

Series ISSN: 2367-2005 157

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.15

The main contributions of this paper are the following:
• An adapted NCT index that supports efficient computation
of travel-time histograms for SPQs.
• A greedy algorithm that enables efficient processing of
any SPQ in periodic time intervals.
• A cardinality estimator for SPQs.
• A detailed analysis of the accuracy and performance of
the solution and its components.

The rest of the paper is structured as follows. Section 2 pro-
vides an overview of prior work, preliminaries, and a detailed
problem description. Section 3 describes the query processing
method, while Section 4 details the construction and use of the
NCT index. Section 5 outlines the experimental setup and the
evaluation metrics. Section 6 reports on the results of the experi-
ments, and Section 7 concludes.

2 PROBLEM FORMULATION
This section provides an overview of prior work, preliminaries,
and a problem definition.

2.1 Related Work
We review approaches to travel-time estimation and then, we
review network-constrained trajectory indexing with a focus on
indexes supporting SPQs.

2.1.1 Travel-Time Estimation. Earlier studies on travel-time
estimation compute histograms for single segments [15], which
still requires to model turn costs [27], or for short pre-defined
paths with considerable traffic [4], which are then convolved
at query time. In our approach, travel-times are computed for
sub-paths instead of only for individual segments. This approach
implicitly handles turn costs within sub-paths, and turn costs only
need to be modeled explicitly in-between sub-paths if applicable.
Other approaches based on tensor decomposition [25], support
vector regression [28], variance-entropy-based clustering [29],
or deep neural networks [24] have also been proposed. But they
either do not provide travel-time distributions or do not provide
estimates for specific paths but only for origin-destination pairs.

2.1.2 NCT Indexing. Several indexes for network-constrained
trajectories based on R-trees [5, 6, 9] or B+-trees [20] have been
proposed, but they are often only optimized for range queries or
nearest neighbor queries.

Two indexes have been proposed to support strict path queries,
NETTRA [14] and the SNT-index [12]. NETTRA is a disk-based in-
dex designed to answer SPQs with minimal I/O and also supports
efficient updates of the index, but may return false positives due
to hash collisions. The SNT-index uses data structures adapted
from string matching to efficiently identify matching trajectories.
This index was originally designed to retrieve all matching trajec-
tory IDs in a given time interval that fulfill the SPQ requirement.
We extend it to accommodate travel-time retrieval as well.

2.2 Network Graph & Trajectories

Figure 1: Example Road Network

Table 1: Example of F and Function estimateTT

e c z sl l estimateTT
A motorway rural 110 900 29.5 s
B primary city 50 120 8.6 s
C secondary city 30 40 4.8 s
D secondary city 30 80 9.6 s
E primary city 50 100 7.2 s
F primary rural 80 800 36.0 s

A spatial network is modeled as a directed graphG = (V , E, F),
where V is a vertex set, E ⊆ V ×V is a set of edges that repre-
sent road segments, and F : E → Cat × Z × SL × L is a set
of functions, where Cat is the set of road categories, Z is the
set of different types of zones the segments are located in, SL
is the set of speed limits in kilometers per hour (or 1000

3600 meters
per second), and L is the set of segment lengths in meters. From
this we can derive the function estimateTT (ei) = 3.6 F(ei).l

F(ei).sl that
returns the traversal time in seconds if the segment is traversed
at the speed limit. This function is used as a fallback so that we
can return a result even if no data is available for a segment.
Every edge e ∈ E has a category that captures the road type of
the segment it represents and a zone type describing its location.
Figure 1 shows the graph representation of the road network we
use in examples. Table 1 shows the mapping of each segment to
categories c ∈ Cat = {motorway, primary, secondary} and zones
z ∈ Z = {city, rural}.

A traversable sequence of segments P = ⟨e0, e1, . . . , el−1⟩
is called a path, with |P | = l . A sub-path ⟨ei , . . . , ej−1⟩, with
0 ≤ i < j ≤ l , of P is denoted as P[i, j). The set of trajectories is
given as T ⊆ D ×U ×S, whereD is the set of all trajectory ids,
U is the set of all drivers. Further, S : Nl → E × TS × C is the
domain of functions from the set consisting of the first l natural
numbers to the range of triples consisting of an edge e ∈ E, a
timestamp t ∈ TS, and a time duration TT ∈ C. This domain of
functions encodes finite sequences of length l .

