O

proceedings

SEP2P: Secure and Efficient P2P Personal Data Processing

Julien Loudet!-?3

1Cozy Cloud, France
julien@cozycloud.cc

ABSTRACT

Personal Data Management Systems are flourishing allowing an
individual to integrate all her personal data in a single place and
use it for her benefit and for the benefit of the community. This
leads to a significant paradigm shift since personal data become
massively distributed. In this context, an important issue needed
to be addressed is: how can users/applications execute queries
and computations over this massively distributed data in a secure
and efficient way, relying exclusively on peer-to-peer (P2P) in-
teractions? In this paper, we motivate and study the feasibility of
such a pure P2P personal data management system and provide
efficient and scalable mechanisms to reduce the data leakage to
its minimum with covert adversaries. In particular, we show that
data processing tasks can be assigned to nodes in a verifiable
random way, which cannot be influenced by malicious colluding
nodes. Then, we propose a generic solution which largely mini-
mizes the verification cost. Our experimental evaluation shows
that the proposed protocols lead to minimal private informa-
tion leakage, while the cost of the security mechanisms remains
very low even with a large number of colluding corrupted nodes.
Finally, we illustrate our generic protocol proposal on three data-
oriented use-cases, namely, participatory sensing, targeted data
diffusion and more general distributed aggregative queries.

1 INTRODUCTION

The time of individualized management and control over one’s
personal data is upon us. Thanks to smart disclosure initiatives
(e.g., BlueButton [9] and GreenButton in US, MesInfos [16] in
France, Midata [25] in UK) and new regulations (e.g., the Europe’s
new General Data Protection Regulation [27]), users can access
their personal data from the companies or government agencies
that collected them. Concurrently, Personal Data Management
System (PDMS) solutions are flourishing [4] both in the academic
(e.g., Personal Data Servers [1], Personal Information Manage-
ment Systems, Personal Data Stores [14], Personal Clouds [20])
and industry [12, 26, 33]. Their goal is to offer a data platform
allowing users to easily store and manage into a single place
data directly generated by user devices (e.g., quantified-self data,
smart home data, photos, etc.) and data resulting from user in-
teractions (e.g., user preferences, social interaction data, health,
bank, telecom, etc.). Users can then leverage the power of their
PDMS to benefit from their personal data for their own good
and in the interest of the community. Thus, the PDMS paradigm
holds the promise of unlocking new innovative usages.

Let us consider three emblematic distributed applications based
on large user communities which could greatly benefit from the
PDMS paradigm: (1) mobile participatory sensing apps [36], in
which mobile users produce sensed geo-localized data (e.g., traffic,

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Tulian Sandu-Popa>*?
2INRIA Saclay, France
<fname.lname>@inria.fr

145

Luc Bouganim?*?

3University of Versailles, France
<fname.lname>@uvsq.fr

air quality, noise, health conditions) to compute spatially aggre-
gated statistics benefiting the whole community; (2) subscription-
based or profile-based data diffusion apps [38], in which PDMS
users provide preferences or exhibit profiles in order to selec-
tively receive pertinent information; and (3) distributed query
processing over the personal data of large sets of individuals
[37], in which users contribute with their personal data and is-
sue queries over the globally contributed data (e.g., computing
recommendations, participative studies).

However, these exciting perspectives should not eclipse the
security issues raised by the PDMS paradigm. Indeed, each PDMS
can store potentially the entire digital life of its owner, thereby
proportionally increasing the impact of a leakage. Hence, cen-
tralizing all users’ data into powerful servers is risky since these
data servers become highly desirable targets for attackers: huge
amounts of personal data belonging to millions of individuals
could be leaked or lost as illustrated by the recent massive attacks
(e.g., Facebook, Yahoo or Equifax). Besides, such a centralized
solution makes little sense in the PDMS context in which data is
naturally distributed at the users’ side [19].

Alternatively, recent works [4, 14, 20, 33] propose to let the
user data distributed on personal trustworthy platforms under
users’ control. Such platforms can be built thanks to the combi-
nation of (1) a Trusted Execution Environment (TEE) (i.e., secure
hardware such as smart cards [1] or secure micro-controllers
[4, 5, 20], ARM TrustZone [18], or Intel SGX [29]) and (2) specific
software (e.g., minimal Trusted Computing Base and information
flow control [22, 29]). In this paper, we follow this approach and
consider that a PDMS is a dedicated personal device that the user
possesses and is secured thanks to TEE hardware.

In addition, as in many academic and commercial approaches
[33], we assume that the PDMS personal device offers a rather
good connectivity and availability like, for instance, home-cloud
solutions [4, 12, 26, 33] (e.g., a set-top box or a plug computer
[4]). Thus, PDMSs can establish peer-to-peer (P2P) connections
with other PDMSs, and can be used as data processor in order
to provide part of the processing required in distributed applica-
tions. Hence, our objective is to study solutions based on a full
distribution of PDMSs (called nodes interchangeably) which can
act as data sources and data processors and communicate in a
peer-to-peer fashion. We discard solutions requiring recentraliz-
ing the distributed personal data during its processing, since this
would dynamically create a personal data concentration leading
to a similar risk as with centralized servers.

Incorporating TEEs greatly increases the protection against
malicious PDMS owners. However, since no security measure can
be considered as unbreakable, we cannot exclude having some
corrupted nodes in the system and, even worse, those corrupted
nodes can collude and might very well be undistinguishable from
honest nodes, acting as covert adversaries [7]. Also, since data
processing relies exclusively on PDMS nodes, and given the very
high scale of the distribution which disqualifies secure multi-
party computation (MPC) protocols [31], sensitive data leaks are
unavoidable in the presence of corrupted nodes, i.e., some data

10.5441/002/edbt.2019.14

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.14

might be disclosed whenever a corrupted node is selected as a
data processor.

The goal of this paper is to assess the feasibility of building a se-
cure and efficient data processing system over a fully distributed
network of PDMS housing covert adversaries. To achieve it we
provide mechanisms to reduce the data leakage to its minimum,
and make the following contributions:

(1) We propose a P2P architecture of PDMSs, called SEP2P
(for Secure and Efficient P2P), based on classical Distributed
Hash Tables (DHT) and analyze potential data leakages of data
sources and data processors. We show that (i) data tasks should be
assigned to nodes in a verifiable random way, i.e., the assignment
cannot be influenced by malicious colluding nodes; and (ii) any
data-oriented task, whether it is storage or computation, should
be atomic, i.e., reduced to a maximum such that it minimizes the
quantity of sensitive data accessible by the task.

(2) We focus on the verifiable random assignment problem and
propose a generic solution (i.e., independent of the distributed
computation tasks) which largely minimizes the verification cost
(e.g., 8 asymmetric crypto-operations with a SEP2P network of
1M nodes of which 10K are colluding corrupted nodes).

(3) We experimentally evaluate the quality and efficiency of
the proposed protocols. The verifiable random assignment pro-
tocol leads to minimal private information leakage, i.e., linear
with the number of corrupted nodes, while the cost of the secu-
rity mechanisms remains very low even with a large number of
colluding corrupted nodes.

(4) We address the task atomicity subproblem by providing
sketches of solutions for the three classes of applications indi-
cated above. We do not propose full solutions since task atomicity
is dependent on the considered class of distributed computation
and as such needs to be studied in detail.

Sections 2 to 5 present these four contributions respectively.
We finally discuss the related work in Section 6 and conclude the
paper in Section 7.

2 SEP2P ARCHITECTURAL DESIGN

2.1 Base System Architecture

SEP2P is a peer-to-peer system and only relies on the PDMS
nodes to enable the aforementioned applications. Consequently,
each node may play several roles for SEP2P applications:

Node role 1. Each node is a potential data source. For instance,
producing sensed geo-localized data about the local traffic speed,
or sharing grades used to compute recommendations.

Node role 2. Given the fully-decentralized nature of SEP2P, each
node is a potential data processor, also called actor, providing
part of the required processing.

Node role 3. The initiator of a distributed processing is called
the triggering node (T). T could be any node with participatory
sensing applications, or the query issuer in distributed query or
data diffusion applications.

2.2 Efficient P2P Data Processing

Relying on a fully-distributed system induces several problems,
e.g., integrating new nodes, maintaining a coherent global state,
making nodes that do not know each other interact, handling
churn, maintaining some metadata. It thus requires a communica-
tion overlay allowing for efficient node discovery, data indexing

146

and search. Fortunately, these problems have already been exten-
sively studied in the literature and the Distributed Hash Tables
(DHTs) appear to be the solution reaching consensus.

Background 1. A distributed hash table (DHT) [23, 30, 34]
in a P2P network offers an optimized solution to the problem
of locating the node(s) storing a specific data item. The DHT
offers a basic interface allowing any node of the network to
store data, i.e., store(key, value), or to search for certain data,
i.e., lookup(key) — wvalue. DHTs proposals [23, 30, 34] share
the concepts of keyspace or DHT virtual space (e.g., a 224 bits
string obtained by hashing the key or the node ID), space par-
titioning (mapping space partitions to nodes, using generally a
distance function), and overlay network (set of routing tables
and strategies allowing reaching a node, given its node ID). For
instance, the virtual space is represented as a multi-dimensional
space in CAN [30], as a ring in Chord [34] or as a binary tree
in Kademlia [23] and is uniformly divided among the nodes in
the network. Thus, each node is responsible for the indexing of
all the (key, value) pairs where the key falls in the subspace it
manages. Both the data storage and the lookup operations are
thus fully distributed in a DHT. DHTs have interesting properties:
uniform repartition of the data, scalability, fault tolerance and do
not require any central coordination.

