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ABSTRACT
A key service in vehicular transportation is routing according to
estimated travel times. With the availability of massive volumes
of vehicle trajectory data, it has become increasingly feasible to
estimate travel times, which are typically modeled as probability
distributions in the form of histograms. An earlier study shows
that use of a carefully selected, context-dependent subset of avail-
able trajectories when estimating a travel-time histogram along
a user-specified path can significantly improve the accuracy of
the estimates. This selection of trajectories cannot occur in a
pre-processing step, but must occur online—it must be integrated
into the routing itself. It is then a key challenge to be able to select
very efficiently the "right" subset of trajectories that offer the best
accuracy when the cost of a route is to be assessed. To address
this challenge, we propose a solution that applies novel indexing
to all available trajectories and that then is capable of selecting
the most relevant trajectories and of computing a travel-time
distribution based on these trajectories. Specifically, the solution
utilizes an in-memory trajectory index and a greedy algorithm to
identify and retrieve the relevant trajectories. The paper reports
on an extensive empirical study with a large real-world GPS data
set that offers insight into the accuracy and efficiency of the
proposed solution. The study shows that the proposed online
selection of trajectories can be performed efficiently and is able
to provide highly accurate travel-time distributions.

1 INTRODUCTION
Vehicular transportation is an important global phenomenon
that impacts the lives of virtually all of us. We rely on it for
mobility, and we are affected by congestion, accidents, and air
and noise pollution. Its influence can be expected to continue
into the foreseeable future. For example, in the European Union
alone, more than 75% of all freight transport and more than
80% of passenger transport rely on the road networks [8]. The
availability of high-resolution GPS trajectories allows for reliable
map-matching to a road network. The resulting trajectories are
called network-constrained trajectories (NCT) and can be used to
obtain travel-time estimates for paths in the network, thus mak-
ing transportation more predictable, safe, and environmentally
friendly.

When using such a data set, the most straightforward ap-
proach to computing a travel-time estimate for a path is to com-
pute a real-valued estimate for each segment in the path and
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then sum up these to obtain an estimate for the full path. This
approach can be refined by collecting travel-time histograms for
each segment and then combine them by means of convolution
to obtain a travel-time histogram for the full path. This improves
the accuracy of estimates since travel times are better modeled
as distributions than real valued. Further, the distributions often
do not follow a parameterized distribution, e.g., normal or uni-
form, and are therefore better estimated with histograms. This
segment level approach can also be extended to computing differ-
ent histograms for different times of day, e.g., the 96 15-minute
intervals of the day, to account for changing congestion through-
out the day. These histograms can be used as edge weights by
routing algorithms to compute better results. All of the above
approaches, however, only consider travel-time estimates at the
segment level. These approaches fail to take into account fac-
tors like the times it takes to pass through intersections, going
straight or turning left or right, which are hard to model accu-
rately. An earlier study [26] shows that travel-time estimates for
a given path can be improved considerably when they are com-
puted from trajectories that strictly follow the path, as opposed
to computing them from segment-level estimates. This type of
path-based estimate relies on efficiently processing strict path
queries (SPQ) as proposed by Krogh et al. [14], which is a query
on a trajectory set that only returns trajectories which traversed
a given path without detours.

We propose a system that can compute time-varying and per-
sonal travel-time histograms for any path in a network based
on a large trajectory set. It would be infeasible and impracti-
cal to pre-compute and store these time-varying and personal
weights for any path in a network before routing occurs. For
example, given even a moderately sized road network of a mil-
lion segments, for all 15-minute windows, nearly a 100 million
histograms would be needed to just cover every single segment,
with the storage requirements increasing dramatically when con-
sidering larger path lengths. We therefore obtain the weights for
a path on-the-fly by expressing them as a series of SPQs, which
we can efficiently process using our in-memory NCT index. If
any of these sub-queries fails to retrieve a sufficient number of
matching trajectories, we apply a greedy algorithm that relaxes
the SPQ’s predicates until the retrieved trajectory set has a speci-
fied cardinality. Since performance is crucial in our setting, we
also implement a cardinality estimator for SPQs to prevent unnec-
essary index traversals. We also show that carefully choosing the
initial set of SPQs increases the accuracy of the path weights and
increases the performance of the query. We perform extensive
experiments using a real-world trajectory data set containing 1.4
million trajectories from Northern Denmark, which shows that
our approach is suitable for real-time applications.
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The main contributions of this paper are the following:
• An adapted NCT index that supports efficient computation
of travel-time histograms for SPQs.
• A greedy algorithm that enables efficient processing of
any SPQ in periodic time intervals.
• A cardinality estimator for SPQs.
• A detailed analysis of the accuracy and performance of
the solution and its components.

The rest of the paper is structured as follows. Section 2 pro-
vides an overview of prior work, preliminaries, and a detailed
problem description. Section 3 describes the query processing
method, while Section 4 details the construction and use of the
NCT index. Section 5 outlines the experimental setup and the
evaluation metrics. Section 6 reports on the results of the experi-
ments, and Section 7 concludes.

2 PROBLEM FORMULATION
This section provides an overview of prior work, preliminaries,
and a problem definition.

2.1 Related Work
We review approaches to travel-time estimation and then, we
review network-constrained trajectory indexing with a focus on
indexes supporting SPQs.

2.1.1 Travel-Time Estimation. Earlier studies on travel-time
estimation compute histograms for single segments [15], which
still requires to model turn costs [27], or for short pre-defined
paths with considerable traffic [4], which are then convolved
at query time. In our approach, travel-times are computed for
sub-paths instead of only for individual segments. This approach
implicitly handles turn costs within sub-paths, and turn costs only
need to be modeled explicitly in-between sub-paths if applicable.
Other approaches based on tensor decomposition [25], support
vector regression [28], variance-entropy-based clustering [29],
or deep neural networks [24] have also been proposed. But they
either do not provide travel-time distributions or do not provide
estimates for specific paths but only for origin-destination pairs.

2.1.2 NCT Indexing. Several indexes for network-constrained
trajectories based on R-trees [5, 6, 9] or B+-trees [20] have been
proposed, but they are often only optimized for range queries or
nearest neighbor queries.

Two indexes have been proposed to support strict path queries,
NETTRA [14] and the SNT-index [12]. NETTRA is a disk-based in-
dex designed to answer SPQs with minimal I/O and also supports
efficient updates of the index, but may return false positives due
to hash collisions. The SNT-index uses data structures adapted
from string matching to efficiently identify matching trajectories.
This index was originally designed to retrieve all matching trajec-
tory IDs in a given time interval that fulfill the SPQ requirement.
We extend it to accommodate travel-time retrieval as well.

