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ABSTRACT
The Rapid Transit Network Design planning problem along a
multi-period time horizon is treated by considering uncertainty
in passenger demand, strategic costs and network disruption. The
problem has strategic decisions about the timing to construct
stations and edges, and operational decisions on the available
network at the periods. The uncertainty in the strategic side is
represented in a multistage scenario tree, while the uncertainty
in the operational side is represented in two-stage scenario trees
which are rooted with strategic nodes. The variability in the
strategic cost along the time horizon as well as the variability
in the lost passenger demand to the operational transit system
current conditions could be very high. In order to avoid the nega-
tive impacts of low probability but high cost or high lost demand
scenarios, some risk reduction measures should be considered.
In this work the expected conditional stochastic dominance func-
tional is modeled in two flavors. First, controlling the cost in
the strategic scenarios in selected groups and clusters and sec-
ond, controlling the lost passenger demand in the operational
scenarios. Both flavors are time consistent.

KEYWORDS
Transportation, Rapid Transit Network Design, multistage multi-
horizon scenario trees, 0-1 models, risk averse, matheuristic al-
gorithms.

1 INTRODUCTION
Transportation systems are spatially distributed systems, which
are vulnerable to different incidents that may occur. Despite the
unpredictable nature of these incidents in terms of location, time
and magnitude, effective mitigation methods should be designed
from the very first strategic stage of design.

When designing a transport network, decisions are made ac-
cording to an expected value for network state variables, such as
infrastructure, vehicle, and traffic conditions, which are uncertain
in a planning horizon of up to decades.

In order to find resilient network designs, different research
approaches can be used, such as deterministic static, two-stage
stochastic, multistage stochastic and robust optimization, among
others. Robust optimization features solutions which are immune
to data uncertainty [8, 23]. However, these solutions have been
demonstrated to be too conservative and, then, expensive on a
daily basis [11]. The key is that the recovery of the system in
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different operational scenarios in a given strategic scenario may
not be as expensive as the introduction of traditional robustness
concepts.

It is also well known that deterministic models do not provide
high quality solutions if long planning horizons are considered,
where variability of data is prominent. It should be pointed out
that the optimization of the Risk Neutral (RN) model has the
drawback of providing a solution that ignores the potential vari-
ability of the objective function value in the scenarios and, so, the
occurrence of low-probability high-cost scenarios. Alternatively,
risk averse measures could be considered.

This work aims at advancing the state-of-the-art of rapid tran-
sit network design by introducing a novel modeling approach
for a stochastic recoverable robustness.

Review of the State-of-the-Art. In the context of rail Rapid
Transit Network Design (RTND), a complete review is recently
given in [27]. There is an extensive literature about determin-
istic RTND problems, where all parameters are assumed to be
known with certainty [7, 10, 12, 13, 22, 25, 29, 30]. But, stochastic
optimization is currently one of the most robust tools for deci-
sion making and broadly used in real-world applications in a
wide range of problems from different areas (energy, finance,
production, distribution, supply chain management, etc.). It is
well known that an optimization (say, minimization) problem
under uncertainty with a finite number of possible supporting
scenarios has a Deterministic Equivalent Model (DEM). Tradi-
tionally, special attention has been given to optimizing the DEM
by minimizing the objective function expected value in the sce-
narios, subject to the satisfaction of all the constraints, i.e., the
so-called Risk Neutral (RN) approach. Note that large DEMs can
be solved by using different types of decomposition approaches,
e.g., see in [1]. There have been many attempts with two-stage
problems in the field of RTND, which are approximations of real
problems [11, 17, 26]. Other rail related problems have been also
addressed with a two-stage RN approach [9, 15, 16, 28]. Recently,
in a series of works [4–6], an alternative approach so-named
Service Reliability is introduced for solving large-scale mixed 0-1
models with uncertain passenger demand in RTND.

Let us point out that the optimization of the RN model has
the drawback of providing a solution that ignores the potential
variability of the objective function value in the scenarios and, so,
the occurrence of low-probability high-cost scenarios. Alterna-
tively, risk averse measures could be considered. A computational
comparison of some risk averse measures is presented in [2].
Several versions of the multistage mixed 0-1 time-inconsistent
risk averse measure based on the Stochastic Dominance (SD)
functional introduced in [18] have been presented in [19], and a
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time-consistent version of the multistage mixed 0-1 risk averse
SD measure is introduced in [21].