Hence, SEP2P leverages the classical DHT techniques as a
basis for communication efficiency and scalability.

2.3 Security Considerations

In this paper, we use the terminology of ARM [35] to designate
the three attack levels on a PDMS node, i.e., hack, shack and lab
attacks. A hack attack is a software attack in which the attacker
(the PDMS owner or remote attacker) downloads code on the de-
vice to control it. A shack attack is a low-budget hardware attack,
i.e., using basic equipment and knowledge. Finally, a lab attack
is the most advanced, comprehensive and invasive hardware at-
tack for which the attacker has access to laboratory equipment,
can perform reverse engineering of a device and monitor analog
signals. Note that shack and lab attacks require a physical access
to the device and that TEEs are designed to at least resist hack
and shack attacks.
Our threat model considers three security assumptions:

Assumption 1. Each PDMS is locally secured by using TEE-like
technology flourishing nowadays (e.g., [18, 20, 29]). This assump-
tion is reasonable considering that a PDMS is supposed to store
the entire digital life of its owner. A major security feature of
TEE technology is to provide isolation, i.e., strong guarantees
that the local computation inside the TEE cannot be spied upon,
even in the presence of an untrusted computational environment.
Hence, to break to confidentiality barrier of a TEE, a lab attack
is mandatory. This has an important consequence: an attacker
cannot conduct a successful attack on a remote node, i.e., not under
her possession.

Assumption 2. Each PDMS device is supplied with a trustworthy
certificate attesting that it is a genuine PDMS. Without this as-
sumption, an attacker can easily emulate nodes in the network,
and conduct a Sybil attack [11], mastering a large proportion
of nodes (e.g., playing the role of data processor nodes), thus
defeating any countermeasure. Note that this does not require
an online PKI (the certificate can be attached to the hardware
device and not to the device owner).

Assumption 3. Corrupted nodes by a lab attack behave like covert
adversaries, i.e., they derive from the protocol to obtain private
information only if they cannot be detected [7], as detected mali-
cious behavior leads to an exclusion from the system.

2.4 Threat Model

The above considered assumptions already offer a certain level of
security at the node and system levels. Yet, no hardware security
can be described as unbreakable. Therefore, our threat model
considers that an attacker (e.g., one or several colluding malicious
users) can possess several PDMSs and conduct lab attacks on
these devices, thus mastering several corrupted nodes which can
collude. For simplicity, we will call them colluding nodes.

It is important to notice that the worst-case attack is repre-
sented by the maximum number of colluding nodes in the system
(i-e., controlled by a single entity). Corrupting few nodes can lead
to some private data disclosure, but this will be very limited in a
well-designed system with a large number of nodes. Therefore,
an attacker needs to increase the collusion range to fully benefit
from the attack (i.e., access a significant amount of private data).

Thereby, the remaining question is: how many colluding nodes
could an attacker control in the system? The main difficulty for
an attacker is that colluding nodes must remain indistinguishable
from honest nodes (see Assumption 3). Since PDMSs are associ-
ated to “real” individuals (e.g., by delivering the device only to
real users proving their identity), collusions between individu-
als remains possible (hidden groups) but such collusions cannot
scale without being minimally advertised, hence breaking the
indistinguishability mentioned above. Thus, wide collusions are
extremely difficult to build since it requires significant organi-
zation between a very large number of users, which in practice
requires an extremely powerful attacker as well as extreme dis-
cretion, and are thus the equivalent of a state-size attack. Finally,
note that considering a large proportion of colluding nodes (e.g.,
10%) is vain as it would inexorably lead to large disclosure what-
ever the protocol having a reasonable overhead (e.g., outside the
MPC scope). Hence, in this paper we consider that a very pow-
erful attacker could control up to a small percentage (e.g., 1%)
of the nodes, which corresponds to a wide collusion requiring a
lab attack on these nodes as well as a highly organized collusion
between the owners of those nodes.

What does the system protect? The objective of SEP2P is to
offer the maximum possible confidentiality protection of the user
private data under the above considered threat model. Many other
issues related to statistical databases (e.g., inferences from results,
determining the authorized queries, query replay, fake data in-
jection, etc.) or to network security (e.g., message drop/delay,
routing table poisoning [39]) are complementary to this work
and fall outside of the scope of this paper. Similarly, we leave
aside the problems related to the attestation and integrity of the
code executing distributed computations (e.g., against corrupted
nodes that maliciously modify the computation results).

2.5 SEP2P Requirements

Given the considered threat model, we derive in this section
the requirements that a SEP2P must address to protect the data
privacy of the users. Since we cannot exclude having colluding
nodes in the system and since the colluding nodes behave like
covert adversaries, private information leakage is unavoidable.
Under these conditions, the best countermeasures one can take
are: (i) minimize the risk of a data leakage, i.e., reduce at most the

147

probability of a leakage to happen; and (ii) minimize the impact
of a data leakage, i.e., reduce at most the leakage size. Obviously,
these countermeasures should not generate overheads that render
the system unpractical. This leads to:

Requirement 1 (security). Random actor selection. Ensure
that colluding nodes cannot influence the selection of the data
processor nodes.

Requirement 2 (security). Task atomicity. Data tasks should
be atomic, i.e., reduced to a maximum such that it minimizes the
required sensitive data to execute the task.

Requirement 3 (efficiency). Security overheads. Minimize
the number of costly operations, e.g., cryptographic signature
verifications or communication overhead, and ensure system scal-
ability with an increasing number of nodes or colluding nodes.

The task atomicity requirement is similar to the principle of
compartmentalization in information security, which consists in
limiting the information access to the minimum amount allowing
an entity to execute a certain task. Typically, a node can execute
a subtask without knowing the purpose or the scope of the global
task. Dividing a given distributed computation in atomic tasks
obviously depends on the precise definition of that computa-
tion. Hence, we restrict our analysis in Section 5 to sketches
of solutions for the three application classes considered in this
paper.

Independently of the distributed protocol chosen to imple-
ment some given application, the system must delegate the data-
oriented tasks to randomly selected nodes. Therefore, the random
selection protocol is generic and constitutes the security basis of
any distributed protocol in our system. However, given the con-
sidered threat model, it is challenging to design an actor selection
protocol that is both secure and efficient. Section 3 addresses this
problem while section 4 evaluates the proposed solution.

3 SECURE ACTOR SELECTION

Let us first detail some useful classical cryptographic tools focus-
ing on the properties used in our protocol.

Background 2. A cryptographic hash function [24] is a one-
way function that maps a data of arbitrary size to a fixed size bit
string (e.g., 224 bits) and is resistant to collision. An interesting
property of hash functions is that output distribution is uniform.
In the following, hash() refers to cryptographic hash.

Background 3. A cryptographic signature [24] can be used by
anode n to prove that a data d was produced by n (authentication)
and has not been altered (integrity). The signature is produced
by encrypting hash(d) using the private key of n. Any node can
verify the signature by decrypting it using the public key of n
and comparing the result with hash(d). The signature includes
the signer public key certificate, cert, (see Assumption 2).

We consider a system of N nodes, in which we want to ran-
domly select A actors, despite wide collusion attacks from C
colluding nodes. The main notations are summarized in Table 1.

3.1 Effectiveness, Cost and Optimal Bounds

Ideally, we would want to ensure that all A actors are honest, but
this is impossible, since colluding nodes are indistinguishable
from honest nodes. Therefore, the best achievable protection is
obtained when actors are randomly selected and the selection can-
not be influenced by C colluding nodes, i.e., the average number
of corrupted selected actors in the ideal case is A;geq. = AXC/N

N Total number of nodes in the SEP2P system
A Number of actor nodes (data processors)
C Maximum number of colluding nodes (C > 1)
Ac Average number of corrupted actors for a given protocol
Alideal | Average number of corrupted actors for an ideal protocol
T Triggering node (starting the execution)
k Security degree
a Security threshold
S Execution Setter node, computing actor list
R;, rs; | DHT region R; of size rs;

Table 1: Main notations for Sections 3.1 and 3.2

(Ajdeal~ > 0). Thus, the impact of a collusion attack remains pro-
portional with the number of colluding nodes, which is the best
situation given our context. This guarantees that the attacker
cannot obtain more private information than what she can pas-
sively get from observing the information randomly reaching its
colluding nodes.

The following definitions quantify the security effectiveness
and security cost of an actor selection protocol.

Definition 1. The security effectiveness of an actor selection
protocol is defined as the ratio between A;geq. and the average
number of corrupted selected actors for the measured protocol
(Ac), i-e., security effectiveness = A;4.41./Ac. The security ef-
fectiveness has maximum value (i.e., 1) when Ac = A;geqi. and
minimum value (i.e. C/N) when all the actors are corrupted.

Definition 2. A verifier node is a node who needs verifying
the actor list before delivering sensitive data, e.g., a data source.

Definition 3. The security cost of an actor selection protocol is
defined as the number of asymmetric cryptographic operations,
e.g., signature verification, required by verifier nodes to check
the selected actor list.