2.2 Network Graph & Trajectories

Figure 1: Example Road Network

Table 1: Example of F and Function estimateTT

e c z sl l estimateTT
A motorway rural 110 900 29.5 s
B primary city 50 120 8.6 s
C secondary city 30 40 4.8 s
D secondary city 30 80 9.6 s
E primary city 50 100 7.2 s
F primary rural 80 800 36.0 s

A spatial network is modeled as a directed graphG = (V , E, F ),
where V is a vertex set, E ⊆ V ×V is a set of edges that repre-
sent road segments, and F : E → Cat × Z × SL × L is a set
of functions, where Cat is the set of road categories, Z is the
set of different types of zones the segments are located in, SL
is the set of speed limits in kilometers per hour (or 1000

3600 meters
per second), and L is the set of segment lengths in meters. From
this we can derive the function estimateTT (ei) = 3.6 F(ei ).l

F(ei ).sl
that

returns the traversal time in seconds if the segment is traversed
at the speed limit. This function is used as a fallback so that we
can return a result even if no data is available for a segment.
Every edge e ∈ E has a category that captures the road type of
the segment it represents and a zone type describing its location.
Figure 1 shows the graph representation of the road network we
use in examples. Table 1 shows the mapping of each segment to
categories c ∈ Cat = {motorway, primary, secondary} and zones
z ∈ Z = {city, rural}.

A traversable sequence of segments P = ⟨e0, e1, . . . , el−1⟩
is called a path, with |P | = l . A sub-path ⟨ei , . . . , ej−1⟩, with
0 ≤ i < j ≤ l , of P is denoted as P[i, j). The set of trajectories is
given as T ⊆ D ×U ×S, whereD is the set of all trajectory ids,
U is the set of all drivers. Further, S : Nl → E × TS × C is the
domain of functions from the set consisting of the first l natural
numbers to the range of triples consisting of an edge e ∈ E, a
timestamp t ∈ TS, and a time duration TT ∈ C. This domain of
functions encodes finite sequences of length l .

A trajectory tr ∈ T of a user u with the id d is therefore
denoted as (d,u, s), where s ∈ S is a sequence of 3-tuples:

s = ⟨(e0, t0,TT0), (e1, t1,TT1), . . . , (el−1, tl−1,TTl−1)⟩,

where t0, .., tl−1 are the timestamps when a segment was entered
with ∀i∀j(i < j ⇒ ti < tj ), TTi > 0 is the duration of the
traversal of ei , and l is the number of segments traversed.

The path of trajectory tr is called Ptr , and its starting time is
tr .t0. The duration function Dur(tr , P) = TT0 +TT1 + . . .+TTl−1
returns the sum of all segment traversal times aPtr of a path P
by a trajectory. If a trajectory path Ptr does not contain P as a
sub-path , Dur(tr , P) is undefined. A trajectory set in our example
road network from Figure 1 is shown below:

tr0 : (0,u1) →⟨(A, 0, 3), (B, 3, 4), (E, 7, 4)⟩
tr1 : (1,u2) →⟨(A, 2, 4), (C, 6, 2), (D, 8, 4), (E, 12, 5)⟩
tr2 : (2,u2) →⟨(A, 4, 3), (B, 7, 3), (F , 10, 6)⟩
tr3 : (3,u1) →⟨(A, 6, 3), (B, 9, 3), (E, 12, 4)⟩

2.3 Travel-Time Query
To address the shortcomings of the segment-level approach, we
employ the strict path query Q = spq(P, I , f , β) that returns a
travel-time histogram H . The histogram can be derived from the
traversal times of the set of trajectories T P ⊆ T that traverse
path P without stops or detours in the time interval I , and fulfill
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additional filter predicates f :

T P = {tr ∈ T |∃i, j (Ptr [i, j) = P ∧ tr .s .ti ∈ I ∧ f (tr ))},

where I = [ts , te ) denotes a temporal predicate with a size α =
te − ts and β is a cardinality requirement for T P , i.e., we only
proceed if |T P | ≥ β . If β is omitted all eligible trajectories are
retrieved. The temporal predicate can either cover a fixed time
interval, e.g., all trajectories from December 1st 2017 until May
1st 2018, or a periodic time-of-day interval denoted as IR =
⟨. . . ,

[
ts − 24 hours, te − 24 hours

)
,
[
ts , te

)
,
[
ts + 24 hours, te +

24 hours
)
, . . . ,

[
ts + n (24 hours), te + n (24 hours)

)
⟩, e.g., all

trajectories from 8:00 until 8:30 on every day. Parameter f is an
additional non-temporal filter predicate that trajectories in T P

have to fulfill, e.g., being from a specified driver.
Using such a queryQ for a typical trip path, which can consist

of dozens of segments, may not return a sufficient number of
trajectories to derive accurate travel-time estimations. To address
this problem, we split Q into k sub-queries ⟨Q1,Q2, . . . ,Qk ⟩ =

⟨spq(P1, I1, f1, β), spq(P2, I2, f2, β), . . . , spq(Pk , Ik , fk , β)⟩ that re-
turn the trajectory sets {T1,T2, . . . ,Tk }, where Pi are sub-paths
that partition P . These can then be used to compute a set of k
histograms {H1,H2, . . . ,Hk } if ∀i |Ti | ≥ β . Their convolution we
call H = H1 ∗H2 ∗ . . . ∗Hk , where ∗ is the discrete convolution
operator andH is a travel-time histogram that covers the full path
P . The intuition behind partitioning into k sub-queries is, that
different sub-paths often provide better estimates with different
predicates, e.g., user predicates mainly improve accuracy outside
of cities [26]. Another advantage of partitioning the query is the
increased number of eligible trajectories.

How this partitioning into sub-queries is performed and how
the sub-queries are processed is discussed in Sections 3 and 4.

An example query for our example trajectory set could be
Q = spq(⟨A,B, E⟩, [0, 15),u = u1, 2). This would return T P =

{tr0, tr3} yielding a histogram with H = {[10, 11) : 1; [11, 12) : 1}
since Dur(tr0, ⟨A,B, E⟩) = 11 and Dur(tr3, ⟨A,B, E⟩) = 10. But if
a larger cardinality is required, Q could be split into two queries
Q1 = spq(⟨A,B⟩, [0, 15), ∅, 3) and Q2 = spq(⟨E⟩, [0, 15), ∅, 3) that
yield the histogramsH1 = {[6, 7) : 2; [7, 8) : 1} andH2 = {[4, 5) : 2;
[5, 6) : 1}, fromwhich the convolutionH = {[10, 11) : 4; [11, 12) : 4;
[12, 13) : 1} can be obtained.

3 QUERY PROCESSING
This section describes the architecture of the system, the pro-
cessing of travel-time queries, and the greedy algorithm used for
relaxing sub-query predicates.