For strategic problems (such as RTND), strategic decisions
should not depend, even in part, on operational uncertainties in
the previous periods. Long-term uncertainty, basically passenger
demand and investment costs, should be represented in a multi-
stage scenario tree, where short-term operational uncertainty, ba-
sically RTN elements’ disruptions, should be represented by con-
sidering sub-trees rooted with the strategic nodes. The mixture of
those trees may be named as (strategic) multistage (operational)
multi-horizon tree. It is worthy to point out that its structure
strongly impacts on the model design. Additionally, that type of
model should also impact on the decomposition methodologies
for problem solving in an affordable effort. Partially due the prob-
lem difficulty, there is not a wide literature on the subject. As
we know [20, 24, 33] are the first works dealing with multistage
multi-horizon trees. A specific application is presented in [33]
for a gas transportation network, where the risk averse measure
Average Value-at-Risk is considered. A multistage multi-horizon
modeling is presented in [3] for an electricity transmission and
generation network capacity expansion planning, where the risk
averse measure Time Stochastic Dominance is considered. [14] is
the first work as we know that addresses the RTND problem as a
RN model in a multistage scenario tree by considering dependent
stage-wise non-Markovian scenarios with a mixture of the sets
of strategic and operational uncertain parameters.

In order to avoid the negative impacts of low probability but
high cost or high lost demand scenarios, this work presents a
strategic multistage operational multi-horizon 0-1 stochastic risk
averse optimization model for the RTND problem. The expected
conditional stochastic dominance functional is modeled in two
flavors. First, controlling the cost in the strategic scenarios in
selected groups and clusters and second, controlling the lost
passenger demand in the operational scenarios. Both flavors are
time consistent.

This short version of the paper is organized as follows. Section
2 presents the main elements of the scenario tree partitioned in
the strategic multistage tree and the operational two-sage trees
rooted in nodes in the strategic tree. Section 3 is devoted to the
meta model where strategic and operational constraints are con-
sidered. Section 4 presents several time-consistent risk averse
measures based on the stochastic dominance functional. And, Sec-
tions 5 and 6 sketch out the solution approach and computational
experiments, respectively.

2 STRATEGIC MULTISTAGE AND
OPERATIONAL TWO-STAGE SCENARIO
TREES

For completeness let us consider the main elements of the prob-
lem inspired in [14, 20]. To represent the uncertainty a scenario
analysis approach is used, where the scenario set can be visual-
ized in a tree. Let E be the set of stages along the time horizon,
E = |E |, Te be the set of periods (usually, years, semesters) in
stage e , for e ∈ E, T be the set of periods in the time horizon,
such that T = ∪e ∈ETe , T = |T |, and Ω be the finite set of rep-
resentative strategic scenarios. A scenario ω ∈ Ω is a particular
realization of the uncertain strategic parameters along the time
horizon, it is represented in the tree as a root-to-leaf path. A
node of the strategic scenario tree represents an event, where
it is assumed that the realization of the strategic uncertain pa-
rameters and strategic decision variables take place at the first

Figure 1: Strategic multistage scenario tree with opera-
tional two-stage scenario trees

period of the related stage. Notice that the group of scenarios
that have the same realization of the uncertain parameters up to
any given stage have the same value for the strategic decision
variables up to that stage and, thus, the well-known nonantic-
ipativity principle is satisfied. Let n and N denote a node and
the set of lexicographically numbered nodes {1, . . . , |N |} in the
tree, and Ne is the set of nodes that belong to stage e , such that
N = ∪e ∈ENe . Let also Ωn ⊆ Ω denote the group of scenarios
with one-to-one correspondence with node n in the tree. Each
node represents a point in time where a strategic decision can be
made. Once a decision is made, some contingencies may occur,
and information related to those contingencies is available at the
beginning of the next stage.

