 20071
cb_4 512 8 8 8 79.8 2404 8 8 8 119.9 5621
cb_5 512 8 8 8 31.7 468 8 8 8 216.5 9204
g8_1 350 11 11 11 23.4 521 11 11 11 206.4 8891
g8_2 350 11 12 12 254.3 6165 11 12 13 - 16150
g8_3 350 10 10 10 34.1 766 10 10 11 - 24266
g8_4 350 10 11 11 831.3 7625 10 11 11 434.1 4161
g8_5 350 11 11 12 - 8041 11 12 12 207.0 4161
g12_1 650 13 13 15 - 8902 13 13 ∞ - 9912
g12_2 650 13 13 19 - 8558 13 13 ∞ - 9336
g12_3 650 13 13 16 - 6591 13 13 ∞ - 9954
g12_4 650 13 13 15 - 12252 13 13 19 - 11618
g12_5 650 13 13 15 - 6196 13 13 ∞ - 9493

l = ⌊10%u⌋
BC++ BC+

Inst. u LB BLB BUB t (s) nodes LB BLB BUB t (s) nodes
cb_1 450 6.5 8 8 1.5 167 7 8 8 6.1 1069
cb_2 450 9 9 10 - 25546 8.4 9 12 - 23702
cb_3 450 8.3 9 11 - 27518 8.2 9 13 - 23303
cb_4 450 9 9 9 234.3 6198 9 9 9 208.0 5374
cb_5 450 9 9 9 61.5 1531 9 9 12 - 19561
cb_1 512 5.3 6 6 4.0 639 5.2 6 6 12.3 3869
cb_2 512 7.3 8 9 - 29238 7.2 8 10 - 23258
cb_3 512 7 7 8 142.7 6899 7 7 8 - 28586
cb_4 512 8 8 8 24.5 1340 8 8 8 92.2 5426
cb_5 512 8 8 8 29.9 340 8 8 8 42.9 610
g8_1 350 11 11 11 42.8 1275 11 11 11 1775.8 13153
g8_2 350 11.0 12 12 881.8 9273 11.1 12 13 - 14082
g8_3 350 10 10 11 - 9296 10 10 11 - 14329
g8_4 350 10 11 11 1245.9 9267 10 10 11 - 16581
g8_5 350 11 12 12 1399.0 8919 11 12 12 201.8 3141
g12_1 650 13 13 17 - 5432 13 13 ∞ - 4079
g12_2 650 13 13 16 - 7043 13 13 ∞ - 3938
g12_3 650 13 13 18 - 3129 13 13 ∞ - 3723
g12_4 650 13 13 18 - 3747 13 13 ∞ - 4445
g12_5 650 13 13 16 - 4302 13 13 ∞ - 4941

constraints (18) and cutset constraints (19). MCBCCP can be
formulated as min {K : (K ,x) ∈ Px ∩ (R × Bm)}.

A drawback of the formulation introduced here is its symmetry.
To alleviate that, we restricted the indexes of the clusters that can
be assigned to the vertices ofG . The lifting (10) of (17) also helps
in that matter. From an algorithmic perspective, we enforced that
the Branch-and-cut algorithm first branches on x variables.

A promising alternative to deal with symmetry is to use the
concept of representatives [4] to formulate the problem. For the
MCBCCP case, such a formulation involves binary decision vari-
ables v = {vi j ∈ B : i, j ∈ V }. Variable vi j assumes value 1 if

29

vertex j is the representative (or cluster head) of the connected
component where i is placed. Following the strategy to reduce
symmetry and the number of y variables, these variables can
be restricted to {vi j : i, j ∈ V , j ≤ i}, indicating that the repre-
sentative of a cluster is always the vertex with the least index
among those in the same tree of the forest. This formulation
does not involve decision variables y and z and the objective
function, to be minimized, is∑i ∈V vii . In addition to constraints
{vi j ≤ vj j ,i, j ∈ V , j < i}, the model includes constraints akin
to the inequalities defining P++, except to (14) to (7) that have
no meaning in the new variable setting. Preprocessing these v
variables could be carried out as follows. Define D = (V ,A) as
the directed graph obtained by duplicating the edges of E, into
two arcs of opposite directions. Assume that the length of an arc
(i, j) ∈ A is ci j = w j . Whenever the length of the shortest path
connecting i and j exceeds u, the representative of i and j cannot
be the same, and assuming that j < i applies, variable vi j would
not be required.