3.1 Architecture
Figure 2 shows the overall system architecture, where boxes
with dotted lines indicate pre-existing components, dashed lines
indicate modified components, and solid lines indicate new com-
ponents. At first, a GPS data set is map-matched off-line to tra-
jectories and loaded into the modified SNT-index consisting of a
collection of temporal indexes and a spatial index.

Once the trajectory set is loaded, a user is able to dispatch a
strict path queryQ to the Sub-query Module where the query is
initially partitioned intok sub-queries by the Query Partitioner
according to a simple heuristic called π , e.g., sub-paths of a fixed
length, or sub-paths that have the same segment category. Each
sub-query is then assigned temporal and trajectory filter pred-
icates. Next, the Cardinality Estimator uses the Histogram
Store and the SNT-Index to estimate the cardinality β̂ of the

trajectory set Ti returned by the sub-query spq(Pi , Ii , fi , β). If β̂
is smaller than the desired cardinality β , the sub-query is mod-
ified by the Sub-query Splitter using a splitting function σ
that relaxes the predicates. If the sub-query’s cardinality esti-
mate meets the requirement, it is dispatched to the index, and
a trajectory set Ti is obtained. If |Ti | ≥ β , it is forwarded to the
Histogram Builder. If the cardinality is still below the threshold,
it is modified again by the Sub-query Splitter.

Once all trajectory sets {T1,T2, . . . ,Tk } are obtained, their
travel-time sets {X1,X2, . . . ,Xk } are extracted, with Xi =
{Dur(tr , Pi )|tr ∈ Ti }. From those, a set of histograms H =

{H1,H2, . . . ,Hk } is computed, and they are convolved into a
single histogram H = H1 ∗ H2 ∗ . . . ∗ Hk that estimates the
travel-time distribution for the complete path P .

3.2 Partitioning Methods
For the initial partitioning of queries, we propose five different
methods. We use the query Q = spq(P, I , f , β) with path P =
⟨A,C,D, E⟩ from the network in Figure 1 as example. The initial
periodic time interval IRi is identical for all sub-queries and is
always chosen so that te−ts = αmin , whereαmin is theminimum
time interval size, which is chosen by the system. The predicate
f is also initially identical for all sub-queries but may be modified
by the splitting method (cf. Section 3.3).

3.2.1 Regular (πp ). The regular partitioning creates sub-queries
for paths of length p, i.e., every query is partitioned into k = ⌈ lp ⌉
sub-queries, i.e., the sub-queries πp (Q) = ⟨spq(P[0,p), IR1 , f1, β),
spq(P[p, 2p), IR2 , f2, β), . . . , spq(P[p⌊

l
p ⌋, l), I

R
k , fk , β)⟩ are created.

In our experiments we chose π1, π2 and π3, which for our exam-
ple path yield the paths ⟨⟨A⟩, ⟨C⟩, ⟨D⟩, ⟨E⟩⟩, ⟨⟨A,C⟩, ⟨D, E⟩⟩, and
⟨⟨A,C,D⟩, ⟨E⟩⟩, respectively.

3.2.2 Segment Category (πC ). The segment type partition-
ing creates partitions of sub-paths with identical segment cate-
gories, i.e., two neighboring segments ei and ei+1 are split unless
F (ei ).c = F (ei+1).c . For our example query, this results in the
sub-paths ⟨⟨A⟩, ⟨C,D⟩, ⟨E⟩⟩.

3.2.3 Zone Type (πZ ). The zone type partitioning creates
partitions of sub-paths within the same zone type, i.e., two neigh-
bouring segments ei and ei+1 are split unlessF (ei ).z = F (ei+1).z.
For our example query, this results in the sub-paths ⟨⟨A⟩, ⟨C,D, E⟩⟩.

3.2.4 Zone Type & Segment Category (πZC ). The zone type
and segment category partitioning creates partitions of sub-paths
within the same zone type and segment category combination, i.e.,
two neighboring segments ei and ei+1 are split unless F (ei ).z =
F (ei+1).z ∧ F (ei ).c = F (ei+1).c . For our example query, this
results in the sub-paths ⟨⟨A⟩, ⟨C,D⟩, ⟨E⟩⟩.

3.2.5 None (πN ). No initial partitioning is attempted, and the
query is processed according to one of the splitting strategies
described below. For our example query, this results in the single
sub-path ⟨⟨A,C,D, E⟩⟩.

3.3 Splitting Methods
If a sub-query spq(P, I , f , β) does not return the desired cardi-
nality, it is modified by a splitting function σ described in Pro-
cedure 1 that takes a query and the list of time interval sizes
A = ⟨α1, . . . ,αn⟩, with ∀i∀j (i < j ⇒ αi < α j ), and α1 = αmin
and αn = αmax as arguments.
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Figure 2: Overall Architecture

At first the procedure tries to increase the sample size by
increasing the size of the time interval for the path by choosing
the next largest size from the list A and widening the periodic
interval withwiden([ts , te )R ,αi+1) = [ts−

αi+1−αi
2 , te+

αi+1−αi
2 )R .

After A has been exhausted, the path is split, and two new sub-
queries with the smallest allowed time interval size αmin are
created.

We propose two types of splitting and again use the path
P = ⟨A,C,D, E⟩ in examples.

σR Regular splitting cuts the path in half, i.e., P1 = P[0, ⌊ l2 ⌋)
and P2 = P[⌊ l2 ⌋, l), so splitting the example path P results
in P1 = ⟨A,C⟩ and P2 = ⟨D, E⟩.

σL Longest prefix splitting creates two sub-paths P1 = P[0,m)
and P2 = P[m, l), with 1 ≤ m < l , where the maximum
value form for which |T P1 | ≥ β holds is chosen.

If a sub-path cannot be split further, any non-temporal filter
predicates are dropped (Line 10). As a fallback, all temporal filters
and the β parameter are dropped as well, i.e., for a single segment,
all available trajectories are considered in the fixed time interval
[0, tmax ) (Line 12).

Procedure 1Modify a sub-query spq to increase sample size (σ ):
Input: Sub-query spq(P, I , f , β), time interval sizes A
Output: a sequence of sub-queries ⟨Q1, . . . ,Qk ⟩

1: αi ← te − ts
2: if αi < αmax then
3: I ′R ← widen(IR ,αi+1)
4: return ⟨spq(P, I ′R , f , β)⟩
5: else if |P | > 1 then
6: m ← split(P)
7: I ′R ← shrink(IR ,αmin )

8: return ⟨spq(P[0,m), I ′R , f , β), spq(P[m, l), I ′R , f , β)⟩
9: else if f , ∅ then
10: return ⟨spq(P, IR , ∅, β)⟩
11: else
12: return ⟨spq(P, [0, tmax ), ∅)⟩

13: end if

4 THE INDEX
This section describes the SNT-index and how we adapt and opti-
mize it to support travel-time queries using an example trajectory
set.