Note that the security cost considers only the verification of
the actor list and not the cost of building the list. The rationale
is that the verification cost has a larger impact on the overall
performance since the number of verifier nodes can be high in
a large distributed system: data sources need to verify the actor
list before delivering their data. Other performance related issues
(cost of the actor list generation, load balancing, maintenance
costs) are discussed in Section 3.6 and 4.

Optimal bounds. The best possible case one could expect in
terms of security effectiveness and cost in our context can be
achieved using an idealized trusted server that knows all the
nodes and provides a different random actor list for each system
computation. This ideal solution reaches a maximal security ef-
fectiveness and a security cost of 1, since any verifier node must
only check the signature of the trusted entity.

Evidently, this solution in not acceptable since it represents a
highly desirable target for attackers, i.e., a central point of attack
and contradicts the fully distributed nature of SEP2P. Therefore,
we need distributed solutions relying only on the nodes. To un-
derline the existing tension between security effectiveness and
cost, we discuss two basic distributed protocols for the actor se-
lection, focusing either on the security cost or on the security
effectiveness. To simplify the protocols description, we initially
assume a full mesh network overlay, i.e., each node knows the
complete list of nodes in the system and its evolution over time.

Baseline cost-optimal protocol. The triggering node (T) se-
lects randomly the actors. The security effectiveness is minimal:

148

Ac = min(A,C) since T may be corrupted (which is the case
when any node can trigger a computation). There is thus no
necessity to provide any signature: the security cost is 0.

Baseline security-optimal protocol. Proposing an optimal
protocol in terms of security is challenging in a decentralized
architecture (without any supporting trusted party) and consid-
ering covert adversaries. This conjunction leads to a situation
where no single node in the system can claim to securely provide
a list of actors (the provider itself can be corrupted). The work
in [8] proposes the CSAR protocol which provides a secure way
to generate a verifiable random value under the condition that
there is at least one honest node participating in the distributed
protocol. Applying to our context, we can ensure generating a
real random value only if there are at least C + 1 participating
nodes. Also, once we obtain a verifiable random value, we can
derive up to A random values by repeatedly hashing the initial
value A — 1 times. The final step is to map the set of A random
values to the nodes. This can be easily done, e.g., by sorting the
nodes on their public key and associating the random value to
a rank in the sorted list. This protocol has an optimal security
effectiveness, i.e., 1, since the actors are guaranteed to be selected
randomly. On the other hand, checking the CSAR results requires
one signature verification per participant. Thus, the security cost
is C + 1 asymmetric cryptographic operations per verifier node.
Since C can be large, such a solution cannot scale with large sys-
tems and wide collusion attackers as it would lead to an extreme
verification cost.

Moreover, to achieve these security bounds, both protocols
require a full mesh network overlay which is also extremely
costly to maintain in practice, especially for large networks. This
contradicts the efficiency and scalability requirement formulated
in Section 2.5. Using a DHT overlay instead of a full mesh solves
the problem of communication efficiency/scalability. However,
this will impact the optimal bounds of both protocols. For the
first protocol, the security cost increases from 0 to up to A since
a verifier node which does not “know” any of the actors has to
verify their certificates to be sure that the actors are genuine
PDMSs (to avoid Sybil attacks). Similarly, for the second protocol,
the security cost increases to 2(C + 1) + A for the same reason,
i.e,, checking that participant and selected actors are genuine
PDMSs. Even worse, the optimal security effectiveness can no
longer be guaranteed since with a DHT, there is no secure way of
associating the random values to the nodes unless using secure
DHT techniques [39] with a large impact on performance.

3.2 Overview of the Proposed Solution

To address all these problems, we propose a protocol that reaches
maximal security effectiveness at a verification cost of 2k. k is
called the security degree and is very small. Also, our protocol
builds directly on a classical, efficient DHT overlay without re-
quiring any modifications. We describe some important features
in SEP2P which make this possible and then sketch the protocol.

Imposed and uniform distribution of node location: the
node ID, used when inserting a node in the DHT, is imposed
in SEP2P, in a way that leads to a uniformly distributed node
location in the DHT virtual space. Consequently, colluding nodes
are also evenly distributed in the DHT, thus avoiding spatial
clusters. We use extensively this property to drastically reduce
the cost of security by taking localized decisions (see below), i.e.,
limited to the nodes situated in “small” regions in the virtual space.
Achieving imposed node location is easy, based on the public

key of the certificate of each node. We compute a cryptographic
hash of this key, which is, by construction, uniformly distributed,
and use this hash for insertion in the DHT virtual space. The
advantages of using the public key are (i) its uniqueness; and
(ii) the node location can be checked with a single signature
verification.

Probabilistic guarantees: Given the imposed, uniform node
location which applies indistinctly to honest and colluding nodes,
we can have probabilistic guarantees on the maximum number
of colluding nodes in a DHT subspace of a given size, called DHT
region hereafter. We can compute the probability of having at
least k colluding nodes (see Section 3.3) and choose the DHT
region size such that the probability is very close to 0. In our
context, we want to have a probability smaller than «, the security
threshold. The main idea is to set « so that the probability of
having k colluding nodes in the same region becomes so low
that we can consider that it “never happens”, e.g., @ = 107° (see
Section 4.1). Such a guarantee is used in the protocol sketched
below and then detailed in the following subsection.

[o e e e)

- -a--

Seléctinlg the - i
@ Génefating -----------
"0 verifiable

,.,__._.,___,__,_,_

,.,__,_.,_
e D) -

1

[O L L Y. L g Y

Figure 1: Sketch of verifiable selection

Sketch of verifiable selection protocol of A actors (see Figure 1)

(1) Run a distributed protocol inspired from CSAR [8] to generate a
verifiable random value, i.e., proven to have been truly randomly
generated by k nodes if at least one is honest (see Section 3.4). The k
nodes are selected in a DHT region Ry, centered on the triggering
node (T'), whose region size rs; is set such that we have probabilistic
guarantees to “never” (probability < «) have k or more colluding
nodes, i.e., at least one of the k nodes is honest.

Map the hash of that random value into coordinates to define a
location p in the DHT virtual space and contact through the DHT
the node, called execution Setter (S), managing this location.

S then selects k nodes (the actor list builders) in a region R, centered
on p, using probabilistic guarantees, such that we “never” have k or
more colluding nodes. Given the uniform distribution of the node on
the virtual space, we have rs; = rs.

Each actor list builder then selects A nodes in a region R3, centered
on p, whose size rs3 is such that Rz includes at least A nodes with
high probability (see Section 3.6 and Section 4.3 for rs3 tuning).
Run a distributed verifiable selection protocol in the spirit of [8]
such that the k nodes selected in (3) can: (i) check the validity of
the random value generated in (1); (ii) build the actor list securely;
(iii) sign both the random value and the list of A actors. This step is
detailed in Section 3.5.

2

=

@3

=

@

=

G

=

The result is a list of A actors that is signed by k nodes, among
which at least one is honest. Doing so reduces the verification
cost to 2k asymmetric cryptographic operations: k to check the
certificate of the k list builders, verifying that they belong to
region Ry, centered on p; and k to check each builder signature.

149

3.3 Providing Probabilistic Guarantees

To generate verifiable random values or validate the query actor
selection, SEP2P employs distributed computations between a
small subset of the nodes thanks to the notion of node legitimacy
and probabilistic guarantees defined below using the notations
in Table 2.

kpub,, Public key of node n
certy, Trustworthy certificate of node n
sign,, Signature by node n (includes cert,,)
TL; execution Trigger Legitimate node i
RND; Random number generated by TL;
(V)RNDt | (Verifiable) random generated by T
SLj execution Setter Legitimate node j
RNDs Random generated by S
CL; Partial candidate list of legitimate nodes w.r.t. R3
CL Candidate List of legitimate nodes
(V)AL (Verifiable) Actor List

Table 2: Main notations for Sections 3.3 — 3.5

Definition 4. Legitimate nodes. Given a region R in the virtual
space of a DHT, for any node i we say that node i is legitimate
w.r.t. Riff hash(kpub;) € R.

To be able to provide probabilistic guarantees as explained in
Section 3.2, we need to estimate the number of nodes in a region:

Lemma. Let R be a DHT region of size rs in a virtual space of
a DHT of total size 1 (i.e., normalized) and let N be the total
number of network nodes with a uniform distribution of the
node location in the virtual space. The probability, PL, of having
at least m legitimate nodes in R is:

N N . .
PL(>m,N,rs) = Z (.) st (1= rs)N7E
i=m !

Proof (sketch): Let us consider a partition of the N nodes into
two subsets containing i and N — i nodes. Since the distribution
of nodes is uniform in space, the probability of having the i
nodes inside R and the N — i nodes outside R is rs’ -(1 — rs)N~!
and there are (I:[) possible combinations of generating this node
partitioning. The probability of having at least m nodes in R
is equal to the probability of having exactly m nodes plus the
probability of having exactly m+1 plus. .. the probability of having
N, which leads to the equation in (1).

(1)

Application to colluding nodes: Let C < N be the maximum

number of colluding nodes. We can apply formula 1 to compute

the probability, PC of having at least k colluding nodes in R:
PC(>4,C, rs) = Z

C))
() crst(1—rs)CTE
ik M

We can notice that this probability only depends on C. It does
not depend on the region center since we have a uniform distri-
bution of the nodes on the virtual space.