The additional notation to represent the strategic multistage
scenario tree is as follows:

te , first period in the lexicographically ordered setTe in stage
e , for e ∈ E.

en , stage to which node n belongs to, for n ∈ N .
An , set of nodes composed of node n and its ancestors in the

tree, for n ∈ N . Note: A1 = {1}.
Ãn , set of nodes composed of noden and its ancestorswhose re-

lated variables (i.e., representing strategic decisions) have
nonzero elements in the constraints in node n, for n ∈ N .
Note: Ãn ⊆ An .

Sn , set of successor nodes of node n in the tree, for n ∈ N .
Sn1 , set of immediate successor nodes to noden, forn ∈ Ne , e ∈

E. Note: Sn1 ⊆ Sn .
σn , immediate ancestor node to node n, thus, σn ∈ An , for

n ∈ N \ {1}.
wω , weight or probability assigned to scenario ω, for ω ∈ Ω,

andwn =
∑
ω ∈Ωn wω , for n ∈ N .

Now, consider any node n ∈ N also as a representative of
any operational period of stage en . The operational uncertainty
attached to node n is represented by a finite set of scenarios. They
are so-called operational scenarios in a two-stage tree rooted with
node n, and the realizations of the scenarios are, precisely, the
nodes in the second stage. A 7-node scenario tree is depicted in
Fig. 1.

In RTND problems, passenger demand may be considered as
the most important uncertain parameter, since its uncertainty is
the most independent one of the design of RTN; so, the strategic
multistage scenario tree is generated around it. Also assume
that the strategic (investment) cost is on some way correlated
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with the passenger demand. Therefore, passenger demand and
investment cost are strategic uncertain parameters defined in
strategic nodes while RTN disruptions and operational cost are
operational uncertain parameters defined in operational nodes
(the ones in the second stage of the two-stage tree rooted with
strategic nodes). Thus, in order to have affordable dimensions
in the scenario tree from a computational point of view, as an
illustration consider E = 4 stages, with 5 periods, say years, each
one. On the other hand, assume that the number of strategic
immediate successor nodes of node n is |Sn1 | = 3 for en = 1, 2, 3
and, so, the cardinality of the scenario tree is |N | =

∑
e ∈E |Ne | =

1 + 3 + 9 + 27 = 40 nodes. Some additional notation related to
the RTN infrastructure is as follows:

I , set of RTN infrastructure elements to be constructed.
ℓi , latency, i.e., number of periods that are required between

the period when the construction starts for the RTN in-
frastructure element i (e.g., an edge as a connection of two
stations, a station in the network) and the period at which
it becomes available for operation.

Ii , set of RTN infrastructure elements whose construction
cannot start until element i is available (i.e. its construction
is over), for i ∈ I . Note: Ii ⊂ I .

J , set of RTN operational elements.
I j , set of RTN infrastructure elements that should be available

when operational element j is active, for j ∈ J . Note: I j ⊂ I .
The notation for the other elements in strategic node n and

its operational two-stage scenario tree is as follows, for n ∈ N :
ιni , strategic ancestor node related to RTN infrastructure el-

ement i , such that the period which it belongs to (i.e., te
where e ≡ eιni ) is the latest period by which element i
can start its construction, so that it is available for use in
the RTN at any period in set Ten for strategic node n, for
n ∈ N , i ∈ I :

ιni = arдmaxq∈An {teq ∈ T : teq ≤ ten − ℓi }.

Πn , set of operational scenarios for the two-stage tree rooted
with strategic noden. As an illustrative case, assume |Πn | =

8 operational scenarios per each node n in the tree with
|N | = 40 strategic nodes in the case that have been illus-
trated above. So, in total, there are 320 uncertain situations
to be dealt with, being partitioned in 40 groups. It means
that there are 320 RTN operational submodels within the
strategic-operational one to be presented next. Many of
those submodels will probably have the same or a similar
topology.

wπ , weight or probability of operational scenario π , for π ∈

Πn , such that
∑
π ∈Πn w

π = 1.

