
Reverse-Engineering ConjunctiveQueries from Provenance
Examples

Daniel Deutch

Tel Aviv University

danielde@post.tau.ac.il

Amir Gilad

Tel Aviv University

amirgilad@mail.tau.ac.il

ABSTRACT
The provenance of a query result details relevant parts of the in-

put data as well as the computation leading to each output tuple.

Multiple lines of work have studied the tracking and presenta-

tion of provenance, showing its effectiveness in explaining and

justifying query results. The willingness of application owners to

share provenance information for these purposes may however

be hindered by the resulting exposure of the underlying query

logic, which may be proprietary and confidential. We therefore

formalize and study the following problem: when a (small) subset

of the query results along with their provenance is given, what

information is revealed about the underlying query? Our model

is based on the provenance semiring framework and applies to

many previously proposed provenance models. We analyze two

flavors of the problem: (1) how many queries may be consistent

with a given provenance example? and (2) what is the complexity

of inferring a consistent query, or one that is a “best fit"? Our

theoretical analysis shows that there may be many (for some

models, even infinitely many in presence of self-joins) consistent

queries, yet we provide practically efficient algorithms to find

(best-fit) such queries. We experimentally show that the algo-

rithms are generally successful in correctly reverse engineering

queries, even when given only a few output examples and their

provenance.

1 INTRODUCTION
Provenance information is a form of meta-data that is associated

with query results, to describe the origin of each piece of data

and the computational process leading to its generation. In partic-

ular, provenance was shown to be useful as means of providing

explanations for query results and allowing for their validation

[6, 8, 12, 15, 16, 21, 23, 29, 30, 36]. On the other hand, query

owners who publish this information for their users may wish

to keep the original query private due to its proprietary logic

or due to criteria they wish to keep obfuscated. Thus, owners

may wonder if their query can be reverse engineered from a few

leaked outputs and their provenance w.r.t this query.

Example 1.1. Consider a bank whose clients must meet certain

criteria to have their loan requests approved: they must have

a positive credit score and one guarantor associated with the

private banking division to co-sign the loan. If a client is already

associated with the private banking division, she does not need

a guarantor.

The bank’s database contains the tables shown in Figures 1a,

1b, 1c, and 1d. The tables correspond to clients and their balance

(table B), pairs of possible guarantors and borrowers (table G),

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

clients with positive credit score (table PCS) and clients associ-

ated with the private banking division (table PB), respectively
(ignore the prov. column for now).

The following Conjunctive Query (CQ), Qr eal , captures the

bank’s loan conditions as specified above:

Qr eal (id1,b2) : −B(id1,b1),B(id2,b2),G(id2, id1),

PCS(id1), PB(id2)

It takes the balance of two clients, specifies that the second client

is the guarantor of the first, and makes sure that the borrowing

client has a positive credit score and that the guarantor is associ-

ated with the private banking division. The output is a table of

ids and balances where for each borrower id, we show how much

security the bank has for the loan, represented as the balance of

the guarantor.

The bank may wish to explain to each applicant the reason

underlying the answer to its own request, but to avoid exposure

of the general criteria, i.e. of the queryQr eal , since these criteria

are part of the bank’s confidential business strategy. If other

clients obtain some of these explanations, they may understand

the general criteria. The question then arises: given examples of

the output and explanations provided for multiple clients, can

one infer the underlying query?

In the above example, the answers and explanations can be for-

mally defined as output and provenance examples. This leads us

to define and study for first time on the modeling and algorithmic

challenges stemming from the problem of reverse engineering

queries from output and provenance examples.

Modeling. We propose a novel formal model for the problem,

as follows. We are given output tuples, and their provenance,

represented as instances of the previously proposed semiring

model [30]. We have chosen the semiring model due to its gener-

ality: as shown in [29], many previously proposed provenance

models may be captured via corresponding choices of semirings.

Intuitively, different semirings represent different granularities

of explanations given to users (see Example 1.2 in this section).

We then formally define what it means for a CQ to be consistent

with output examples and their provenance, thus defining the

query-by-provenance problem. Intuitively, we look for a CQ that,

when evaluated with respect to the input database does not only
yield the specified example tuples, but also its derivation of these
tuples (i.e. their provenance) is “consistent" with the prescription
made by the provenance. We do not expect the full provenance

to be provided (i.e. all explanations for a loan being approved);

instead, we define “consistency" of provenance in a less restric-

tive manner, by leveraging the inclusion property of provenance

from [29]. Last, we define the notion of inclusion-minimality to

capture the idea of the query not only matching the provenance,

but rather being a “best-fit" for it.