C

(2)

3.4 Verifiable Random Generation

Our goal is to generate a random value, using k nodes and to
guarantee that none of the k nodes can choose the final computed
random value (or any of its bits). Any node in the system should
be able to check the validity of this random value (i.e., to have
proofs that it has been correctly generated). This is possible as
soon as at least one of the k nodes is honest, this guarantee being
obtained thanks to equation (2) by choosing the adequate size
for the DHT region R and by using k legitimate nodes w.r.t. R.

A node T wanting to generate a verifiable random, selecting a
region of size rs; with PC(rs1) < a centered on itself, executes:

Verifiable random number generation protocol

(1) T contacts any k legitimates nodes TL; (i € [1, k]) w.r.t. Ry.

(2) Each TL; sends hash(RNDj;) to T, where RND; is a random number
(on the same domain as the hash function, e.g., 224 bits) TL; generates.

(3) Once T has received the k hashes, it sends back the list L of hashes
to the TL;s; L = (hash(RND;)) (1, k|-

(4) Each TL; checks that hash(RND;) € L, and, in the positive case,
returns sign;(L) and RND;.

(5) T gathers the k messages and builds the verifiable random:
VRNDt = (certr, (sign;(L), RND;)c[1,k])-

@ TEQUESY m—eeeeeeee
RND;
~«——— hash(RND;) @ w
® L= (hash(RNDi))ie[Lk]—) @

~—— sign,(L), RND;, —— @

® VRNDr = (certr, (sign;(L), RND;)ic[1,k))

Figure 2: Verifiable random

The above random generation protocol is adapted from [8]
which includes a formal proof. Note that the protocol in [8] does
not include the notion of node legitimacy and thus needs C + 1
participating nodes instead of k. Intuitively, the nodes commit on
their selected random value by sending its hash (Step 2), and all
the hash values are known by each of the k nodes before provid-
ing the final signature (Step 4). Therefore, an attacker controlling
k — 1 TL; nodes cannot influence the final random value since
these nodes cannot change their random values (committed at
Step 2). Thus, the correct random value of a single honest node
is enough to obtain a truly random final value RNDT.

To obtain and check the verifiable random value, any node
must: (i) check certt and compute L by hashing all RND;; (ii) for
i € [1,k], check cert;, check the legitimacy of TL; using certt
and validate sign;(L). The final random value is RNDT = RND; &
RND; @ - - - @ RNDy.

In (i), we verify that T is a genuine PDMS, retrieve the center
of the region R; and compute L, both being necessary for the next
verification; (ii) starts by confirming that each TL; is genuine,
then it ensures that they are legitimate w.r.t the location of T
and Rj, after which it confirms the hash list by checking the
signatures, and finally, it computes RNDr.

3.5 Distributed Secure Selection Protocol

The main goal of the proposed protocol is to select the A actors
such that this selection cannot be influenced by colluding nodes.

Definition 5. The execution Setter (S) is chosen randomly
based on a verifiable random generated by T. Its role is to coor-
dinate the selection of the computation actors and to setup the
execution by sending the appropriate information to each actor.

In the following, we assume that each node n in SEP2P keeps
a node cache, called cachey, of the IP address and certificate
of legitimate nodes w.r.t. a region of size rs3 centered on node
n location. The cache size and the cache maintenance cost are
discussed in Section 3.6 and evaluated in Section 4.3.

150

SEP2P distributed secure actor selection protocol

(1) Generates the verifiable random VRNDT (see Section 3.4).

(2) Maps hash(RNDr) into coordinates and contact S through the DHT.

(3) S contacts any k legitimates nodes w.r.t. Ry, SL; (j € [1, k]) and
sends to each VRND (see Section 3.4).

(4) Each SL; sends hash(RNDj || CLj) to S, where RND; is a random
number SL; generates, and CL; is the set of nodes from Cache; which
are legitimate w.r.t. R3.

(5) Once S has received the k hashes, it sends back the list L; of hashes
to all SLj; Ly = (hash(RNDj I CLj))jE[l,kJ'

(6) Each SL; checks that its own hash(RND; || CL;) € Ly and, in the
positive case, returns RND; and CL;.

(7) S gathers the k messages and sends to all SL; the list
Lz = ((RNDj, CLj)je[1, k])-

(8) Each SL; does the following:

(a) Checks VRNDt and computes RNDT (see Section 3.4).

(b) Checks that each (RNDj, CL;) from L; is consistent with the
corresponding hash(RND; || CL;) from L;.

(c) Computes the union, after removing possible duplicates, of all
CL; to obtain a candidate list of legitimate nodes CL.

(d) Computes the RNDs = RND; @ RND;, & - - - @ RNDy.

(e) Sorts CL on kpub,, & RNDs (where kpub,, is the public key of
anode n € CL) and selects the A first candidates to build the
actor list AL.

(f) Checks the legitimacy of AL nodes w.r.t. R3.

(g) Signs (RNDt, AL) and sends it to S.

(9) S gathers k results and builds the verifiable actor lists:

VAL = (RND, AL, (signj(RNDT, AL)))je[I,k]‘

The goal of steps 1 and 2 is to displace the DHT region,
where actors will be selected, from T to S with three benefits: (1)
T is likely to be corrupted (as any node is allowed to trigger a
computation) while S is chosen randomly using the verifiable
random protocol; (2) it distributes the potential leaks in a different
region for each computation; (3) it balances the load on the whole
SEP2P network thus improving the overall performance.

Steps 3 to 6 are similar to steps 1 to 4 of the verifiable random
protocol, except that the signature by SL; is delayed to Step 8.g.
Delaying the signature allows SL;s to check and attest the validity
of VRNDr (step 8.a). The protocol cost is increased (since k nodes
verify VRNDT) but the verifying cost is reduced accordingly since
having k SL;js signing RNDr (step 8.g) means that it is correct
(remind that at least one of the k SL;s is honest).

Steps (8.b) to (8.e) are dedicated to the actor list building
(AL) based on the candidate list (CL) and deserve a more detailed
explanation: in our context, in order to securely build the actor
list, the k participants first have to agree on a common basis and
then execute, in parallel, a procedure that is unpredictable and
gives identical results to all participants. Since it is unpredictable
we are certain that the inputs cannot be manipulated beforehand
so as to influence the rest of the procedure. Since it gives identical
results for all actor list builders, and since at least one node is
honest, we are sure that no colluding node can alter the results.
By sorting the nodes in CL using a verifiable random number
and the public keys of the nodes fulfills both requirements: the
random number takes care of the unpredictability, while the
commitment of each SL; on their intermediary lists in step 4,
coupled with the XOR operation on the public keys of CL nodes,
is a simple yet effective way of producing identical results.

In steps 8.f and 8.g, k SL;s check the validity of the result,
i.e., that any actor of AL belongs to Rs; and attest it by signing
the results. Note that this check is not necessary for any actor n
in AL that was found in k CL; since this fact attests that at least

one honest node possesses n in its Cachej. Assuming Cache;
contains only genuine nodes (we say that Cache; is valid - see
Section 3.6) and since rs3 > rsz, most of the actors in AL will be
found in k CLj, thus diminishing drastically the actor list building
cost. Actually the validity of Cache; is necessary to ensure that
a colluding node selected as SL cannot hide honest nodes with
the hope of having a larger proportion of colluding nodes in AL.
Indeed, at least one of the SL is honest and will provide its full
Cache; that will be thus included in CL. We can observe that
Cache;j can be actually seen as the relevant part (for node j) of a
full mesh network, which offers its benefits without paying the
whole maintenance cost.

To check the verifiable actor list (VAL), any verifier node must
do: for j € [1, k], check cert;, check the legitimacy of SL; using
RNDr and validate sign;(AL). Thus, the verifying cost is limited
to k certificate verifications and k signature verifications, i.e., 2k
asymmetric crypto-operations. We show in Section 4 that k is
generally lower than 6.

3.6 Protocol Implementation Details

In this section we discuss a few important implementation issues
of the proposed actor selection protocol.

Despite the uniform distribution of nodes on the DHT virtual
space, there is no absolute guarantee of not having sparse DHT
regions. This can have two negative impacts on the SEP2P pro-
tocol: during the selection of k TLs in Ry (or k SLs in Ry) and A
actors in R3. Both cases exhibit interesting trade-offs:
Choosing R; (or Ry) region size: on the one hand, a small rs
leads to a smaller k value, which in turn reduces the protocol
verification cost. On the other hand, setting rs too small can
lead to situations in which nodes have less than k legitimate
nodes in their R region and as such cannot participate in the
actor selection protocol (as triggering node or execution setter)
which is problematic. For this reason, in SEP2P we provide a
table of couples (k;, rs;), named k-table, which allows any node
to find k; legitimate nodes in the region of associated rs; size.
The k-table is computed thanks to PL and PC (equations (1) and
(2)) to ensure that whatever the couple chosen, the probability of
having k or more colluding nodes remains equal. The largest k of
the k-table corresponds to the region size allowing any node to
find those legitimate nodes with a very high probability, i.e., 1-a,
while lower values allow to reduce the security cost in denser
network regions. Thus, the k-table optimizes the overall cost of
the SEP2P protocol and warrants that any node can be selected
as triggering node or execution setter.