A trajectory tr ∈ T of a user u with the id d is therefore
denoted as (d,u, s), where s ∈ S is a sequence of 3-tuples:

s = ⟨(e0, t0,TT0), (e1, t1,TT1), . . . , (el−1, tl−1,TTl−1)⟩,

where t0, .., tl−1 are the timestamps when a segment was entered
with ∀i∀j(i < j ⇒ ti < tj), TTi > 0 is the duration of the
traversal of ei , and l is the number of segments traversed.

The path of trajectory tr is called Ptr , and its starting time is
tr .t0. The duration function Dur(tr , P) = TT0 +TT1 + . . .+TTl−1
returns the sum of all segment traversal times aP

tr of a path P
by a trajectory. If a trajectory path Ptr does not contain P as a
sub-path , Dur(tr , P) is undefined. A trajectory set in our example
road network from Figure 1 is shown below:

tr0 : (0,u1) →⟨(A, 0, 3), (B, 3, 4), (E, 7, 4)⟩
tr1 : (1,u2) →⟨(A, 2, 4), (C, 6, 2), (D, 8, 4), (E, 12, 5)⟩
tr2 : (2,u2) →⟨(A, 4, 3), (B, 7, 3), (F , 10, 6)⟩
tr3 : (3,u1) →⟨(A, 6, 3), (B, 9, 3), (E, 12, 4)⟩

2.3 Travel-Time Query
To address the shortcomings of the segment-level approach, we
employ the strict path query Q = spq(P, I , f , β) that returns a
travel-time histogram H . The histogram can be derived from the
traversal times of the set of trajectories T P ⊆ T that traverse
path P without stops or detours in the time interval I , and fulfill

158

Figure 2: Overall Architecture

At first the procedure tries to increase the sample size by
increasing the size of the time interval for the path by choosing
the next largest size from the list A and widening the periodic
interval withwiden([ts , te)R ,αi+1) = [ts−

αi+1−αi
2 , te +

αi+1−αi
2)R .

After A has been exhausted, the path is split, and two new sub-
queries with the smallest allowed time interval size αmin are
created.

We propose two types of splitting and again use the path
P = ⟨A,C,D, E⟩ in examples.

σR Regular splitting cuts the path in half, i.e., P1 = P[0, ⌊ l
2 ⌋)

and P2 = P[⌊ l
2 ⌋, l), so splitting the example path P results

in P1 = ⟨A,C⟩ and P2 = ⟨D, E⟩.
σL Longest prefix splitting creates two sub-paths P1 = P[0,m)

and P2 = P[m, l), with 1 ≤ m < l , where the maximum
value form for which |T P1 | ≥ β holds is chosen.

If a sub-path cannot be split further, any non-temporal filter
predicates are dropped (Line 10). As a fallback, all temporal filters
and the β parameter are dropped as well, i.e., for a single segment,
all available trajectories are considered in the fixed time interval
[0, tmax) (Line 12).

Procedure 1Modify a sub-query spq to increase sample size (σ):
Input: Sub-query spq(P, I , f , β), time interval sizes A
Output: a sequence of sub-queries ⟨Q1, . . . ,Qk ⟩

1: αi ← te − ts
2: if αi < αmax then
3: I ′R ← widen(IR ,αi+1)
4: return ⟨spq(P, I ′R , f , β)⟩
5: else if |P | > 1 then
6: m ← split(P)
7: I ′R ← shrink(IR ,αmin)

8: return ⟨spq(P[0,m), I ′R , f , β), spq(P[m, l), I ′R , f , β)⟩
9: else if f , ∅ then
10: return ⟨spq(P, IR , ∅, β)⟩
11: else
12: return ⟨spq(P, [0, tmax), ∅)⟩

13: end if

4 THE INDEX
This section describes the SNT-index and how we adapt and opti-
mize it to support travel-time queries using an example trajectory
set.