Theoretical Analysis. We then study in depth the query-by-

provenance problem, for five different choices of semirings, namely,

provenance polynomials [29, 30], trio provenance [36], positive

Series ISSN: 2367-2005 277 10.5441/002/edbt.2019.25

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.25

prov. ID1 Amount

a 1 1000

b 2 1000

c 3 300

(a) Balance B

prov. ID1 ID2

d 1 2

e 2 2

f 3 1

(b) Guarantor G

prov. ID1

h 1

i 2

(c) Positive Credit Score PCS

prov. ID

j 1

k 2

l 3

(d) Private Banking PB
A B N[X] B[X] T r io(X) Why(X) PosBool (X)
2 1000 2b2eik + badi j b2eik + badi j 2beik + badi j beik + badi j beik + badi j
1 300 acf hl acf hl acf hl acf hl acf hl

(e) Example Data and Provenance Via Different Semirings
Figure 1: Database Tables and Provenance Example

boolean expressions [32], and why-provenance [12]. Each semir-

ing corresponds to an explanation with a different granularity.

We next demonstrate two such provenance semirings, namely

provenance polynomials (N[X]) and why-provenance (Why(X)),

in the context of our running example.

Example 1.2. Reconsider the query Qr eal and the database in

Example 1.1. Tuples in the database are associated with anno-

tations (a to l), intuitively serving as the tuple identifiers (note

that the annotations are not part of the relations). Figure 1e

presents two output tuples of the query when evaluated on the

database. Consider for instance the first row describing the prove-

nance of the tuple (2, 1000) (the id of the borrower with the bal-

ance of the guarantor). The N[X] column shows the polynomial

2b2eik + badij, which consists of three monomials (a monomial

with coefficient x is considered as x monomials), each corre-

sponding to a different assignment of input tuples to the atoms of

Qr eal , or different explanations for approving the loan request of

the client with id 2. For instance, 2b2eik stems from two assign-

ments (implied by the coefficient 2) that use the tuple annotated

by b twice and the tuples annotated by e, i,k once. This expla-

nation immediately exposes the number of query atoms (5, as

is the number of annotations in the monomial) and the number

atoms from each relation. In the context of loan conditions, this

explanation exposes that a borrower can be her own guarantor

(from the double use of the tuple b). In contrast, in theWhy(X)
model, we represent each explanation as the set of tuples that
contributed to the formation of the output tuple, thus “dropping”

both coefficients and exponents: beik + badij. Considering this
kind of explanation, we no longer know the number of query

atoms and the number of atoms from each relation. In particular,

we no longer expose that a client associated with the private

banking division does not need a guarantor.

We study two factors that determine to what extent does a

set of output examples and their provenance reveal a hidden

underlying query, as follows. The first factor is the number of

possible consistent queries, and the second is the complexity of

reverse-engineering a consistent query. In more detail, when the

provenance is given in N[X] or B[X], we provide a bound on

the number of consistent queries which is exponential in the

sum of arities of all relations whose tuples participate in a single

provenance monomial, and provide an example where there are

indeed exponentially many consistent queries. We then show

that finding a consistent query w.r.t N[X]\B[X]-examples is NP-

complete in the number of attributes of the output tuple, and we

design a practically efficient algorithm.

Reconstructing queries from examples of why, trio or PosBool

provenance is more cumbersome: there may be infinitely many

consistent and inclusion-minimal queries that lead to the same

provenance (with different exponents, due to self-joins, that are

abstracted away in these models). To this end, we prove a small

world property, namely that if a consistent query exists, then

there exists such query of size bounded by some parameters of

the input. The bound by itself does not suffice for an efficient

algorithm (trying all detailed expressions of sizes up to the bound

would be inefficient), but we leverage it in devising an efficient al-

gorithm for these provenance semirings. The algorithm is similar

to the N[X] and B[X] case but also includes an option to expand

the monomials, gradually, generating self joins when necessary.

Experimental Analysis. We have also conducted an experimen-

tal study of our algorithms, assessing their ability to reverse en-

gineer the correct TPC-H [40] queries as well as highly complex

join queries presented as a baseline in [43]. We have executed the

queries while tracking provenance, and then showed our algo-

rithms randomly sampled portions of the output and provenance.

We report how many examples were required for the algorithms

to correctly identify the underlying query, and what were the

differences between the actual and inferred query when incorrect.

In the vast majority of the cases, our algorithms converged to

the underlying query after having viewed only a small number

of examples; when this was not the case, the inferred query was

typically similar to the actual one, e.g. containing additional con-

stants due to the same value recurring in the viewed examples.

Last, further experiments indicate the computational efficiency

of our algorithms. Our experiments show that, although theoret-

ically provenance examples may correspond to a large or even

infinite number of queries, in practice, publishing provenance

information, even for a small number of output tuples, reveals

the full logic of the query. Hence, in this respect, there is no

advantage in publishing a less detailed form of provenance.