Choosing R3 region size: Choosing a too small rs3 has a neg-
ative impact on the system performance. If the SLs cannot find
enough nodes in Rs, they can attest it (e.g., in Step 8.c in SEP2P
protocol) and S can use the k signatures to displace the actor
selection to another region (e.g., selected by rehashing the ini-
tial RND7). This mechanism allows the protocol to be executed
successfully even if some network regions are sparser. However,
there are two drawbacks. First, the cost of the actor selection
increases since (part of) SEP2P protocol must be executed twice
(or more times). Second, this also introduces an unbalance in the
system load since the sparse regions cannot fully take part in data
processing. Finally, setting rs3 to very large values (see Section
4.3) is not an option since the maintenance cost of the cache
increases proportionally when nodes join or leave the network.
Joining the network and Cache; validity: Due to space limita-
tion, we only sketch the joining procedure in the case of a Chord

151

DHT (leaving the network can be easily deduced). As mentioned
above, any node must maintain a consistent node cache despite
the natural evolution of the network. Thus, a node joining the
network must ask its successors and predecessors (Chord DHT)
to provide their node cache attested by k legitimate nodes in
a region of size rs; centered on their location. The new node
can then make the union of these caches and keep only legiti-
mate nodes w.r.t R3 centered on its location. The resulting cache
contains only genuine nodes and is thus valid since it has been
attested by at least k nodes in a region of size rs; centered on the
successors or predecessors of the new node (a recurrence proof
can be established).

Reusing an actor list: If there is no mechanism that prevents
an attacker from reusing an actor list, then she only has to keep
generating such lists until she obtains one she deems satisfactory.
To counter this behavior, we put in place two mechanisms: (i) a
timestamp and (ii) a limit to the number of triggered executions
a node can make. With (i) we prevent any node from reusing an
actor list: TLs and SLs add a timestamp to their signatures which
will respectively be checked by the SLs and the data sources. If the
timestamp is too distant, the computation is cancelled. Enforcing
(ii) is possible thanks to the node cache and the k-table: the TLs
solicited by T first check if T chose the smallest possible number
of TLs (as their node cache contains, by construction, R; centered
on T, they are capable of judging), thus forcing T to choose the
same TLs. They then only have to monitor and limit the number
of queries T does in a given amount of time.

Failures and disconnections: In the most complex case of node
failures (i.e., unexpected disconnection) of a TL, SL or S, ei-
ther RNDT or AL cannot be computed and the protocol must
be restarted (i.e., T generates a new RNDt). However, the proba-
bility of failures during the execution of the secure actor selection
being low in our context, such restarts do not lead to severe ex-
ecution limitations as mentioned above. The case of “graceful”
disconnections is easier: we can safely force nodes involved in
the actor selection process to remain online until its completion,
thus avoiding the restarts. If a node, selected as actor wants to dis-
connect (or fails), the impact will be mainly on the result quality
since part of the results will be missing.

4 EXPERIMENTAL EVALUATION

This section evaluates the effectiveness, efficiency, scalability and
robustness of the SEP2P actor selection protocol.

4.1 Experimental Setting

Reference methods. To better underline our contributions and
to provide a comparison basis, we implemented three strategies
in addition to the SEP2P actor selection protocol. We discarded
the baseline cost-optimal and security-optimal protocols from the
evaluation since the former does not provide any security while
the latter is much too costly and not scalable (w.r.t. N and C) to be
used in practice. Hence, we used for comparison more advanced
actor selection strategies based on these protocols but using our
verifiable random generation protocol with k participants (see
Section 3.4).

The first two strategies use the verifiable random to designate
the execution Setter (S) which freely chooses the actor list (as
in the cost-optimal protocol). These strategies differ only in the
verification process. The first one, ES.NAV (for Execution Setter,
No Actor Verification) requires verifying the legitimacy of S but
not of the actors. The second one, ES.AV requires, in addition,

to verify that actors are genuine PDMSs. ES.AV is expected to
provide better security effectiveness than ES.NAV at a higher
verification cost. The third strategy, M.Hash (for Multiple Hash)
is derived from the security optimal protocol, but uses a DHT
instead of a full mesh network. Verifiers must check that actors
are genuine PDMSs and that they are “near” the random values
determined by the initial verifiable random, hashed as many
times as there are actors.

Strategy | Description

ES.NAV | Execution Setter with No Actor Verification

ES.AV Execution Setter with Actor Verification

M.Hash | Multiple Hash (with Actor Verification)

SEP2P Proposed protocol (Section 3.5)

Param. Description Values(default)

N Number of nodes 10K; 100K; 10M

C% % of colluding nodes 0.001%; 0.01%; 0.1%; 1%; (10%)
A Number of actors 8; 16; 32; 64; 128; 256

a Security threshold 107%;107%; 10710

| Cache; | | Node cache size 48 or varying from 8 to 32K
MTBF Mean time betw. failure | from 1h to 5 days

Metrics Unit(s) & comments

Security effectiveness | Ratio (1 =ideal, C/N = worst)
Verification cost Number of asymmetric crypto-operations
Latency of setup cost Number of exchanged messages and
Total work setup cost | number of asymmetric crypto-operations
Maintenance overhead | (per minute for the maintenance overhead)
Security degree (k) Ratio (1 = ideal, C/N = worst)

Table 3: Strategies, parameters and metrics

Simulation platform. We identified all the parameters that may
impact the security and efficiency of the proposed strategies and
considered all the metrics (see Table 3) that are worth evaluating
to analyze the strengths and weaknesses of the proposed strate-
gies, i.e., security effectiveness and cost, setup cost, scalability,
robustness w.r.t. failure or disconnections. Let us note that a real
implementation of the SEP2P distributed system is not very use-
ful if we consider the above listed objectives of the evaluation.
Also, measuring the scalability for very large systems (e.g., 10M
nodes) with many parameters is practically impossible. There-
fore, as in most of the works on distributed systems [30, 34], we
base our evaluation on a simulator and objective metrics. That
is, the latency is measured as the number of asymmetric crypto-
operations and exchanged messages between peers instead of
absolute time values. This allows for a more precise assessment
of the system performance than time latency, which can greatly
vary in our context because of the node heterogeneity (e.g., TEE
resources or network performance).

Our simulator is built on top of a DHT network. Currently, we
implemented Chord and CAN as DHT overlays and use Chord
for the results presented in this paper. The simulator allows to
force choosing a given Execution Setter (by artificially fixing
the RND7 value). We used this feature to obtain the exhaustive
set of cases for a given network setting, each node being the
Execution Setter, and then capture the average, maximum and
standard deviation values for our metrics. The parameters and
metrics of the simulator are described in Table 3. Values in bold
are the default choices and their tuning is discussed throughout
the Section. Note that (1) the verification cost is given by verifier
node; (2) the latency indicates the “duration” of the protocol
executed in parallel; (3) the total work indicates the cumulative
number of cryptographic operations and communications during
the execution of a protocol.

152

Security threshold value: Generating several networks and
varying the security threshold «, we experimentally observed
that for @ = 1074, an attacker never controls k or more nodes.
However, given the importance of this parameter for the system
security, we set @ = 107 and show in Figure 6 the impact of
choosing a = 1071 on a small (10K) and large (10M) network.
Indeed, if an attacker could master by chance k colluding nodes in
a region of size rs; = rsy, then she could completely circumvent
the security mechanism of SEP2P since, for example, she can
obtain k signatures from these regrouped colluding nodes for
an actor list of her willing. Note that increasing a reduces the
probability accordingly but increases the verification cost in a
logarithmic way (as discussed below in Section 4.3).

4.2 Security Effectiveness versus Efficiency

Figure 3 represents the security effectiveness (Y axis) versus the
verification cost (X axis) for the four measured strategies and
with C% varying from 0.001% to 10%. Note that the value of 10%
is not realistic: it would lead to large disclosure even with an
optimal random actor selection protocol, and as mentioned in
Section 2.4, is equivalent to state-size attack. We have however
run the simulation with 10% to understand its impact on the
security effectiveness and cost.

Security effectiveness: SEP2P achieves an ideal security effec-
tiveness, i.e. as good as a trusted server, independently of the
number of colluding nodes. Indeed, the selection of actors is truly
random, thus providing the same results as the ideal case. In
addition, the verification cost (2k) is also very low (4 to 8 asym-
metric crypto-operations for C% < 1%). Not surprisingly ES.NAV
has the same verification cost than SEP2P, but the cost of ES.AV
or M.Hash is much larger (2k + A + 1 and 2k + A respectively)
since both must check the certificate of each actor in the list. This
check allows ES.AV to have better security effectiveness than
ES.NAV when C is very small (C < A). With respect to security
effectiveness, ES.NAV, ES.AV and M.Hash are far from offering
an adequate protection. Let us explain the cause for the poor
security effectiveness: while RNDT value is correctly chosen, an
attacker mastering a corrupted node located “sufficiently near”
from hash(RNDT) can claim to be the Execution Setter and then
select a list of actors including a maximum number of colluding
nodes. Here, “sufficiently near” means that it satisfies the check
made by the verifiers. Note that we tuned the system parameters
such that we can be “sure” to have always a node sufficiently
near of any random value to allow executing the actor selection
protocol for any RND7. The same problem arrives with M.Hash
for each new random destination, thus explaining the poor secu-
rity effectiveness. Hence, increasing the number of verifications
or selecting each actor in a different network region does not
solve the intrinsic limitation of these strategies. Note also that
this behavior does not affect SEP2P. Indeed, even if the Execu-
tion Setter is a corrupted node, it cannot influence the actor list
selection since it is done by k SLs (S only routes the messages
between the SLs).