4.1 SNT-Index
Koide et al. [12] proposed the SNT-index for strict path queries
using the FM-index as a spatial index and a forest of B+-trees
as a temporal index. The advantage of the FM-index over R-
tree-based methods is that by representing the trajectory set T
as a string T and adapting a method from substring matching,
evaluating spatial queries is only dependent on the size of the
spatial network (|E |) and not on the size of the trajectory set
(|T |). In addition, it can be established from just the FM-index
whether a given path is traversed at all, often saving a costly
temporal index traversal. While the original index returns a set
of trajectory ids given the query spq(P, I), where P is the path
and I is a time interval, our index returns the traversal times
of the trajectories for P , which can be stored in a histogram.
Sections 4.1.1 and 4.1.2 recap the previously described SNT-index
and the remaining section describes our modifications to it to
facilitate the efficient retrieval of travel-times.

4.1.1 The Spatial FM-Index. For our example we are indexing
the trajectory set T = {tr0, tr1, tr2, tr3} introduced earlier.

To index the trajectories, we first need to compute the trajec-
tory string T from the alphabet Σ = E ∪ {$} where the symbol $
denotes the end of a trajectory and where ∀e ∈ E (e > $) andT =

Ptr0 $Ptr1 $. . . $Ptrn−1 $, ∀tr ∈ T . With our example trajectory
set, this yields the trajectory string T = ABE$ACDE$ABFABE.

From this trajectory string, we compute an array S of all suf-
fixes of T , where S[i] = T [i,n), where 0 ≤ i < n = |T |. These
suffixes are then sorted lexicographically to obtain the suffix ar-
ray SA as shown in Figure 3, where SA[j] contains the index
of the j-th smallest suffix. From SA, we can then compute the
inverse suffix array ISA where SA[j] = i and ISA[i] = j [17].
Every substring (or in our case, subpath) P of length l there-
fore has a range of ISA values R(P) = [st, ed) that is defined as
R(P) = {i | S[SA[i]] [0, l) = P}, e.g., the ISA range of the path
⟨A⟩ is R(⟨A⟩) = [4, 8) since four trajectories contain A and they

160

Figure 3: The Suffix Array and Burrows-Wheeler-Transform

Procedure 2 Calculate ISA range [st, ed) for a path P of length l
(getISARange):
Input: Burrows-Wheeler transformTbwt of the trajectory string

T , symbol counts C , path P = p0...pl−1
Output: ISA range [st, ed) that matches P
1: c ← pl−1
2: st ← C[c]
3: ed ← C[c + 1]
4: for i ← 2 to l do
5: c ← pl−i
6: st ← C[c] + rankc (Tbwt , st)
7: ed ← C[c] + rankc (Tbwt , ed)
8: if st ≥ ed then
9: return [0, 0)
10: end if
11: end for
12: return [st, ed)

appear at the start of the suffixes S[SA[st]] to S[SA[ed − 1]], and
the range for R(⟨A,B⟩) is [4, 7) as only three trajectories traverse
this path.

The ISA range of a path can be obtained efficiently from two
data structures that comprise the FM-index:

C an array that stores the number of lexicographically smaller
characters in the trajectory string for every member of the
alphabet Σ, e.g., C[′B′] = 8 since there exist 8 characters
in T that are lexicographically before ′B′.

Tbwt the Burrows-Wheeler transform [3] of the trajectory string
T that is defined asTbwt [i] = T [SA[i]−1], with 0 ≤ i < |T |.
For our example, this yields the string EFEE$$$$AAAA−
CBDBB.

We define the rank operation rankc (Tbwt , i) that counts the
occurrences of the character c in Tbwt [0, i). As an example of
computing the ISA range, we compute the range for the path
P = ⟨A,B⟩ as described in Procedure 2. At first, the segment

c ← B is set in Line 1, and st ← 8 and ed ← 11 are initialized in
Lines 2 and 3. For the first (and in this case the only) iteration
of the loop from Line 4 to 11, c ← A, st ← 4 + rankA(Tbwt , 8),
and ed ← 4 + rankA(Tbwt , 11), which yields the ISA range [4, 7),
since the ranks are 0 and 3, respectively.