4.1 SNT-Index
Koide et al. [12] proposed the SNT-index for strict path queries
using the FM-index as a spatial index and a forest of B+-trees
as a temporal index. The advantage of the FM-index over R-
tree-based methods is that by representing the trajectory set T
as a string T and adapting a method from substring matching,
evaluating spatial queries is only dependent on the size of the
spatial network (|E |) and not on the size of the trajectory set
(|T |). In addition, it can be established from just the FM-index
whether a given path is traversed at all, often saving a costly
temporal index traversal. While the original index returns a set
of trajectory ids given the query spq(P, I ), where P is the path
and I is a time interval, our index returns the traversal times
of the trajectories for P , which can be stored in a histogram.
Sections 4.1.1 and 4.1.2 recap the previously described SNT-index
and the remaining section describes our modifications to it to
facilitate the efficient retrieval of travel-times.

4.1.1 The Spatial FM-Index. For our example we are indexing
the trajectory set T = {tr0, tr1, tr2, tr3} introduced earlier.

To index the trajectories, we first need to compute the trajec-
tory string T from the alphabet Σ = E ∪ {$} where the symbol $
denotes the end of a trajectory and where ∀e ∈ E (e > $) andT =
Ptr0 $Ptr1 $ . . . $Ptrn−1 $, ∀tr ∈ T . With our example trajectory
set, this yields the trajectory string T = ABE$ACDE$ABF$ABE$.

From this trajectory string, we compute an array S of all suf-
fixes of T , where S[i] = T [i,n), where 0 ≤ i < n = |T |. These
suffixes are then sorted lexicographically to obtain the suffix ar-
ray SA as shown in Figure 3, where SA[j] contains the index
of the j-th smallest suffix. From SA, we can then compute the
inverse suffix array ISA where SA[j] = i and ISA[i] = j [17].
Every substring (or in our case, subpath) P of length l there-
fore has a range of ISA values R(P) = [st, ed) that is defined as
R(P) = {i | S[SA[i]] [0, l) = P}, e.g., the ISA range of the path
⟨A⟩ is R(⟨A⟩) = [4, 8) since four trajectories contain A and they
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Figure 3: The Suffix Array and Burrows-Wheeler-Transform

Procedure 2 Calculate ISA range [st, ed) for a path P of length l
(getISARange):
Input: Burrows-Wheeler transformTbwt of the trajectory string

T , symbol counts C , path P = p0...pl−1
Output: ISA range [st, ed) that matches P
1: c ← pl−1
2: st ← C[c]
3: ed ← C[c + 1]
4: for i ← 2 to l do
5: c ← pl−i
6: st ← C[c] + rankc (Tbwt , st)
7: ed ← C[c] + rankc (Tbwt , ed)
8: if st ≥ ed then
9: return [0, 0)
10: end if
11: end for
12: return [st, ed)

appear at the start of the suffixes S[SA[st]] to S[SA[ed − 1]], and
the range for R(⟨A,B⟩) is [4, 7) as only three trajectories traverse
this path.

The ISA range of a path can be obtained efficiently from two
data structures that comprise the FM-index:

C an array that stores the number of lexicographically smaller
characters in the trajectory string for every member of the
alphabet Σ, e.g., C[′B′] = 8 since there exist 8 characters
in T that are lexicographically before ′B′.

Tbwt the Burrows-Wheeler transform [3] of the trajectory string
T that is defined asTbwt [i] = T [SA[i]−1], with 0 ≤ i < |T |.
For our example, this yields the string EFEE$$$$AAAA−
CBDBB.

We define the rank operation rankc (Tbwt , i) that counts the
occurrences of the character c in Tbwt [0, i). As an example of
computing the ISA range, we compute the range for the path
P = ⟨A,B⟩ as described in Procedure 2. At first, the segment

c ← B is set in Line 1, and st ← 8 and ed ← 11 are initialized in
Lines 2 and 3. For the first (and in this case the only) iteration
of the loop from Line 4 to 11, c ← A, st ← 4 + rankA(Tbwt , 8),
and ed ← 4 + rankA(Tbwt , 11), which yields the ISA range [4, 7),
since the ranks are 0 and 3, respectively.

The Burrows-Wheeler transform is stored in a wavelet tree
to enable rank queries in O(loд |Σ|) time [10]. Therefore, obtain-
ing the ISA range [st, ed) of any path P can be performed in
O(|P | loд |Σ|) time, which does not depend on the size of T .

4.1.2 The Temporal Indexes. The temporal indexes F = {Φe |
e ∈ E} contain a B+-tree for every segment in the network. Each
tree indexes the records r ∈ Φ by the timestamp t when a trajec-
tory entered the segment. A leaf node entry r for a timestamp t
contains the ISA index (isa) and the trajectory identifier (d).

The original SNT-index is only capable of retrieving the tra-
jectory ids, which would then have to be processed in turn to
obtain the traversal times of the query path.

4.1.3 Extensions to the SNT-Index. To support travel-time
histogram construction directly using the SNT-index, we add the
following information to each leaf node in a temporal index:
• The traversal time TT of the segment in seconds.
• The sequence number seq of the segment in the trajectory.
• The sum of the travel-times aseq =

∑seq
i=0TTi from the start

of the trajectory and up to and including the segment.
Figure 4 shows the contents of the temporal index ΦA of seg-

ment A for our example trajectory set where each leaf is a record r ,
mapping a timestamp t to a tuple (isa,d,TT ,a, seq). Furthermore,
we add an associative container U that maps every trajectory id
d to its respective user id u to check the filter predicate f . With
those fields, we can build a hash table during the scan of the
index of the first segment with the trajectory id and sequence
number as the key (d, seq) and the aggregate of the preceding
segment of the trajectory (a0 − TT0), as value as described in
Procedure 3. The sequence number is included to guard against
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Figure 4: Extended Temporal Index

trajectories with circular paths. The spatial filtering is performed
with the ISA range [st, ed) obtained from Procedure 2 during the
index scan in Line 3. The filter predicate f can be evaluated in
constant time with the associative container U . The cardinality
parameter β is used to reduce the processing time since not all
eligible trajectories are necessary to obtain a good estimate, and
the buildMap procedure terminates as soon as β trajectories are
found (Line 6). When scanning the temporal index of the last
segment in the query, we can obtain the traversal time of the
query path by al−1 − (a0 −TT0) as described in Procedure 4.