Setup costs: Figures 4 and 5 show the setup costs (Y axis in log
scale) in terms of asymmetric crypto-operations and exchanged
messages respectively, once more with respect to the verification
cost (X axis). Curves with empty symbols represent latency while
plain symbols represent total work. The results show that SEP2P
is the slowest in latency and has the higher total setup cost for
crypto-operations. These “bad” results are the consequence of
two design choices: (1) to increase the security effectiveness, we

-O-ES.NAV -¢-ES.AV —*M.Hash -®-SEP2P -®-I|deal -®-ES.NAV -¢-ES.AV —4—M.Hash ~S-SEP2P -®-ES.NAV -4-ES.AV —4—M.Hash —&-SEP2P
§ 1000 § 1000
< 1.00 @ E-E—=R _E w ?_; ™w Jra A TW
H 0.001% (1 nodk 2T 2=
2 om0 % (1 node) 85 100 5% 100 spo-—-0 TW ot TW
- -] N
= oc S ®©
g 0.60 b £3 — ! % g FO====0 Lat [rmmmer O | gt
X ;
5 C%=1% 10% : 25 10 s TW ™w 2E w0
5 | RS " ,"‘““ 5%
5
g ™ T1% 10% g5 L =8
' 2E Q-O----0 Lat DO S
£ o2 H 55 Lat §9 !
5 - ¢ P ™
2 P 3 ‘s c o
& 000 M s3 2
' 32 52

0 10 20 30 40 50 0 10

Verification cost (Nb of asymmetric crypto-operations)

60

Figure 3: Sec. Effectiveness vs Verification

—=N=10K, oc=1E-6
N=10M, ec=1E-10

—#-N=10K, 0c=1E-10 =~N=10M, oc=1E-6
-48--k max (no k-table), N=10M, oc=1E-10

Average k value

1 10
Nb of colluding corrupted node in the system (log)

100 1K 10K 100K ™ 24

Latency and Total work for setup (log)

Figure 6: k versus C (N and o vary)

run our protocol on k SL nodes thus increasing the total setup
cost; and (2) we voluntarily make most of the checks during the
setup (e.g., checking the actor certificates or verifying their avail-
ability) in order to reduce, as much as possible, the subsequent
verification cost. Since this verification process will potentially
be performed by a (very) large set of nodes (e.g., data sources), it
is in our best interest to reduce it to avoid overloading the entire
system. Figures 4 and 5 illustrate this aspect: our non-optimal
setup cost is balanced by an optimized verification cost (and ideal
disclosure in Figure 3). Note also that most operations are done
in parallel (either by k TLs or SLs), thus leading to a reasonable
setup latency (around 20 crypto-operations and 30 exchanged
messages). We can also note in Figure 5 that M.Hash achieves
the worst total work for setup (exchanged messages), because
of the A routings in the DHT. Finally, we can remark the almost
identical latency of ES.NAV, ES.AV and M.Hash on both metrics.
Indeed, they all run the same initial protocol to compute RNDr.
With respect to communication, the results are also identical
because all DHT routings for M.Hash are done in parallel.

4.3 Scalability and Robustness

We now concentrate on SEP2P to study its scalability and its
robustness to node failure.

Scalability: To study the scalability, we compute the averaged
k value varying C and N. Indeed, k is the main factor in the
verification cost, setup latency and total work (since everything
is done k times). As seen in Section 3.6, depending on C and N, we
can compute a k-table which gives several increasing values of k
with increasing region size. We have considered small (10K) to
very large (10M) networks and four values for C%, leading to eight
different SEP2P network configurations. For each configuration,
we have computed, for each node, the minimal value for k with
respect to the k-table and then averaged the results. Figure 6
shows the average k (Y axis) versus the C% (X Axis in log scale)
for several network size considering two values for a: 107 and
10710, We also plot on the same figure the value of k without

=O=Crypto-Lat ~0O-Comm°-Lat

20
Verification cost (Nb of asymmetric crypto-operations)

Figure 4: Setup asymmetric crypto-costs

Average number of relocations
13.8

0.9

Figure 7: Setup costs varying R3 size

153

30 40 50 60 0 10 20 30 40 50 60

Verification cost (Nb of asymmetric crypto-operations)

Figure 5: Setup communication costs

—e—Crypto-TW ~8~Comm°-TW ,.l Cachej|: —8 32 —128 —512 2K —8K —32K
=2
2 1000
0.1 0.01 i Size of
. X 5 '
= 100 Cachej
: !
8 32K
S 10
2 8K
L
=4
g 1 \ -
3 512
€
g 128
k] 32
2 001 8
40 a8 56 = 0 12 24 36 48 60
Size of Cachej z MTBF: Mean time before failure (hours)

Figure 8: Maintenance overheads

k-tables (the grey curve) to highlight the benefit brought by k-
tables (only shown for the large network with & = 1071%). This
figure offers many insights. (1) SEP2P is highly scalable w.r.t.
N: Indeed, k values are identical for small and large networks
independently of « if we consider the percentage of colluding
nodes and not the absolute value (e.g., 1% colluding nodes is
equivalent to absolute values of C = 100 and C = 100K for
the small and large networks). Indeed, scaling N and C in the
same proportion leads to reduce rs; = rsy size accordingly. Note
that with a single corrupted node, the k optimization is useless
(k = C+1in that case) regardless of the a value. (2) k increases
slowly when C% < 1%: k remains smaller than 6 even with & =
1071% For N = 10M and C% = 1%, the k-optimization reduces
the number of participants in the verifiable random generation
from 100K to 6. (3) a has a small influences on k: increasing
a by four orders of magnitude increases k from 1 unit (e.g., 1K
colluding nodes for N = 10M) to 5 units (e.g., 1K colluding nodes
for N = 10K or 1M colluding nodes for N = 10M). (4) the k-
table optimization is important: k-tables allow reducing k by
1 unit up to 9 units (for 10% colluding nodes).

Number of actors: We also studied the impact of the variation
of the number of actors. Overall, this results in a linear increase
in the total work in terms of communications as the k SLs must
check for the availability of A legitimate nodes to construct their
respective CLs. For the sake of brevity, we omit here these results.

Node cache size: We now focus on adapting the node cache size
to the maximum number of required actors. Our goal is to evalu-
ate the impact of the cache size on the global performances. To
do so we take a reference network with N = 100K, C% = 1% and
A = 32 and vary the average cache size on the whole network (we
compute rs3 easily dividing the cache size by N). Figure 7 shows
the results (Y axis in log-scale). For each cache size, we simulated
an execution on each node of the network and computed the
average values for our metrics. Our measures show that with a
very small cache, the probability of relocating the actor selection
process is high (the SLs do not find enough legitimate nodes in

their cache w.r.t. R3), which then leads to an increased latency
and total work. Choosing a cache size greater than A, the query is
almost never relocated (see Figure 7), giving better performances.
This would lead to choose the largest possible cache. However,
constructing such a cache also means maintaining it.

Maintenance costs: We also evaluated the impact of the cache
size in the presence of node disconnections and, more generally,
the impact of disconnections. To observe it, we simulated dis-
connections and measured their cost depending on the size of
the node cache (Cachej) using the default values for C, N, a and
resulting k. We then considered those costs as a baseline and
computed the global impact in a network where nodes discon-
nect (and reconnect) every x hours (mean time before failure or
MTBF). We represent this cost in terms of asymmetric crypto-
graphic operations (see Figure 8 - Y axis in log scale). The number
of exchanged messages is not shown because graphs are very
similar. We also computed these metrics for large node cache
sizes (up to 32K) to confirm that full mesh networks cannot be an
alternative to DHT. Our results show that an overestimated cache
is excessively costly even with an MTBF of 5 days: it consumes a
large portion of the overall computing power of the entire system
just to maintain it up to date. With small MTBFs, the network
would be probably not maintainable. Since the number of actors
for a computation is likely to be relatively small (e.g., few hun-
dred, see Section 5), we can safely set the node cache size around
512 which leads to a reasonable maintenance cost (less than 1
signature per node per minute on average for MTBF = 1 day) and
never trigger relocations (see Figure 7).

5 TASK ATOMICITY
5.1 Proposed Use Cases

We now focus on requirement 2, illustrating task atomicity on
the use cases proposed in Section 1.

Use case 1: Mobile participatory sensing is used in many
smart city applications for urban monitoring such as traffic mon-
itoring (e.g., Waze or Navigon), evaluating the quality of road in-
frastructures, finding available parking spaces or noise mapping
[36]. In these scenarios, the community members act as mobile
probes and contribute to spatial aggregate statistics (density, av-
eraged measures by location and time, spatial interpolation [36])
which in turn, benefit the whole community. As an alternative
to the classical centralized architecture, the distributed PDMS
paradigm increases the privacy guarantees for the users, thus
encouraging their participation. A mobile user can generate sens-
ing data (e.g., using her smartphone or vehicular systems) which
is securely transmitted and recorded into her PDMS (e.g., a home
box). This way each PDMS becomes a potential data source in
the system. These data can then be aggregated by a small subset
of data processor nodes to produce the required spatial aggregate
statistics, which can be broadcasted to all the participating nodes.