The Burrows-Wheeler transform is stored in a wavelet tree
to enable rank queries in O(loд |Σ|) time [10]. Therefore, obtain-
ing the ISA range [st, ed) of any path P can be performed in
O(|P | loд |Σ|) time, which does not depend on the size of T .

4.1.2 The Temporal Indexes. The temporal indexes F = {Φe |

e ∈ E} contain a B+-tree for every segment in the network. Each
tree indexes the records r ∈ Φ by the timestamp t when a trajec-
tory entered the segment. A leaf node entry r for a timestamp t
contains the ISA index (isa) and the trajectory identifier (d).

The original SNT-index is only capable of retrieving the tra-
jectory ids, which would then have to be processed in turn to
obtain the traversal times of the query path.

4.1.3 Extensions to the SNT-Index. To support travel-time
histogram construction directly using the SNT-index, we add the
following information to each leaf node in a temporal index:
• The traversal time TT of the segment in seconds.
• The sequence number seq of the segment in the trajectory.
• The sum of the travel-times aseq =

∑seq
i=0TTi from the start

of the trajectory and up to and including the segment.
Figure 4 shows the contents of the temporal index ΦA of seg-

ment A for our example trajectory set where each leaf is a record r ,
mapping a timestamp t to a tuple (isa,d,TT ,a, seq). Furthermore,
we add an associative container U that maps every trajectory id
d to its respective user id u to check the filter predicate f . With
those fields, we can build a hash table during the scan of the
index of the first segment with the trajectory id and sequence
number as the key (d, seq) and the aggregate of the preceding
segment of the trajectory (a0 − TT0), as value as described in
Procedure 3. The sequence number is included to guard against

161

Figure 4: Extended Temporal Index

trajectories with circular paths. The spatial filtering is performed
with the ISA range [st, ed) obtained from Procedure 2 during the
index scan in Line 3. The filter predicate f can be evaluated in
constant time with the associative container U . The cardinality
parameter β is used to reduce the processing time since not all
eligible trajectories are necessary to obtain a good estimate, and
the buildMap procedure terminates as soon as β trajectories are
found (Line 6). When scanning the temporal index of the last
segment in the query, we can obtain the traversal time of the
query path by al−1 − (a0 −TT0) as described in Procedure 4.

4.2 Travel-Time Query
When used together, the previous three procedures make it pos-
sible to obtain the set of travel times for any path, as shown in
Procedure 5, to answer the sub-query spq(P, I , f , β). To obtain all
trajectories that traversed a path P during a given time interval
I , an ISA range is first obtained from the FM-index in Line 1. If a
non-empty range is returned, a range scan on the index of the
first (Line 6) and last segment (Line 11) of the path are performed
for I and filtered by the ISA index in the leafs. If no matching
trajectories exist or no periodic time interval with more than β
trajectories is found (Line 7) the query returns the empty set. If
the sub-query provided by Procedure 1 has a fixed time interval,
the query is processed regardless of β . If that still yields no tra-
jectories, an estimate based on the speed limit of the segment is
provided (Line 13).

Procedure 6 shows how a full query is partitioned and pro-
cessed. For longer trips, the periodic interval IRi is adapted with
the shift-and-enlarge procedure (Line 4) suggested by Dai et
al. [4], that shifts the beginning of the interval ts by the sum of
all previous minimums Si =

∑j=i−1
j=1 Hmin

j and enlarges it by the

sum of all previous ranges Ri =
∑j=i−1

j=1 (H
max
j − Hmin

j).