3 STRATEGIC MULTISTAGE OPERATIONAL
TWO-STAGE STOCHASTIC RISK
NEUTRAL 0-1 MODEL

The Risk Neutral (RN) model that is introduced in this section
requires the following notation for the variables:
(xn )i , 0-1 step variable for RTN infrastructure element i in noden,

for i ∈ I . Its value is 1 if the element starts its construction
by period ten and otherwise, 0, forn ∈ N : ten ≤ T−ℓi , i ∈
I . It is a strategic variable. Let xn be the |I |-dimensional
vector of variables {(xn )i ∀i ∈ I }. Notice that (xn )i −

(xσ
n
)i = 1 means that element i starts is construction at

node n.
(yπ )j , 0-1 impulse variable for RTN operational element j in op-

erational node π , for π ∈ Πn, n ∈ N , j ∈ J . Its value is 1
if the element is active at operational scenario π in stage
en to which strategic node n belongs to and otherwise, 0.
It is an operational variable. Let yπ be the |J |-dimensional
vector of variables {(yπ )j ∀j ∈ J }.

Note: It is well-known that the modeling scheme where the step
x-variables are considered is stronger than the model where they
are replaced with impulse variables.

The parameters are as follows:
(an )i , objective function coefficient (i.e., investment cost) related

to the RTN infrastructure element i if it starts its construc-
tion at node n, for n ∈ N : ten ≤ T −ℓi , i ∈ I . It is assumed
that the construction cost is made at the starting period
ten . Note: That assumption can be easily replaced with an
ad-hoc policy.

bπ , vector of the objective function coefficients (e.g., passenger
demand lost, among others) of the operational variables
in vector yπ , for π ∈ Πn, n ∈ N .

hns , rhs of the set of constraints related to strategic node n, for
n ∈ N .

A
q
n , constraint matrix for the variables in vector xq of ancestor

node q in the strategic constraints related to node n, for
q ∈ Ãn, n ∈ N .

hπo , rhs of the set of constraints related to operational scenario
π , for π ∈ Πn, n ∈ N .

Bπ , constraint matrix for the variables in vector yπ , for π ∈

Πn, n ∈ N .
k , interest rate by period.
The DEM RN 0-1 model can be expressed as follows:

z = min
∑
i ∈I

∑
n∈N :

ten ≤T−ℓi

1
(1 + k)ten

wn (an )i ((x
n )i − (xσ

n
)i )+

∑
n∈N

1
(1 + k)ten

wn |Ten |
∑
π ∈Πn

wπbπyπ ,

(1)
subject to∑

q∈Ãn
A
q
nx

q = hns ∀n ∈ N

(xσ
n
)i ≤ (xn )i ∀n ∈ N : ten ≤ T − ℓi , i ∈ I

(xn )i′ − (xσ
n
)i′ ≤ (x ι

n
i )i ∀n ∈ N : ten ≤ T − ℓi , i

′ ∈ Ii , i ∈ I

(yπ )j ≤ (x ι
n
i )i ∀π ∈ Πn, n ∈ N , i ∈ I j , j ∈ J

Bπyπ = hπo ∀π ∈ Πn, n ∈ N
(xn )i ∈ {0, 1} ∀n ∈ N : ten ≤ T − ℓi , i ∈ I
(yπ )j = 0 ∀π ∈ Πn, n ∈ N , j ∈ J
yπ ∈ {0, 1} ∀π ∈ Πn, n ∈ N , j ∈ J .

(2)

4 RISK AVERSE EXPECTED CONDITIONAL
STOCHASTIC DOMINANCE
FUNCTIONALS

There are some risk averse approaches that deal with risk man-
agement [31], see a computational comparison in [2]. Among
them, the Stochastic Dominance (SD)-based measures reduce the
risk of the negative impact of the solutions in non-wanted sce-
narios in a better way than the others under some circumstances.
See in [18, 32] its theoretical foundations, among others.
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In a rapid transit network, the variability in cost along the
time horizon in the strategic scenarios (where the operational
scenarios are considered) and the variability in lost passenger
demand in the operational scenarios for the related strategic
node in the stages could be very high. In order to avoid the
negative impact of the solution in the scenarios, mainly those
with low probability and high cost or high lost demand, some
risk reduction measures should be considered.