We also plan to investigate set partitioning formulations for
MCBCCP and Branch-and-cut-and-price algorithms based on
them. One possible formulation along these lines is similar to the
one introduced in [14] for a fixed cardinality clustering problem.
In addition to edge variables x, it uses exponentially many binary
decision variables associated to all balanced subsets of vertices of
V . The master problem is defined by set partitioning constraints
enforcing that every vertex must be included in one of such sub-
set of vertices, constraints (19) and (18), as well as another type of
constraints that couple x and the exponentially many variables of
sets of vertices. Such coupling constraints express the following
idea: an edge {i, j} cannot be selected by the master program unless
its endpoints i and j are included in the same balanced set. Because
of that type of coupling constraints, the associated pricing prob-
lem consists of solving a Constrained Quadratic Binary Problem,
a variation of the Maximum Weight Binary Knapsack Problem
(QKP), where not only knapsack constraintsw (S) ≤ u but also
covering constraintsw (S) ≥ l must be enforced. A nice feature
of this problem is that, due to the sign of the dual variables in
the master program, diagonal entries of the quadratic cost matrix
should be negative while off-diagonal ones should be positive.

MCBCCP also has connections with network design problems
found in the literature, for instance, the Capacited Minimum
Spanning Tree Problem (CMSTP) [10, 26]. Actually, we can re-
formulate MCBCCP as a variation of the CMSTP. To that aim,
consider a directed graph D = (V ∪ {r },A), where the arc set
A involves two arcs, in opposite directions, for every edge in E,
as well as one arc pointing from the artificial root vertex r to
every vertex i ∈ V . Arcs connecting r to i ∈ V cost one while
the remaining ones cost zero. The goal is to find a minimum cost
spanning arborescence of D, rooted out of r , such that the sum
of the weights of the vertices in every tree rooted in i ∈ V satisfy
(1). We plan to investigate models and algorithms for MCBCCP
based on such an idea, including those where the desired arbores-
cence topology is enforced by network flow and set partitioning
constraints.

So far, we have not investigated primal heuristics for the prob-
lem. One possible approach to fill that gap benefits from the
Dynamic Programming algorithm in [13], capable of exactly solv-
ing MCBCCP in polynomial time, when G is a spanning tree.
The idea is to build a spanning tree of G, driven by the linear
programming relaxations {x̂i j : {i, j} ∈ Ê} provided by our BC

algorithms. In turn, that spanning tree is used as an input graph
for the exact MCBCCP algorithm in [13].

These ideas, in full or in part, should complement the mate-
rial presented in this paper and should be presented at the next
International Network Optimization Conference.

REFERENCES
[1] E.R. Barnes. 1982. An algorithm for partitioning the nodes of a graph. SIAM

Journal on Algebraic and Discrete Mathematics 3 (1982), 541–555.
[2] Bicalho, L., da Cunha, A.S and Lucena, A. 2016. Branch-and-cut-and-price

algorithms for the Degree Constrained Minimum Spanning Tree Problem.
Computational Optimization and Applications 63 (2016), 755–792.

[3] P. Brucker. 1978. Optimization and Operations Research. Lecture Notes in
Economics and Mathematical Sciences, Vol. 157. Springer, Chapter On the
complexity of clustering problems, 45–54.

[4] Manoel Campêlo, Ricardo Corrêa, and Yuri Frota. 2004. Cliques, holes and the
vertex coloring polytope. Inform. Process. Lett. 89, 4 (2004), 159 – 164.

[5] Marcus Poggi de Aragão and Eduardo Uchoa. 1999. The γ−connected assign-
ment problem. European Journal of Operational Research 118 (1999), 127–138.

[6] Jitender S. Deogun, Dieter Kratsch, and George Steiner. 1997. An approxima-
tion algorithm for clustering graphs with dominating diametral path. Inform.
Process. Lett. 61, 3 (1997), 121 – 127.