4.3 Optimizations
4.3.1 CSS-Trees. The cache sensitive search tree (CSS-tree)

proposed by Rao and Ross is a low memory overhead pointer-
less index that speeds up searches in sorted arrays [21]. In our
system, we use it as an append-only replacement for the temporal
B+-tree forest (cf. Section 4.1.2) to speed up Procedures 3 and 4
and to reduce memory consumption. Furthermore, its ability to
efficiently compute the size of a key range in logarithmic time
is used to improve the accuracy of the cardinality estimator (cf.
Section 4.4). The CSS-tree is optimized to reduce the number of

Procedure 3 Create a mapping of trajectory identifier and se-
quence number (d, seq) to an antecedent travel time diff for the
first β trajectories matching the predicates (buildMap):
Input: Temporal index Φ of the first segment of the query path,

ISA range [st, ed), time interval I , predicate f , and cardinality
parameter β

Output: a mapping of (d, seq) to (a −TT)
1: M ← ∅
2: for all r ∈ Φ do
3: if r .t ∈ I ∧ st ≤ r .isa < ed ∧ f (r .d) then
4: diff ← r .a − r .TT
5: M ← M ∪ {(r .d, r .seq) → diff }
6: if |M | ≥ β then
7: return M
8: end if
9: end if
10: end for
11: return M

Procedure 4 Compute the travel times for all eligible trajectories
over the path identified in the buildMap function (probeMap):
Input: Temporal index Φ of the last segment of the query path,

path length l , and probe tableM
Output: a list of travel times X
1: X ← ∅
2: for all r ∈ Φ do
3: b ← M[(r .d, r .seq + 1 − l)]
4: if b , ∅ then
5: X ← X ∪ {r .a − b.diff }
6: end if
7: end for
8: return X

Procedure 5 Retrieve all travel-times X = ⟨x0, ..., xβ−1⟩ of tra-
jectories in I that meet predicate f for a path P (getTravelTimes):
Input: Burrows-Wheeler transform of the trajectory stringTbwt ,

temporal indexes F , symbol counts C , path P = p0...pl−1,
time interval I , predicate f , and cardinality parameter β

Output: a set of travel-times X
1: [st, ed) ← getISARange(Tbwt ,C, P)
2: if st ≥ ed then
3: return ∅
4: end if
5: Φ0 ← F [p0]
6: M ← buildMap(Φ0, [st, ed), I , f , β)
7: if |M | < β and isPeriodic(I) then
8: return ∅
9: end if
10: Φl−1 ← F [pl−1]
11: X ← probeMap(Φl−1, l,M)
12: if X = ∅ and |P | = 1 then
13: return {estimateTT (p0)}

14: end if
15: return X

cache misses during a search by using the processor’s cache line
size as its node size. Since it indexes sorted arrays, only appends
can be performed efficiently. We deem this an acceptable trade
off because inserting additional trajectories would also require a
re-computation of the entire FM-index, making the index mostly
suited for batch updates.

162

Procedure 6Compute a histogramH for the query spq(P, I , f , β)
(tripQuery):
Input: Burrows-Wheeler transform of the trajectory stringTbwt ,

temporal indexes F , symbol counts C , query spq(P, I , f , β),
time interval sizes A, partitioning method π , and splitting
method σ

Output: a histogram H
1: ⟨Q1, . . . ,Qk ⟩ ← π (Q);H ← ∅
2: for all Qi ∈ ⟨Q1, . . . ,Qk ⟩ do
3: if isPeriodic(Ii) and i > 1 then
4: Ii ← [ts + Si , te + Ri)

R

5: end if
6: Xi ← getTravelTimes(Pi , Ii , fi , β)
7: if Xi , ∅ then
8: H ← H ∪ createHistogram(Xi)

9: else
10: ⟨Qi+1, . . . ,Qk ⟩ ← ⟨Qi+1, . . . ,Qk ⟩ ∪ σ (Qi)

11: end if
12: end for
13: H ← H1
14: for all i > 1 ∧ Hi ∈ H do
15: H ← H ∗ Hi
16: end for
17: return H

4.3.2 Temporal Partitioning. Temporal partitioning of the
SNT-index was originally proposed here [13], but not evalu-
ated. It allows more efficient updates to the index without ne-
cessitating a complete re-computation of the FM-index which
does not efficiently support updates or appends. Partitioning
requires to split the trajectory set T into T1, . . . ,TW , where
∀i < j

(
�tri ∈ Ti

(
∀tr j ∈ Tj (tri .t0 ≥ tr j .t0)

))
. From those

trajectory sets,W trajectory strings T 1, . . . ,TW are then com-
puted, and Procedure 2 is modified return a collection of ISA
ranges from the Burrows-Wheeler transforms T 1

bwt , . . . ,T
W
bwt

using separate segment counters C1, . . . ,CW . Temporal parti-
tioning also requires adding the partition identifier w to every
leaf in the temporal indexes since every partition’s FM-index can
return a different ISA range for the same path.