Use case 2: Users can subscribe to information flows based
on their preference or user profile (e.g., RSS feeds, specific
product promotions or ads, etc.). A user profile can be represented
by a set of concepts associating metadata terms (e.g., location, age,
occupation, income, etc.) to values specific to each user. These
associations are traditionally stored at a publication server to
allow targeting the interested nodes. Instead, we propose to dis-
tributively store and index those profiles in SEP2P, thus greatly
improving users’ privacy. We call a concept index, an index as-
sociating for each concept the list of node addresses having this

154

concept. Storing and searching this concept index is straightfor-
ward with a DHT. Each node does a store(concept, IPaddress)
for each concept in its profile. To find all the nodes matching
a certain target profile (e.g., a logical expression of concepts), a
DHT search is launched for each concept in the profile. Then, a
set of randomly selected data processors are used to pick up the
scattered pieces of the concept index, apply the logical expres-
sion of the target profile and compute the matching target nodes
(TIN), i.e., their IP addresses. Finally, the information is sent to
the selected targets.

Use case 3: We consider queries over the personal data con-
tributed by a large set of individuals, e.g., to compute recom-
mendations, make participative studies. To achieve a high degree
of pertinence and avoid flooding the system, such queries should
target only a specific subset of the nodes, i.e., the nodes exposing
a given user profile. Query examples are numerous, e.g., get the
top-10 ranked movies by academics from Paris, or find the aver-
age number of sick leave days of pilots in their forties. The query
processing is done in two steps which roughly correspond to the
use case 2 combined with use case 1. First, the relevant subset
of nodes, which match the query profile, must be discovered
(use case 2). Then, the selected subset of target nodes become
data sources which supply the required data (e.g., number of sick
leave days) to compute the query result (use case 1). The main
differences are that only the selected nodes provide data and that
the result is transmitted only to the querier node and not to the
entire system.

5.2 Detailed Node Roles
From the above description, we can define new node roles:

Node role 4. A metadata indexer (MI) stores part of the meta-
data shared by the nodes, allowing pertinent and efficient dis-
tributed data processing.

Node role 5. A target finder (TF), applies a logical expression
on its input to produce a list of target nodes.

Node role 6. A data aggregator (DA) applies an aggregative
function to its input and produces partially aggregated results.

Node role 7. A main data aggregator (MDA) aggregates its
input and produces the final result.

broadcast
or
publication

Use case 3

Use case 2

Use case 1

Figure 9: Distributed execution plans for the use cases

These roles allow designing distributed execution plans for
the three use cases as shown in Figure 9. The nodes that must be
chosen using the SEP2P protocol are shown in pink, and we used
the symbol +/ to denote that a node is a verifier (as specified in
Section 3.6). This must be done each time a node discloses some
sensitive data, thus on data sources and metadata indexers.

5.3 Towards Task Atomicity

The node roles and DEP proposed above already provide some
task compartmentalization dividing the whole processing in tasks.
However, much more can be done to minimize the impact of data
leakage. In this section we present a few methods to achieve task
atomicity. Our objective is mainly to show that task atomicity
can be indeed performed and that it can significantly improve
the system security when used in conjunction with the secure
random actor selection. Given the space limitation, a detailed
study of task atomicity is left for future work.

Metadata index protection: The concept index design already
exhibits some form of task atomicity: (1) it is evenly distributed
among all the nodes using the DHT mechanisms; (2) the imposed
location of nodes in the DHT (see Section 3.2) leads to a random-
ized association between concepts and MI nodes. Nevertheless,
a single corrupted node could disclose all the index information
it owns. Further security improvements can be obtained by split-
ting each concept into s shares using the Shamir’s secret sharing
technique [32] which requires knowing at least p (p < s) shares
to reconstruct the secret. Disclosing a single concept will now
require p colluding nodes randomly selected.

User data protection: We consider here sensed data in use case
1 or the result of queries performed on a single PDMS in use
case 2. Considering several DAs already reduces the impact of
potential data leakage by a corrupted DA node. A simple way
to reduce further this impact is to realize the aggregation on
anonymized data (e.g., average traffic speed without user iden-
tity) or data without semantics (e.g., averaging data, a salary for
instance, without knowing its meaning) or even encrypted data
(with deterministic encryption). Note also that aggregation is
continuous in the mobile sensing use case and that selected DA
node will change at each iteration.

User identity protection: User’s PDMS actively participate in
the DEP either by receiving information (use case 2) or queries
(use case 3) or by sending information (use cases 1 and 3). They
thus communicate with DA nodes or receive messages from TF
nodes, both being potentially corrupted. The reception / trans-
mission task should be “isolated” to make one more step towards
task atomicity. This can be achieved using the notion of proxy-
forwarder that we illustrate for the TN-DA communication in
the use case 3. The TN (which is actually a data source) must
transmit its local result (e.g., number of sick leave days) to the
DA node. TN can choose randomly any node P in the system and
send the data, encrypted with the public key of the DA (known
from the Verifiable Actor List). P will receive this data and trans-
mit it to the DA. Thus, DA will have the data without knowing
the sender, while P will know the sender but not the data. Note
that (1) TN has good reasons to choose randomly P since it is the
most interested in protecting its data; (2) the probability that both
DA and P to be colluding nodes is extremely low (~ (C/N)?); and
(3) we could use several proxies, thus mimicking anonymization
network techniques (e.g., Tor).

6 RELATED WORK

DHT security. Several works focus on DHT security [40] consid-
ering the following attacks: (i) Sybil attack: an attacker generates
numerous false DHT nodes to outnumber the honest nodes. Intro-
ducing an (offline) certificate authority, is deemed to be among the
most effective defenses against the Sybil attack [11]. (ii) Routing
table poisoning (eclipse attack): an attacker attempts to control

155

most of the neighbors of honest nodes to isolate them. According
to [40] the best strategy against such attacks is to constrain the
DHT node identifiers. Again, using a central authority to provide
verifiable identifiers is the simplest yet most effective way of
achieving this goal [34]. (iii) Routing and storage attacks: Sybil
and eclipse attacks do not directly impact the DHT, they are
mainly necessary means for future attacks, like various denials
of service (DoS). For instance, the objectives might be to prevent
a lookup request from reaching its destination, denying the ex-
istence of a valid key, or impersonating another node to deliver
false data. These DoS attacks are usually classified as routing and
storage attacks and most of the mechanisms employed to negate
them are based on redundancy at the storage and routing levels
[40]. Thus, none of these works consider the secure and efficient
actor selection for distributed processing as in SEP2P.

Secure Multi-party Computation and differential privacy.
Cryptographic protocols have been proposed to protect the users’
privacy in distributed computations with a focus on data confi-
dentiality enforcement in personal data aggregation. Examples
of computations related to this work are personal time-series
clustering [2], kNN similarity queries [17], and location-based
aggregate statistics [28]. However, MPC raises major scalability
issues which in practice limit such protocols to specific types of
computations [31].

Although it yields interesting results in privacy protection
[15], differential privacy generally requires a central trusted ag-
gregating node and ad-hoc adaptations depending on the targeted
queries. As we search to provide a generic framework and ex-
clude having a central actor to avoid a single point of failure,
both requirements cannot be met by differential privacy. Even
though local differential privacy [13] tries to address our first
requirement, the solutions offered until now are still not generic,
while the pertinence or the quality of the results may still be prob-
lematic with some applications [13]. Also, differential privacy
exhibits intrinsic limitations with applications requiring contin-
uous data flow aggregation (e.g., such as mobile participatory
sensing) because of temporal correlation between consecutive
data batches [10].

Distributed data aggregation using secure hardware. To over-
come the limitations of MPC or differential privacy, several works
propose using secure hardware at the user-side. Several secure
protocols have been proposed for SQL aggregation [37], spatio-
temporal aggregation [36], top-k full-text search [21], or privacy-
preserving data publishing [3]. SEP2P also considers a secure
PDMS at the user-side but our attack model considers having
many colluding nodes. Moreover, the focus in SEP2P is on the
secure and efficient random node selection. Differently, existing
work focus on data aggregation or publishing and consider that
all the nodes in the network participate in the protocol with their
data being thus complementary to SEP2P.

Secure server-centric approaches. The above cited solutions
are based on fully-distributed (P2P) or hybrid architectures. Al-
ternatively, one could envision a solution based on a secured
centralized server [6]. However, this raises important issues. First,
users are exposed to sophisticated attacks, whose cost-benefit is
high on a centralized database. Second, centralizing all users’ data
into one powerful server makes little sense in the PDMS context
in which data is naturally distributed at the users’ side. Hence,
users might be reluctant to use such a massively centralized data
service. Finally, new legislation such as the European GDPR [27]
may hinder the development of such centralized solutions.

7 CONCLUSION

Personal Data Management Systems arrive at a rapid pace allow-
ing users to share their personal data within large P2P communi-
ties. While the benefits are unquestionable, the important risks
of private personal data leakage and misuse represent a major
obstacle on the way of the massive adoption of such systems.
This paper is one of the first efforts to deal with this impor-
tant and challenging issue. To this end, we proposed SEP2P, a
fully-distributed P2P system laying the foundation for secure,
efficient and scalable execution of distributed computations. By
considering a realistic threat model, we analyzed the fundamental
security and efficiency requirements of such a distributed system.
We showed that the secure selection of random actor nodes is the
basis of security for any distributed computation. Then, we pro-
posed secure and highly efficient protocols to address the actor
selection problem. Our simulation-based experimental evaluation
indicates that our protocol leads to minimal private information
leakage, i.e., increasing linearly with the number of colluding
nodes. At the same time, the cost of the security mechanisms
depends only on the maximum number of colluding nodes and
remains very low even with wide collusion attacks.