4.2 Travel-Time Query
When used together, the previous three procedures make it pos-
sible to obtain the set of travel times for any path, as shown in
Procedure 5, to answer the sub-query spq(P, I , f , β). To obtain all
trajectories that traversed a path P during a given time interval
I , an ISA range is first obtained from the FM-index in Line 1. If a
non-empty range is returned, a range scan on the index of the
first (Line 6) and last segment (Line 11) of the path are performed
for I and filtered by the ISA index in the leafs. If no matching
trajectories exist or no periodic time interval with more than β
trajectories is found (Line 7) the query returns the empty set. If
the sub-query provided by Procedure 1 has a fixed time interval,
the query is processed regardless of β . If that still yields no tra-
jectories, an estimate based on the speed limit of the segment is
provided (Line 13).

Procedure 6 shows how a full query is partitioned and pro-
cessed. For longer trips, the periodic interval IRi is adapted with
the shift-and-enlarge procedure (Line 4) suggested by Dai et
al. [4], that shifts the beginning of the interval ts by the sum of
all previous minimums Si =

∑j=i−1
j=1 Hmin

j and enlarges it by the

sum of all previous ranges Ri =
∑j=i−1
j=1 (H

max
j − Hmin

j ).

4.3 Optimizations
4.3.1 CSS-Trees. The cache sensitive search tree (CSS-tree)

proposed by Rao and Ross is a low memory overhead pointer-
less index that speeds up searches in sorted arrays [21]. In our
system, we use it as an append-only replacement for the temporal
B+-tree forest (cf. Section 4.1.2) to speed up Procedures 3 and 4
and to reduce memory consumption. Furthermore, its ability to
efficiently compute the size of a key range in logarithmic time
is used to improve the accuracy of the cardinality estimator (cf.
Section 4.4). The CSS-tree is optimized to reduce the number of

Procedure 3 Create a mapping of trajectory identifier and se-
quence number (d, seq) to an antecedent travel time diff for the
first β trajectories matching the predicates (buildMap):
Input: Temporal index Φ of the first segment of the query path,

ISA range [st, ed), time interval I , predicate f , and cardinality
parameter β

Output: a mapping of (d, seq) to (a −TT )
1: M ← ∅
2: for all r ∈ Φ do
3: if r .t ∈ I ∧ st ≤ r .isa < ed ∧ f (r .d) then
4: diff ← r .a − r .TT
5: M ← M ∪ {(r .d, r .seq) → diff }
6: if |M | ≥ β then
7: return M
8: end if
9: end if
10: end for
11: return M

Procedure 4 Compute the travel times for all eligible trajectories
over the path identified in the buildMap function (probeMap):
Input: Temporal index Φ of the last segment of the query path,

path length l , and probe tableM
Output: a list of travel times X
1: X ← ∅
2: for all r ∈ Φ do
3: b ← M[(r .d, r .seq + 1 − l)]
4: if b , ∅ then
5: X ← X ∪ {r .a − b.diff }
6: end if
7: end for
8: return X

Procedure 5 Retrieve all travel-times X = ⟨x0, ..., xβ−1⟩ of tra-
jectories in I that meet predicate f for a path P (getTravelTimes):
Input: Burrows-Wheeler transform of the trajectory stringTbwt ,

temporal indexes F , symbol counts C , path P = p0...pl−1,
time interval I , predicate f , and cardinality parameter β

Output: a set of travel-times X
1: [st, ed) ← getISARange(Tbwt ,C, P)
2: if st ≥ ed then
3: return ∅
4: end if
5: Φ0 ← F [p0]
6: M ← buildMap(Φ0, [st, ed), I , f , β)
7: if |M | < β and isPeriodic(I ) then
8: return ∅
9: end if
10: Φl−1 ← F [pl−1]
11: X ← probeMap(Φl−1, l,M)
12: if X = ∅ and |P | = 1 then
13: return {estimateTT (p0)}

14: end if
15: return X

cache misses during a search by using the processor’s cache line
size as its node size. Since it indexes sorted arrays, only appends
can be performed efficiently. We deem this an acceptable trade
off because inserting additional trajectories would also require a
re-computation of the entire FM-index, making the index mostly
suited for batch updates.
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Procedure 6Compute a histogramH for the query spq(P, I , f , β)
(tripQuery):
Input: Burrows-Wheeler transform of the trajectory stringTbwt ,

temporal indexes F , symbol counts C , query spq(P, I , f , β),
time interval sizes A, partitioning method π , and splitting
method σ

Output: a histogram H
1: ⟨Q1, . . . ,Qk ⟩ ← π (Q);H ← ∅
2: for all Qi ∈ ⟨Q1, . . . ,Qk ⟩ do
3: if isPeriodic(Ii) and i > 1 then
4: Ii ← [ts + Si , te + Ri )

R

5: end if
6: Xi ← getTravelTimes(Pi , Ii , fi , β)
7: if Xi , ∅ then
8: H ← H ∪ createHistogram(Xi )
9: else
10: ⟨Qi+1, . . . ,Qk ⟩ ← ⟨Qi+1, . . . ,Qk ⟩ ∪ σ (Qi )

11: end if
12: end for
13: H ← H1
14: for all i > 1 ∧ Hi ∈ H do
15: H ← H ∗ Hi
16: end for
17: return H

4.3.2 Temporal Partitioning. Temporal partitioning of the
SNT-index was originally proposed here [13], but not evalu-
ated. It allows more efficient updates to the index without ne-
cessitating a complete re-computation of the FM-index which
does not efficiently support updates or appends. Partitioning
requires to split the trajectory set T into T1, . . . ,TW , where
∀i < j

(
�tri ∈ Ti

(
∀tr j ∈ Tj (tri .t0 ≥ tr j .t0)

) )
. From those

trajectory sets,W trajectory strings T 1, . . . ,TW are then com-
puted, and Procedure 2 is modified return a collection of ISA
ranges from the Burrows-Wheeler transforms T 1

bwt , . . . ,T
W
bwt

using separate segment counters C1, . . . ,CW . Temporal parti-
tioning also requires adding the partition identifier w to every
leaf in the temporal indexes since every partition’s FM-index can
return a different ISA range for the same path.