4.4 Cardinality Estimator
Cardinality estimators are widely used in DBMSs to improve
query plans. In our case, we want to avoid costly scans of our
temporal indexes if the required sample size β cannot be met.
We require a function card(Q) that returns an estimate β̂ for the
cardinality of the return trajectory set T and if β̂ < β , we apply
the split function σ to Q without running a costly query. The
cardinality estimator relies on a time-of-day histogram for every
segment and fast computation of the ISA range [st, ed), which
is enabled by Procedure 2. The exact count of all trajectories
traversing a path cP = ed − st is efficiently retrieved. After that,
the selectivity of the temporal filters needs to be estimated. The
easiest way is to assume a uniform distribution throughout the
day and to divide the size of a periodic interval by the length of
the day, which yields the time-of-day selectivity:

seltod = sel(P, IR = [ts , te)
R) =

te − ts
24 hours

(1)

The uniformity assumption, however, usually does not hold so,
the selectivity estimate can be improved by maintaining a time-
of-day histogram He for every segment e . Then the selectivity

can be estimated using the following formula:

sel(P, IR = [ts , te)
R) =

B
(
He0 , [ts , te)

)
B
(
He0 , [0, 24 hours)

) , (2)

where B
(
H , [ts , te)

)
counts the elements of all buckets inH in the

range [ts , te). In addition to being constrained by the time-of-day
a user might wish to limit the query to a certain time frame, e.g.,
only considering trajectories within the past year. The selectivity
can be estimated naively with the following formula:

selt f = sel(P, I = [ts , te)) =
te − ts

F [e0]max − F [e0]min
, (3)

where F [e0]min and F [e0]max are the earliest and latest traversal
times of segment e0. When using the CSS-tree, the number of
entries for which ts ≤ t < te can be obtained exactly in log-
arithmic time and seltf can be computed exactly. To compute
the selectivity of user predicates selu , we use the default of 1

10
suggested by Selinger et al. [22]. To obtain the estimate for a
query, we combine these selectivity factors to obtain our esti-
mate β̂ = seltod ∗ seltf ∗ selu ∗ cP .

We define five different modes for the cardinality estimator:
ISA only uses the size of the ISA range cP as estimate β̂
BT-Fast uses formulas 1 and 3 to estimate the selectivity
BT-Acc uses formulas 2 and 3 to estimate the selectivity
CSS-Fast uses formula 1 and a fast lookup in the CSS-tree to

estimate the selectivity
CSS-Acc uses formula 2 and a fast lookup in the CSS-tree to

estimate the selectivity

5 EXPERIMENTAL SETUP
This section describes the data set and quality metrics we use to
evaluate our system.

5.1 Datasets
5.1.1 OpenStreetMap. Our network graph is based on the

OpenStreetMap data of the road network of Northern Denmark,
which contains around 750,000 road segments. When converted
to a spatial network graph, this graph has around 1.46 million di-
rected edges [19]. Each edge represents a direction on a segment
and has one of 17 different segment categories. This categoriza-
tion is available for all OpenStreetMap maps and makes segment
category-based partitioning possible for other map-matched tra-
jectory datasets as well. The OpenStreetMap data also includes
the speed limits for many segments, which we use as a fallback if
no trajectory data is available. If the speed limit is not known, we
use the median of all known speed limits of its segment category.