This work opens the way for several interesting research prob-
lems. In particular, to further minimize the impact of a private
data leakage, the random actor selection needs complemented
with task atomicity, i.e., decompose the computation process
such that it minimizes the amount of sensitive data the processor
nodes have access to. To underline this requirement, we discussed
in this paper three types of representative applications in the
PDMS context and provided sketches of solutions to achieve task
atomicity. Certainly, this problem deserves a deeper look and
constitutes our main objective as future work.
Acknowledgment. This research is partially supported by the
ANR PersSoCloud grant ANR-16-CE39-0014.

REFERENCES

[1] Tristan Allard, Nicolas Anciaux, Luc Bouganim, Yanli Guo, Lionel Le Folgoc,
Benjamin Nguyen, Philippe Pucheral, Indrajit Ray, Indrakshi Ray, and Shaoyi
Yin. 2010. Secure personal data servers: a vision paper. Proceedings of the
VLDB Endowment 3, 1-2 (2010), 25-35.

Tristan Allard, Georges Hébrail, Florent Masseglia, and Esther Pacitti. 2015.
Chiaroscuro: Transparency and privacy for massive personal time-series clus-
tering. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM, 779-794.

Tristan Allard, Benjamin Nguyen, and Philippe Pucheral. 2014. METAP:
revisiting Privacy-Preserving Data Publishing using secure devices. Distributed
and Parallel Databases 32, 2 (2014), 191-244.

Nicolas Anciaux, Philippe Bonnet, Luc Bouganim, Benjamin Nguyen, Philippe
Pucheral, Iulian Sandu Popa, and Guillaume Scerri. 2019. Personal Data
Management Systems: The security and functionality standpoint. Information
Systems 80 (2019), 13 — 35.

Nicolas Anciaux, Luc Bouganim, Philippe Pucheral, Yanli Guo, Lionel Le Fol-
goc, and Shaoyi Yin. 2014. MILo-DB: a personal, secure and portable database
machine. Distributed and Parallel Databases 32, 1 (2014), 37-63.

Arvind Arasu, Spyros Blanas, Ken Eguro, Manas Joglekar, Raghav Kaushik,
Donald Kossmann, Ravi Ramamurthy, Prasang Upadhyaya, and Ramarathnam
Venkatesan. 2013. Secure database-as-a-service with cipherbase. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data.
ACM, 1033-1036.

Yonatan Aumann and Yehuda Lindell. 2007. Security against covert adver-
saries: Efficient protocols for realistic adversaries. In Theory of Cryptography
Conference. Springer, 137-156.

Michael Backes, Peter Druschel, Andreas Haeberlen, and Dominique Unruh.
2009. CSAR: A Practical and Provable Technique to Make Randomized Systems
Accountable.. In NDSS, Vol. 9. 341-353.

Blue Button. 2010. Find Your Health Data. (2010). Retrieved October 12, 2018
from https://www.healthit.gov/topic/health-it-initiatives/blue-button

Yang Cao, Masatoshi Yoshikawa, Yonghui Xiao, and Li Xiong. 2017. Quantify-
ing Differential Privacy under Temporal Correlations. In 33rd IEEE Interna-
tional Conference on Data Engineering, ICDE 2017. 821-832.

Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S
Wallach. 2002. Secure routing for structured peer-to-peer overlay networks.

[4

[5

—
X2

156

[12

(13]

=
et

[15

(16

(17

(18]

(19

[20

[21

[22

&
&2

(24

[25

(26

[27

(28

(29

'S
=

(35]

[36

[37

(38]

S
A=A

(40

ACM SIGOPS Operating Systems Review 36, SI (2002), 299-314.

Cozy Cloud. 2013. Your digital home. (2013). Retrieved October 12, 2018 from
https://cozy.io/en

Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava,
and Tianhao Wang. 2018. Privacy at Scale: Local Differential Privacy in
Practice. In Proceedings of the 2018 International Conference on Management of
Data, SIGMOD Conference 2018. 1655-1658.

Yves-Alexandre de Montjoye, Erez Shmueli, Samuel S Wang, and Alex Sandy
Pentland. 2014. openpds: Protecting the privacy of metadata through safean-
swers. PloS one 9, 7 (2014), e98790.

Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting Teleme-
try Data Privately. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017. 3574-3583.
Fing. 2013. The mesinfos project explores the self data concept in france. (July
2013). Retrieved October 12, 2018 from http://mesinfos.fing.org/english
Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, Antoine Rault,
Frangois Taiani, and Jingjing Wang. 2015. Hide & Share: Landmark-based
Similarity for Private KNN Computation. In Dependable Systems and Networks
(DSN), 2015 45th Annual IEEE/IFIP International Conference on. IEEE, 263-274.
Javier Gonzalez, Michael Holzl, Peter Riedl, Philippe Bonnet, and René
Mayrhofer. 2014. A practical hardware-assisted approach to customize trusted
boot for mobile devices. In International Conference on Information Security.
Springer, 542-554.

Anne-Marie Kermarrec and Francois Taiani. 2015. Want to scale in centralized
systems? Think P2P. 7. Internet Services and Applications 6,1 (2015), 16:1-16:12.
Saliha Lallali, Nicolas Anciaux, Iulian Sandu Popa, and Philippe Pucheral. 2017.
Supporting secure keyword search in the personal cloud. Information Systems
72 (2017), 1-26.

Thi Bao Thu Le, Nicolas Anciaux, Sébastien Gilloton, Saliha Lallali, Philippe
Pucheral, Iulian Sandu Popa, and Chao Chen. 2016. Distributed secure search
in the personal cloud. In 19th International Conference on Extending Database
Technology (EDBT 2016). 652-655.

Sangmin Lee, Edmund L Wong, Deepak Goel, Mike Dahlin, and Vitaly
Shmatikov. 2013. wBox: A Platform for Privacy-Preserving Apps.. In NSDL
501-514.

Petar Maymounkov and David Mazieres. 2002. Kademlia: A peer-to-peer
information system based on the xor metric. In International Workshop on
Peer-to-Peer Systems. Springer, 53-65.

Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. 1996. Handbook
of Applied Cryptography. CRC Press.

MiData. 2011. The midata vision of consumer empowerment. (2011).
Retrieved October 12, 2018 from https://www.gov.uk/government/news/
the-midata- vision- of-consumer-empowerment

Nextcloud. 2016. Protecting your data. (Jun 2016). Retrieved October 12, 2018
from https://nextcloud.com

European Parliament. 2016. General Data Protection Regulation. Law. (27
April 2016). Retrieved October 12, 2018 from https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679

Raluca Ada Popa, Andrew J Blumberg, Hari Balakrishnan, and Frank H Li.
2011. Privacy and accountability for location-based aggregate statistics. In
Proceedings of the 18th ACM conference on Computer and communications
security. ACM, 653-666.

Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A Secure
Database using SGX. In EnclaveDB: A Secure Database using SGX. IEEE, 0.
Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. 2001. A scalable content-addressable network. Vol. 31. ACM.

Eyad Saleh, Ahmad Alsa’deh, Ahmad Kayed, and Christoph Meinel. 2016.
Processing over encrypted data: between theory and practice. ACM SIGMOD
Record 45, 3 (2016), 5-16.

Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612-613.
Solid. 2018. Solid empowers users and organizations to separate their data
from the applications that use it. (2018). Retrieved October 12, 2018 from
https://solid.inrupt.com/

Ton Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Bal-
akrishnan. 2001. Chord: A scalable peer-to-peer lookup service for internet
applications. ACM SIGCOMM Computer Communication Review 31, 4 (2001),
149-160.

ARM Security Technology. 2008. Building a Secure System using TrustZone
Technology. Technical Report. ARM.

Dai Hai Ton That, Tulian Sandu Popa, Karine Zeitouni, and Cristian Borcea.
2016. PAMPAS: Privacy-Aware Mobile Participatory Sensing Using Secure
Probes. In Proceedings of the 28th International Conference on Scientific and
Statistical Database Management. ACM, 4.

Quoc-Cuong To, Benjamin Nguyen, and Philippe Pucheral. 2016. Private and
scalable execution of SQL aggregates on a secure decentralized architecture.
ACM Transactions on Database Systems (TODS) 41, 3 (2016), 16.

J. C. Tomas, B. Amann, N. Travers, and D. Vodislav. 2011. RoSeS: a continuous
query processor for large-scale RSS filtering and aggregation. In Proc. of the
20th ACM Conf. on Information and Knowledge Management. 2549-2552.
Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. 2011. A survey of
DHT security techniques. ACM Computing Surveys (CSUR) 43, 2 (2011), 8.
Qiyan Wang and Nikita Borisov. 2012. Octopus: A secure and anonymous DHT
lookup. In Distributed Computing Systems (ICDCS), 2012 IEEE 32nd International
Conference on. IEEE, 325-334.

	SEP2P: Secure and Efficient P2P Personal Data ProcessingJulien Loudet, Iulian Sandu-Popa, Luc Bouganim