4.4 Cardinality Estimator
Cardinality estimators are widely used in DBMSs to improve
query plans. In our case, we want to avoid costly scans of our
temporal indexes if the required sample size β cannot be met.
We require a function card(Q) that returns an estimate β̂ for the
cardinality of the return trajectory set T and if β̂ < β , we apply
the split function σ to Q without running a costly query. The
cardinality estimator relies on a time-of-day histogram for every
segment and fast computation of the ISA range [st, ed), which
is enabled by Procedure 2. The exact count of all trajectories
traversing a path cP = ed − st is efficiently retrieved. After that,
the selectivity of the temporal filters needs to be estimated. The
easiest way is to assume a uniform distribution throughout the
day and to divide the size of a periodic interval by the length of
the day, which yields the time-of-day selectivity:

seltod = sel(P, IR = [ts , te )R ) =
te − ts

24 hours
(1)

The uniformity assumption, however, usually does not hold so,
the selectivity estimate can be improved by maintaining a time-
of-day histogram He for every segment e . Then the selectivity

can be estimated using the following formula:

sel(P, IR = [ts , te )R ) =
B
(
He0 , [ts , te )

)
B
(
He0 , [0, 24 hours)

) , (2)

where B
(
H , [ts , te )

)
counts the elements of all buckets inH in the

range [ts , te ). In addition to being constrained by the time-of-day
a user might wish to limit the query to a certain time frame, e.g.,
only considering trajectories within the past year. The selectivity
can be estimated naively with the following formula:

selt f = sel(P, I = [ts , te )) =
te − ts

F [e0]max − F [e0]min
, (3)

where F [e0]min and F [e0]max are the earliest and latest traversal
times of segment e0. When using the CSS-tree, the number of
entries for which ts ≤ t < te can be obtained exactly in log-
arithmic time and seltf can be computed exactly. To compute
the selectivity of user predicates selu , we use the default of 1

10
suggested by Selinger et al. [22]. To obtain the estimate for a
query, we combine these selectivity factors to obtain our esti-
mate β̂ = seltod ∗ seltf ∗ selu ∗ cP .

We define five different modes for the cardinality estimator:
ISA only uses the size of the ISA range cP as estimate β̂
BT-Fast uses formulas 1 and 3 to estimate the selectivity
BT-Acc uses formulas 2 and 3 to estimate the selectivity
CSS-Fast uses formula 1 and a fast lookup in the CSS-tree to

estimate the selectivity
CSS-Acc uses formula 2 and a fast lookup in the CSS-tree to

estimate the selectivity

5 EXPERIMENTAL SETUP
This section describes the data set and quality metrics we use to
evaluate our system.

5.1 Datasets
5.1.1 OpenStreetMap. Our network graph is based on the

OpenStreetMap data of the road network of Northern Denmark,
which contains around 750,000 road segments. When converted
to a spatial network graph, this graph has around 1.46 million di-
rected edges [19]. Each edge represents a direction on a segment
and has one of 17 different segment categories. This categoriza-
tion is available for all OpenStreetMap maps and makes segment
category-based partitioning possible for other map-matched tra-
jectory datasets as well. The OpenStreetMap data also includes
the speed limits for many segments, which we use as a fallback if
no trajectory data is available. If the speed limit is not known, we
use the median of all known speed limits of its segment category.

5.1.2 Zone Dataset. To distinguish rural and urban areas, we
use the zoning map published by the Danish Business Author-
ity [7] that consists of 4,259 zone geometries, each of which
assigns one of three categories to an area:
• city: segments within city limits
• rural: segments in rural areas
• summer house: segments in areas zoned for summer house
usage

A spatial join is used to assign a zone type to every segment
in the map. A fourth category that we call ambiguous is assigned
to segments located in more than one zone type.

5.1.3 ITSP Dataset. The "ITS Platform" dataset contains over
1.1 billion GPS points sampled at 1 Hertz collected from 458
vehicles in Aalborg and the surrounding region during the period
from May 2012 to December 2014 [1].
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In a preprocessing step, the GPS points are map-matched [18]
to obtain in excess of 79 million segment traversals that form
around 1.4 million trajectories, where a new trajectory is created
if more than a 180 seconds have elapsed since the last GPS point.
The map-matching algorithm also discards GPS points at the
beginning and end of a trip if too few points are matched to
the start and end segments of the trajectory. This is done so the
durations of the segment traversals are meaningful. Each GPS
record contains the trajectory ID, the vehicle ID, a segment ID,
the time and date the segment was entered (minute resolution),
and the time on segment (second resolution). Since the cars in
our dataset are privately owned, we treat the vehicle ID as the
user ID. The segment IDs are derived from the unique mapping
of OpenStreetMap segment key and the driving direction. The
time on a segment is also computed during the preprocessing
step.

5.2 Query
We derive our query set Q from a random sample TS ⊂ T from
our trajectory set:

Q = {spq(Ptr , Itr , f , β)|tr ∈ TS } ,

with either f = {u = tr .u} or f = ∅ if no user filters are used
and different values of β being used in the experiments. For
the time interval Itr , either the periodic time interval IRtr =
[tr .s .t0 −

αmin
2 , tr .s .t0 +

αmin
2 )

R or or the fixed time interval
Itr = [0, tr .s .t0) is used.

For the interval size we use the values 15 min, 30 min, 45 min,
60 min, 90 min, and 120 min.

5.3 Accuracy Metric
5.3.1 sMAPE. To evaluate the accuracy of the retrieved tra-

versal times, we use the symmetric mean absolute percentage
error [2] of the sum of the means of all sub-paths.

sMAPE =
100%
|Q|

|Q |∑
i=1

|
∑k
j=1 X̄ j − atri |

1
2 (
∑k
j=1 X̄ j + atri )

,

where k is the respective number of sub-queries of each query
Q ∈ Q and X̄ j is the travel-time mean retrieved with the sub-
query.

5.3.2 Weighted Error. The weighted error, which we derive
from sMAPE, considers the accuracy of the sub-query results and
weighs them according to their fraction of the path length.

wE =
100%
|Q|

|Q |∑
i=1

k∑
j=1

w j
|X̄ j − a

Pj
tri |

1
2 (X̄ j + a

Pj
tri )
,

with w j =
∑e∈Pj F(e).l∑e∈P F(e).l

, where P is the query path and Pj is
the sub-query path.

5.3.3 Log-Likelihood. To evaluate the quality of the histograms,
we compute the average log-likelihood of the travel-times atri
with a discrete probability density function derived from the
result histogram Hi .

For each trajectory with a result histogram H with a bucket
width h, we compute the average log-likelihood logL:

1
|Q|

|Q |∑
i=1

logL(atri ,Hi ),

where the likelihoodL(x,H ) is defined by the discrete probability
density function

pH (x) = γ f (x,H ) + (1 − γ )U (x),

where U (x) is a uniform distribution defined for [tmin, tmax ),
0 < γ < 1 and

f (x,H ) =
B
(
H , [⌊ xh ⌋, ⌊

x
h ⌋ + h)

)
B(H , [tmin, tmax ))

.

The smoothing with the uniform distributionU (x) is performed
so that pH (x) ∀x ∈ [tmin, tmax ) never reaches zero.

5.3.4 Q-Error. To evaluate the accuracy of the cardinality
estimator, we use the q-error proposed by Moerkotte et al. [16].
To estimate the quality of our cardinality estimate β̂ , we compare
it to the actual cardinality of the retrieved trajectory set n = |T |.
For every estimate, we obtain the q-error q = max(β̂ ′/n′,n′/β̂ ′)
with n′ = max(n, 1) and β̂ ′ = max(β̂, 1). This is done to handle
estimations for empty sets as proposed by Stefanoni et al. [23].
The q-error shows the difference in orders of magnitude between
the real cardinality and the estimate.