5.1.2 Zone Dataset. To distinguish rural and urban areas, we
use the zoning map published by the Danish Business Author-
ity [7] that consists of 4,259 zone geometries, each of which
assigns one of three categories to an area:
• city: segments within city limits
• rural: segments in rural areas
• summer house: segments in areas zoned for summer house
usage

A spatial join is used to assign a zone type to every segment
in the map. A fourth category that we call ambiguous is assigned
to segments located in more than one zone type.

5.1.3 ITSP Dataset. The "ITS Platform" dataset contains over
1.1 billion GPS points sampled at 1 Hertz collected from 458
vehicles in Aalborg and the surrounding region during the period
from May 2012 to December 2014 [1].

163

164

166

●

●

●

●
●

●

●

●

●

●

0

5

10

15

20

25

10 20 30 40 50
β

m
s

pe
r

qu
er

y

π

●

πCπZπZCπNπ1π2π3

σ
σRσL

(a) Temporal Filters

●

●

●

●
●

●

●

●

●

●

0

20

40

60

10 20 30 40 50
β

m
s

pe
r

qu
er

y

π

●

πCπZπZCπMDM

σ
σRσL

(b) User Filters

● ● ● ● ●

●

●

●

●

●

0.0

2.5

5.0

7.5

10.0

10 20 30 40 50
β

m
s

pe
r

qu
er

y

π

●

πCπZπZCπN

σ
σRσL

(c) SPQ Only

Figure 9: Processing Time

0

2000

4000

6000

7 30 90 365 FULL BT
partition size

si
ze

 in
 M

iB

Component
C
WT
user
Forest

(a) Index Memory Consumption

●

●

●

●

●

●

●

●
● ●

●

●
●

● ●0

10

20

30

40

50

7 30 90 365 FULL
partition size

si
ze

 in
 G

iB

h
●

●

●

1
5
10

(b) Histogram Memory Consumption

●

●

●

●

●

●

400

425

450

475

500

7 30 90 365 FULL BT
partition size

se
tu

p
tim

e
in

 s
ec

on
ds

(c) Setup Time

Figure 10: Temporal Partitioning

0

1

2

3

ISA BT−Fast CSS−Fast BT−Acc CSS−Acc
estimator mode

q−
er

ro
r

(1
0y)

(a) Q-Error

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

0

5

10

15

20

7 30 90 365 FULL
partition size

m
s

pe
r

qu
er

y

Index
●

●

●

CSS
CSS−Fast
CSS−Acc
BT
BT−Fast
BT−Acc

(b) Runtime (c) Effect on Accuracy

Figure 11: Cardinality Estimator

based methods performing better than the fast ones and the CSS-
tree based methods performing slightly better than their B+-tree
counterparts.

Since the selectivity estimates of the estimators might under-
estimate cardinalities of queries, a query might be split despite
covering a sufficient sample size. This may affect the quality of
the overall travel-time estimate. Figure 11c, however, shows that
the effects on quality are minuscule compared to the baseline
(ISA) and might even yield slight improvements in accuracy.

Figure 11b shows that partitioning as well as using the car-
dinality estimators can impact performance significantly. For
single, yearly, and quarterly partitions, the query performance
changes little, and use of the cardinality estimator reduces query
processing times by around 50%. For smaller partitions, however,
the effects of using the cardinality estimator diminish; and with
weekly partitioning, the B+-tree version of the index performs

worse with the estimators. The histogram-based CSS-tree version
(CSS-Acc) performs worse than the fast version (CSS-Fast), which
is most likely due to the amount of time-of-day histograms that
have to be scanned to obtain the selectivity seltod .

6.5 Implications
Overall our data shows that after a certain β is reached no sig-
nificant gains in accuracy are obtained by increasing it further
indicating smaller result sets obtained from fewer SPQs of long
paths provide more accurate estimates than larger result sets
obtained with short paths. One can also see that evaluating non-
temporal predicates comes with a considerable overhead and for
the user predicates provides no improvement in quality over the
purely temporal methods. If such methods are however applied
selectively (e.g. πMDM) the performance overhead is mitigated

167

	Indexing Trajectories for Travel-Time Histogram RetrievalRobert Waury, Christian S. Jensen, Satoshi Koide, Yoshiharu Ishikawa, Chuan Xiao