[7] J. Edachery, A. Sen, and F. J. Brandenburg. 1999. Graph drawing. Lecture Notes
in Computer Science, Vol. 1731. Springer, Chapter Graph Clustering Using
Distance-k cliques, 98–106.

[8] J. Falkner, F. Rendl, and H. Wolkowicz. 1994. A computational study of graph
partitioning. Mathematical Programming 66 (1994), 211–224.

[9] M.R. Garey, D.S. Johnson, and L. Stockmeyer. 1976. Some simplified NP-
complete graph problems. Theoretical Computer Science 1, 3 (1976), 237–267.

[10] Bezalel Gavish. 1983. Formulations and Algorithms for the Capacitated Mini-
mal Directed Tree Problem. J. ACM 30, 1 (Jan. 1983), 118–132.

[11] W. Hager and Y. Krulyuk. 2002. Multiset graph partitioning. Mathematical
Methods of OR 55 (2002), 1–10. Issue 1.

[12] William W. Hager, Dzung T. Phan, and Hongchao Zhang. 2013. An exact
algorithm for graph partitioning. Mathematical Programming 137 (2013),
531–556.

[13] Takehiro Ito, Takao Nishizeki, Michael Schröeder, Takeakin Uno, and Xiao
Zhou. 2012. Partitioning a Weighted Tree into Subtrees with Weights in a
Given Range. Algorithmica 62 (2012), 823–841.

[14] Ellis L. Johnson, Anuj Mehrotra, and George L. Nemhauser. 1993. Min-cut
clustering. Mathematical Programming 62 (1993), 133–151.

[15] N. P. Kruyt. 1997. A conjugate gradient method for the spectral partitioning
of graphs. Parallel Comput. 22 (1997), 1493–1502.

[16] Gilbert Laporte, Yves Nobert, and Martin Desrochers. 1985. Optimal Routing
under Capacity and Distance Restrictions. Operations Research 33 (1985),
1050–1073. Issue 5.

[17] Isabella Lari, Federica Ricca, Justo Puerto, and Andrea Scozzari. 2016. Partition-
ing a Graph into Connected Components with Fixed Centers and Optimizing
Cost-Based Objective Functions or Equipartition Criteria. Networks 67 (2016),
69–81. Issue 1.

[18] F. Murtagh. 1985. A Survey of Algorithms for Contiguity-constrained Cluster-
ing and Related Problems. Comput. J. 28 (1985), 82–88. Issue 1.

[19] F Murtagh. 2003. Maximum Split Clustering Under Connectivity Constraints.
Journal of Classification 20 (2003), 143–180.

[20] Jenny Nossack and Erwin Pesch. 2014. A branch-and-bound algorithm for
the acyclic partitioning problem. Computers & Operations Research 41 (2014),
174–184.

[21] M. W. Padberg and G. Rinaldi. 1991. A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems. SIAM review
33, 1 (1991), 60–100.

[22] M. W. Padberg and L. A. Wolsey. 1983. Trees and cuts. Annals of Discrete
Mathematics 17 (1983), 511–517.

[23] A. Pothen, H. D. Simon, and K. P. Liou. 1990. Partitioning sparse matrices
with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11 (1990), 430âĂŞ452.

[24] F. Rendl and H. Wolkowicz. 1995. A projection tecnhique for partitioning the
nodes of a graph. Ann. Oper. Res. 581 (1995), 172–191.

[25] Satu Elisa Schaeffer. 2007. Graph clustering. Computer Science Review 1, 1
(2007), 27 – 64.

[26] E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M Poggi de Aragão, and D.
Andrade. 2008. Robust branch-cut-and-price for the Capacitated Minimum
Spanning Tree problem over a large extended formulation. Mathematical
Programming 112 (2008), 446–472.

[27] H. Wolkowicz and Q. Zhao. 1999. Semidefinite programming relaxations for
the graph partitioning problem. Discrete Appl. Math. 96/97 (1999), 467–547.

30

	Formulation and Branch-and-cut algorithm for the Minimum Cardinality Balanced and Connected Clustering ProblemAlexandre Salles da Cunha