6 EVALUATION
This section reports on the experimental results. For all experi-
ments, a query set Q is generated from the trajectory set |TS | =
6,942, which is a random 1% sample of all trajectories in T that
occur after the 8th of September 2013, the median of the times-
tamps in the ITSP data set. This is to ensure that every query has
more than a year of trajectory data available. On average, the
paths of the query set have a length of 13.7 kilometers, consist
of 55 segments, and last 800 seconds.

In our study we evaluate three types of queries:
Temporal Filters that use a periodic time interval and no user

filter (spq(Ptr , IRtr , ∅, β))
User Filters that use a periodic time interval and a user filter

(spq(Ptr , IRtr , {u = tr .u}, β))
SPQ Only that use a fixed time interval and no user filter

(spq(Ptr , [0, tmax ), ∅, β))

6.1 Qualitative Assessment
Figures 5 to 8 show the results of accuracy measured with sMAPE,
the weighted error, and the log-likelihood and the average sub-
query length. The figures show the results for different types of
partitioning and splitting methods and filter predicates.

The regular partitioning method πp (cf. Section 3.2.1) is used
as a baseline with p = 1, 2, and 3 because they are the sub-path
lengths for which histograms can still be pre-computed at a
reasonable overhead and because no known histogram-based
methods perform better. For the user filter queries, we also eval-
uate the πMDM method that partitions queries like πC but only
applies user filters to sub-queries with paths on main roads like
motorways or other major roads connecting cities. This parti-
tioning method is derived from the results of a previous study of
travel-time estimation methods [26].

Figure 5a shows the average error for seven different parti-
tioning methods with temporal filters. Here, π1 performs worst,
followed π2 and π3, and they achieve their highest accuracy at
β = 30. If only the speed limits are used to estimate the travel
time, sMAPE is 34.3% and if all available trajectories for each
segment are used, the error is 13.8%. The partitioning methods
based on the segment category and/or zone (πC , πZ , and πZC )
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Figure 5: sMAPE
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Figure 6: Weighted Error
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Figure 7: Sub-query Path Length

●

●
● ● ●

●

●
● ● ●

−3.9

−3.8

−3.7

−3.6

−3.5

−3.4

10 20 30 40 50
β

Lo
g−

lik
el

ih
oo

d

π

●

πCπZπZCπNπ1π2π3

σ
σRσL

(a) Temporal Filters

●

●
● ●

●

●

● ●
●

●

−3.60

−3.55

−3.50

−3.45

−3.40

10 20 30 40 50
β

Lo
g−

lik
el

ih
oo

d

π

●

πCπZπZCπMDM

σ
σRσL

(b) User Filters

●

●

●
● ●

●

●

●
● ●

−4.1

−3.9

−3.7

−3.5

10 20 30 40 50
β

Lo
g−

lik
el

ih
oo

d

π

●

πCπZπZCπN

σ
σRσL

(c) SPQ Only

Figure 8: Log-Likelihood
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together with πN achieve very similar accuracy. Here, the accu-
racy peaks at β = 20. Category-based partitioning is the most
stable in terms of accuracy, and zone-based partitioning provides
the overall best result. The queries using user filters shown in
Figure 5b perform equally well, but with the exception of πZ
do not degrade as much with higher values of β and also obtain
their lowest error at β = 20 and exhibit very similar accuracy
to the queries without user filters. The SPQ Only methods in
Figure 5c methods did not manage to outperform the baseline
because it does not use periodic intervals that can observe chang-
ing congestion, e.g., longer travel-times during rush hours. In
nearly all cases with regular splitting (σR ) achieves considerably
better accuracy than longest prefix splitting (σL). In most cases

A similar picture to the sMAPE results can be seen for the
temporal filter queries in Figure 6a, with πN having the lowest
weighted error. If only the speed limits are used to make an esti-
mate, the weighted error is 36.9%, and if all available trajectories
for each segment are used, the error is 24.0%. For the user filter
queries in Figure 6b, only πMDM manages to consistently out-
perform the baseline. The SPQ only queries shown in Figure 6c
show the lowest error with the coarsest partitioning methods.
The low error of the SPQ only methods is due to sub-query results
being weighted according to the length of the sub-paths and not
relative to the share of travel time. Estimates for paths on long
segments with high speed limits, e.g., motorways, exhibit already
low estimation errors and also tend to improve the most when
custom predicates are used [26]. In all cases, σL has a higher
error than σR . Figure 7 shows the average path lengths of the
final sub-queries. We can see that there is an inverse relationship
between the weighted error and the sub-query paths. We can also
see that πZ provides the coarsest partitioning with the exception
of πN , which initially provides none.

Figures 8a to 8c show the average log-likelihood with f (x,H )
derived form a histogram with a bucket size of h = 10s and
different values for β and γ = 0.99. The queries with only tempo-
ral filters and πZ and πZC return the most accurate histograms,
and the coarser the partitioning method the less accurate the
histograms are with low sample sizes. Among the User Filter
queries πMDM consistently outperforms the other three parti-
tioning methods. The queries run with πN do not even outper-
form the baseline for β < 30. In all cases, σL performs worse than
σR . We evaluated several values for γ (from 0.90 to 0.99) but the
qualitative results did not change.

6.2 Efficiency
The index is implemented in C++17 and compiled with g++ 7.2.0
with the -O3 -march=native flags. For the performance test,
the SNT-index with a CSS-forest and only a single partition is
used. The FM-index is implemented using sdsl-lite’s integer-
alphabet Huffman-shaped wavelet tree implementation, and the
suffix array is computed with Yuta Mori’s sais-lite library [17].
The performance test ran on a server with AMD Opteron 6376
processors and 512 GiB RAM. For the processing time, the average
runtime in milliseconds of 6,942 queries is reported in Figure 9.

The temporal filter queries shown in Figure 9a perform very
similar to the baseline, with πC and πZC being slightly faster
than regular partitioning. The combination of πC and σL has
been omitted in the figure for reasons of scaling since the results
are in the range of 50 to 65 ms. In Figure 9b, it can be seen that the
average user filter query takes around 4 to 5 times longer than
the temporal filter queries; and with πMDM , queries only take

around twice as long since it applies non-temporal predicates
only selectively. SPQ only queries have much lower processing
times than do the other two query types, and all consistently out-
perform the baseline. The reason for their low processing times
can be seen in Figure 7c and Procedure 5. Since their sub-queries
tend to cover comparatively long paths, SPQ only queries need
to perform considerably fewer temporal index scans than the
other query types, which need to be split into more sub-queries
to fulfill the cardinality requirements. The average runtime of
πN with σL , which is between 30 to 35 ms, has been omitted in
Figure 9c. In all cases σL performed poorly in comparison to σR .