Time-consistency
Roughly, a risk-averse measure is time-consistent if the solution
to be obtained from the submodel supported by a subtree rooted
with a node at a given stage in a multistage scenario tree is
the same as the one for that node and successors in the model
supported by the full multistage scenario tree.

The rationale behind a time-consistent risk measure is that the
solution value to be obtained in any node n and its successors for
the related submodel "‘solved"’ at stage en should have the same
value as in the original model "‘solved"’ at stage e = 1. Obviously,
the RN model given by (1) and (2) and the model given by (1),
(2) and (5) supported by the operational two-stage trees rooted
at the strategic nodes are time-consistent. Additionally, it is not
difficult to prove that the model given (1),(2),(3) and (5) is also
time-consistent; in another context, see [21].

Section 4.1 presents the expected conditional stochastic domi-
nance (ECSD) version for controlling the objective function value
(i.e., the overall strategic-operational cost) in the scenario groups
for modeler-driven subset of stages. Section 4.2 presents a sto-
chastic dominance (SD) risk averse functional for controlling the
objective function value (i.e., the overall strategic-operational
cost) in a modeler-driven set of scenario clusters. The conditions
to be satisfied by the SD functional in order to have the time-
consistency property are also given. And Section 4.3 presents the
ECSD version for controlling the lost passenger demand in the
operational scenarios.

4.1 Objective function excess risk reduction
for strategic scenario groups

The risk averse measure ECSD for the Net Present Value (NPV) of
the expected objective function value composed of the expected
investment cost on stations and edges of the new network (for
short, expected strategic cost) and the expected operational cost
of the available infrastructure elements of the new network for
each strategic node in the whole time horizon requires the fol-
lowing additional sets of modeler-driven scenario groups and
profiles:
ESt , subset of stages in set E, whose scenario groups with one-

to-one correspondence with strategic nodes (including the
related operational ones) are to be considered.

Pn , set of profiles for scenario group Ωn , for n ∈ Ne , e ∈ ESt .
For each profile p ∈ Pn , let the following modeler-driven

parameters:
ϕp , objective function (i.e., cost) threshold in the whole time

horizon to consider for any scenario in group Ωn (i.e.,
groupwith one-to-one correspondencewith strategic node
n), where the operational scenarios in set Πn are taken
into account.

s̃p , upper bound of the expected cost excess over threshold
ϕp for any scenario ω in group Ωn .

sp , upper bound of the expected cost excess over threshold
ϕp in group Ωn as a whole.

The profile contents are inspired in the second-order stochas-
tic dominance functional induced by integer-linear recourse for
multistage stochastic problems, see its time-consistent version
in [21].

The variable for pair (ω,p), where ω is a strategic scenario in
group Ωn and p is the index of profile in Pn is as follows:
sω ,p , continuous variable that takes the expected cost excess

over threshold ϕp in strategic scenario ω in group Ωn ,
where the operational scenarios in set Πn are taken into
account.

The objective function (i.e., overall strategic-operational cost)
risk reduction ECSD constraint system can be expressed as:∑

i ∈I

∑
q∈Aω :

teq ≤T−ℓi

1
(1 + k)teq

(aq )i ((x
q )i − (xσ

q
)i )+

∑
q∈Aω

1
(1 + k)teq

|Teq |
∑
π ∈Πq

wπbπyπ − sω ,p ≤ ϕp and

0 ≤ sω ,p ≤ s̃p ∀ω ∈ Ωn, p ∈ Pn, n ∈ Ne , e ∈ ESt∑
ω ∈Ωn

(wω/wn )sω ,p ≤ sp ∀p ∈ Pn, n ∈ Ne , e ∈ ESt .

(3)
Notice that the key element in constraint system (3) is that

those scenario-cross constraints are related to scenarios that
belong to the same group at any stage in set ESt .

4.2 Objective function excess risk reduction
for strategic scenario clusters

A risk reduction functional for the objective function value in
scenario clusters is presented in this sectionwith a similar scheme
as the one presented in the previous section for the scenario
groups with one-to-one correspondence with a modeler-driven
stage subset. So, it has similar notation for the risk reduction
profiles. The difference between both functionals is that, now,
the strategic scenarios to consider are clustered according to
a modeler-driven criterion. So, let C denote the set of scenario
clusters, and Ωc is the set of strategic scenarios in the cluster
indexed with c , for c ∈ C . There is a high flexibility on the
structuring of the clusters, i.e., (a) a scenario could belong to
more than one cluster, and (b) more than one cluster may have
one-to-one correspondence with the same strategic node.

Let Pc denote the set of profiles for scenario cluster Ωc , for
c ∈ C . So, for each profilep ∈ Pc , let the followingmodeler-driven
parameters:
ϕp , Objective function (i.e., cost) threshold in the whole time

horizon to consider for any scenario in cluster Ωc , where
scenario ω, for ω ∈ Ωc includes the strategic nodes in
it ancestor path down to the root node in the strategic
multistage tree, Aω , so that the operational scenarios in
set Πq are taken into account, for q ∈ Aω .

s̃p , upper bound of the expected cost excess over threshold
ϕp for any scenario ω in cluster Ωc .

sp , upper bound of the expected cost excess over threshold
ϕp in cluster Ωc as a whole.

The variable for pair (ω,p), where ω is a strategic scenario in
cluster Ωc and p is the index of profile in Pc is as follows:
sω ,p , continuous variable that takes the expected cost excess

over threshold ϕp in strategic scenario ω in cluster Ωc ,
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where the operational scenarios in set Πq are taken into
account.

The risk reduction stochastic dominance constraint system
related to the objective function (i.e., overall strategic-operational
cost) can be expressed as:

∑
i ∈I

∑
q∈Aω :

teq ≤T−ℓi

1
(1 + k)teq

(aq )i ((x
q )i − (xσ

q
)i )+

∑
q∈Aω

1
(1 + k)teq

|Teq |
∑
π ∈Πq

wπbπyπ − sω ,p ≤ ϕp and

0 ≤ sω ,p ≤ s̃p ∀ω ∈ Ωc , p ∈ Pc , c ∈ C∑
ω ∈Ωc

(wω/wc )s
ω ,p ≤ sp ∀p ∈ Pc , c ∈ C,

(4)
wherewc =

∑
ω ∈Ωc w

ω for c ∈ C .
Notice that the key element in constraint system (4) is similar

to the one in system (3), here, those scenario-cross constraints
are related to scenarios that belong to the same cluster.

It is worth pointing out that the risk reduction functional given
in system (4) is a time-consistent one, provided that the following
conditions are satisfied:

(1) The scenarios do not overlap in the clusters, i.e.,Ωc∩Ωc ′ =

∅ for any pair c, c ′ ∈ C : c , c ′.
(2) Each scenario cluster Ωc for c ∈ C is included in some

scenario strategic group Ωn , i.e., ∃n ∈ Ne : e ∈ E such
that Ωc ⊆ Ωn, c ∈ C .

It is also worth pointing out that the time-consistency of the
functional does not prevent that any scenario group is partitioned
in several scenario clusters.

4.3 Risk reduction for the lost passenger
demand at selected strategic nodes

The risk averse measure ECSD is specialized in this section for
risk reduction in the operational scenario set Πn, n ∈ N . Here,
the function to consider is (the operational one related to) the
passenger demand lost to the current transport system in the
operational scenarios in the strategic nodes of a subset os stages.

The operational-based ECSD requires the following additional
sets and elements for modeler-driven strategic nodes:

EOp , subset of stages in set E, whose passenger demand lost is
to be reduced. Note: ESt ∩ EOp could be an empty set.

W , passenger groups defined by origin/destination (o/d) pairs.
дπw , number of passengers in groupw , forw ∈W . Notice that

its demand could be lost; it is a parameter that belongs to
the objective function operational vector bπ .

f πw , a 0-1 variable, such that its value 1 means that passen-
ger groupw is lost to the current network in operational
scenario π and otherwise, 0, for w ∈W , π ∈ Πn, n ∈ N .
Note: Variable f πw belongs to operational variables vector
yπ .

Pn , set of profiles that are associated with operational scenario
set Πn , for n ∈ N e , e ∈ EOp , instead of been associated
with strategic scenario group Ωn as it is presented in Sec-
tion 4.1.