6.3 Temporal Partitioning
Figure 10 shows the effect of the temporal partitioning defined
in Section 4.3.2 on memory consumption and setup time. The
figures show the results for partition sizes of 7, 30, 90, and 365
days, resulting in a 138, 33, 11, and 3 partitions, respectively. We
also examine the case where only one partition is used (FULL).
Where applicable, the performance of the index with a B+-forest
(BT) is reported as well. For the in-memory B+-trees, we use
the btree_multimap from Google’s cpp-btree library [11]. Fig-
ure 10a shows the memory consumption of the different index
components, where Forest is thememory consumption of the CSS-
tree or B+-tree forest, respectively. The size of the forest is not
impacted by different partition sizes, but if the partition feature
is removed from the index, the memory saved in the tree leafs
by omitting the partition identifierw is around 300 MiB for our
data set. We can also see that the in-memory B+-tree forest has
slightly higher memory requirements than the CSS-forest. The
associative containerU used to enable user filtering (user) is also
not affected by the partitioning and takes up around 65 MB for
our data set. The two data structures that comprise the FM-index,
the wavelet tree (WT) and the segment counter (C), are affected
considerably by partitioning. The segment counter grows lin-
early with the number of partitions from less than 6 MB to nearly
600 MB since a separate segment count needs to be maintained
for every wavelet tree. The compression rate of the wavelet tree
degrades considerably with smaller trajectory strings, which for
the 7 day partitioning are only a few MBs per partition as op-
posed to several hundred in a single partition and it grows from
around 280 MB to over 4 GB. The memory requirements of the
time-of-day histograms required for the cardinality estimator are
affected considerably if a histogram is maintained for every non-
empty partition for every segment, and the memory required for
the histograms soon exceeds the amount required for the index.
Figure 10b shows the memory consumption for three different
bucket sizes h (1, 5, and 10 minutes).

The setup times for the index shown in Figure 10c are not
significantly affected by the different partition sizes or tree types
and always remain between 425 and 475 seconds. For the setup,
the trajectory and map data are loaded from disk.

6.4 Cardinality Estimator
Figure 10 shows the results for the cardinality estimator. In all
cases the results for partitioning method πZ with regular split-
ting and β = 20 are shown. Figure 11a shows the q-error of the
five different cardinality estimator modes. Here, 5,000 queries
are run, after which their cardinalities n are compared with es-
timate β̂ . The simplest estimate using just the ISA range is on
average off by an order of magnitude. The four other modes pro-
vide considerably more reliable estimates, with the histogram
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Figure 11: Cardinality Estimator

based methods performing better than the fast ones and the CSS-
tree based methods performing slightly better than their B+-tree
counterparts.

Since the selectivity estimates of the estimators might under-
estimate cardinalities of queries, a query might be split despite
covering a sufficient sample size. This may affect the quality of
the overall travel-time estimate. Figure 11c, however, shows that
the effects on quality are minuscule compared to the baseline
(ISA) and might even yield slight improvements in accuracy.

Figure 11b shows that partitioning as well as using the car-
dinality estimators can impact performance significantly. For
single, yearly, and quarterly partitions, the query performance
changes little, and use of the cardinality estimator reduces query
processing times by around 50%. For smaller partitions, however,
the effects of using the cardinality estimator diminish; and with
weekly partitioning, the B+-tree version of the index performs

worse with the estimators. The histogram-based CSS-tree version
(CSS-Acc) performs worse than the fast version (CSS-Fast), which
is most likely due to the amount of time-of-day histograms that
have to be scanned to obtain the selectivity seltod .

6.5 Implications
Overall our data shows that after a certain β is reached no sig-
nificant gains in accuracy are obtained by increasing it further
indicating smaller result sets obtained from fewer SPQs of long
paths provide more accurate estimates than larger result sets
obtained with short paths. One can also see that evaluating non-
temporal predicates comes with a considerable overhead and for
the user predicates provides no improvement in quality over the
purely temporal methods. If such methods are however applied
selectively (e.g. πMDM ) the performance overhead is mitigated
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and the accuracy improves. The naive regular splitting method
does not only achieve better accuracy but also has a considerably
shorter runtime, making it more suitable for a real-time queries.
The CSS-tree version of the index is as least as fast or faster than
the B+-tree-based version, but the improvements become less
noticeable when using the index in conjunction with a cardinal-
ity estimator. CSS-trees reduce the memory consumption of the
index as well and improve the accuracy of the cardinality estima-
tor with their efficient range lookups. We have also shown that
temporal partitioning of the index is viable in some cases, but
that using time-of-day histograms to estimate the selectivity of
periodic time intervals, despite slight improvements in estimator
accuracy and query performance, is hardly worth the memory
overhead for the evaluated data set. Additional experiments with
larger data sets may offer additional insight into this trade off,
but no larger trajectory data sets with user information were
available to us. Our results show that modifications aimed at
improving query performance often also improve the accuracy
of the estimates.

7 CONCLUSIONS & OUTLOOK
Travel-time estimations in road networks can be improved con-
siderable by utilizing large NCT data sets not only to provide
estimates on a segment level, but also for full paths in the network.
To our knowledge no current system supports these path-based
estimations which cannot rely on pre-computations. We there-
fore propose a system that computes travel-time estimations
based on trajectories selected at runtime and is able to improve
upon the accuracy of existing histogram-based methods by ex-
pressing them as a series of strict path queries and adapting their
predicates automatically to ensure accurate estimates. The SPQs
are processed by our adapted SNT-index which is able to retrieve
the traversal times for any path directly from the index. We have
shown that the queries can be processed fast enough for real-time
applications by utilizing specialized in-memory data structures
and cardinality estimators tailored to SPQs. We evaluate our
system with a large real-world trajectory data set and find that
optimizing queries for performance is not preclusive of accuracy.

Our proposed system leaves several avenues of future work.
The current greedy algorithm used for identifying a suitable parti-
tioning and splitting of an SPQ is based on fairly simple heuristics
and could be augmented by more sophisticated machine learn-
ing methods to improve accuracy of estimations. Approaches
that use different values of the parameter β for each sub-query,
e.g., smaller sample size requirements in rural zones, could be
evaluated. While the processing time of single query might not
considerably improve through parallelization the overall query
throughput of the system most likely could, making it suitable
for online routing applications that support a large number of
users. Our approach also does not fully address the issue of data
sparseness apart from providing relaxing the predicates if their
selectivity is too low. Several approaches to solving the problem
of data sparseness have been suggested [25, 30] and could be com-
bined with our system to provide time-dependent travel-time
estimates for paths where data is sparse.
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