For each profile p ∈ Pn , the following parameters are required:
γp , passenger demand lost threshold to consider in any oper-

ational scenario π , for π ∈ Πn .

s̃p , upper bound of the demand lost excess over threshold γp
in any operational node π , for π ∈ Πn .

sp , upper bound of the expected demand lost excess over
threshold γp in set Πn .

The variable for pair (π ,p), where π is an operational node
and p is the index of a profile in strategic node n, for p ∈ Pn, π ∈

Πn, n ∈ N e , is as follows for stage e , for e ∈ EOp :
sπ ,p , continuous variable that takes the passenger demand lost

over threshold γp in operational scenario π , for π ∈ Πn .
The risk reduction ECSD constraint system related to the

(operational) passenger demand lost can be expressed
1

(1 + k)te
|Te |

∑
w ∈W

дπw f πw − sπ ,p ≤ γp and

0 ≤ sπ ,p ≤ s̃p ∀π ∈ Πn, p ∈ Pn, n ∈ N e , e ∈ EOp∑
π ∈Πn

wπ sπ ,p ≤ sp ∀p ∈ Pn, n ∈ N e , e ∈ EOp .

(5)

So, the ECSD model that is proposed in this work can be
expressed as the expected cost (1) to minimize, subject to the
strategic node-based constraint system (2), the one for linking
strategic and operational variables and the operational node-
based constraint system, plus the cross strategic scenario group
and operational set based constraint systems (3) and (5), respec-
tively.

5 SOLUTION APPROACH
Given the problem’s complexity and the huge model’s dimen-
sions (due to the RTND static model as well as the potentially
high number of scenario nodes in the multistage setting), it is
unrealistic to seek for an optimal solution, even by considering
decomposition approaches for problem solving. So, a decom-
position approach is required for obtaining a (hopefully, good)
feasible solution where its optimality gap is guaranteed.

A version of the matheuristic FLAggA (that stands for Fix-and-
Lazy Aggregated / de-aggregated Algorithm) [14] is presented in
the full paper to deal with the risk averse measures represented
in the constraint systems (3), (4) and (5).

6 COMPUTATIONAL EXPERIMENT
This section introduces the computational experiment, whose
results are not detailed due to space limitations. It is based on
the RTN so-called R1, see [29], which has also been used in
[10, 11, 17, 25], among others. It features 9 nodes, 15 edges and 72
passenger groups. All previous efforts for problem solving have
been devoted either to the deterministic or the RN version of the
network.

A broad computational study is performed to compare the per-
formance of FLAggA and the plain use of a state-of-the-art solver
on one hand. And on the other one, a computational analysis is
carried out by comparing the RN version of the model with the
proposed risk averse measures.

Two different scenario trees are considered in the experiment,
namely a proof-of-concept tree and a tree with more realistic
dimensions. The first tree features 3 stages, 7 strategic nodes, 56
operational scenarios and 4 strategic scenarios. The second tree
features 4 stages, 40 strategic nodes, 320 operational scenarios
and 27 strategic scenarios.

The RN solution provides a high variability in many issues,
as for example in the lost passenger demand. For the 40-node
scenario tree case, for illustrative purposes, the differences be-
tween the strategic scenarios is shown in Figure 2. The upper
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Figure 2: Scenario demand and lost demand

curve in the figure depicts the passenger demand for each of the
strategic scenarios, while the middle and lower curves depict the
expected lost of passenger demand for two latency strategies as
provided by the incumbent solution obtained by the matheuristic
algorithm FLAggA.

Table 1 shows some statistics for the demand and lost demand
in the scenarios. The headings are related to the largest, smallest,
average and its standard deviation. The purpose of the proposed
risk averse functionals is to reduce this level of lost demand with
the same allowed budget for infrastructure investment.

Table 1: Passenger demand statistics for the 27 strategic
scenarios

Demand larдest smallest aver dev

Scenario-based 5828.52 3025.38 4229.25 577.64
Lost for ℓ = 1 3858.39 2391.86 3160.52 325.99
Lost for ℓ = 0 2560.68 1823.13 3221.41 179.47
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