2 RELATEDWORK
Reverse Engineering Queries from Partial/Full Output. There is

a large body of literature on learning queries from examples, in

different variants. A first axis of these variants concerns learning

a query whose output precisely matches the example (e.g. [33,

41, 43]), versus one whose output contains the example tuples

and possibly more (e.g. [33–35, 38] and the somewhat different

problem in [44]). The first is mostly useful e.g. in a use-case where

an actual query was run and its result, but not the query itself,

is available. This may be the case if e.g. the result was exported

and sent. The second, that we adopt here, is geared towards

examples provided manually by a user, who may not be expected

to provide a full account of the output. Another distinguishing

factor between works in this area is the domain of queries that

are inferred; due to the complexity of the problem, it is typical

(e.g. [10, 35, 43]) to restrict the attention to join queries, and

many works also impose further restrictions on the join graph

[17, 41]. We do not impose such restrictions and are able to infer

278

complex CQs. Last, there is a prominent line of work on query-

by-example in the context of data exploration [3, 9, 10, 24, 37].

Here users typically provide an initial set of examples, leading to

the generation of a consistent query (or multiple such queries);

the queries and/or their results are presented to users, who may

in turn provide feedback used to refine the queries, and so on. In

our settings, the number of examples required for convergence

to the actual intended query was typically small. In cases where

more examples are needed, an interactive approach is expected

to be useful in our setting as well. Works along the lines of

[2, 7, 42] explored the problem of reverse engineering queries

from positive and negative examples and the general complexity

of different variations of the problem.

The fundamental difference between our work and previous

work in this field in this area is the assumed input - output

examples and provenance information (in particular no foreign

keys are known; in fact, we do not even need to know the entire

input database, but rather just tuples used in explanations).While
our approach requires more input, it greatly reduces the search
space for the query. The advantage becomes more significant as
the database size increases and the schema becomes more complex.
Furthermore, we are able to leverage the provenance information

and reconstruct the original query, or a very similar one (1) in a

highly complex setting where the underlying queries includes

multiple joins and self-joins, (2) with only very few examples (up

to 5 were typically sufficient to obtain over 90% recall, and less

than 20 in all but one case were sufficient to converge to the actual

underlying query), and (3) in split-seconds for a small number

of examples, and in 1.3 seconds even with 500 examples. No

previous work, to our knowledge, has exhibited the combination

of these characteristics.

Data Provenance. Data Provenance has been extensively stud-

ied, for different formalisms including relational algebra, XML

query languages, Nested Relational Calculus, and functional pro-

grams (see e.g. [11, 15, 25, 26, 28, 30, 36, 39]). In contrast to these

lines of work that focus on provenance tracking and usages, we

have focused on learning queries from output examples and their

partial provenance, based on the semiring framework. This in-

cludes quite a few of the models proposed in the literature, but

by no means all of them. Investigating query-by-provenance for

other provenance models is an intriguing direction for future

work.

The high-level question of what can be learned from prove-

nance has been extensively studied in the context of workflow

privacy, e.g. [13, 18–20, 27]. In contrast, we do not focus on black-

box modules, but rather on detailed fine-grained provenance

obtained from queries. This makes the technical results of these

works inapplicable to our setting. [14] describes a general frame-

work for provenance security, but, for the relational database

case, focuses on what parts of the data are disclosed, while the
underlying query is assumed to be known.

Last, we note that in [4] we have leveraged provenance in-

formation for designing a user-interactive SPARQL interface,

including a component of inferring SPARQL queries from exam-

ples and provenance. There are many differences in the model,

and consequently none of our results here follow from [4]. In

particular, our focus in [4] was on single output nodes which

if translated to the relational settings means k = 1 (recall that

k is the output arity); in that setting it is consequently PTIME

to find a consistent query (compare to our NP-hardness result).

SPARQL is also bounded to 2 attributes per relation, implying that

r = 2n, as opposed to the relational setting where the number of

attributes is not necessarily 2. Indeed, a prominent challenge in

our experimental study stemmed from the number of variables,

in particular for the TPC-H queries, where n << r .

3 PRELIMINARIES
3.1 Conjunctive Queries
We will focus in this paper on CQs (see e.g. [31]). Fix a database

schema S with relation names {R1, ...,Rn } over a domain C of

constants. Further fix a domainV of variables. A CQ Q over S

is an expression of the form T (®u) : −R1(®v1), . . . ,Rl (®vl) where
T is a relation name not in S. For all 1 ≤ i ≤ n, ®vi is a vector

of the form (x1, . . . ,xk) where ∀1 ≤ j ≤ k . x j ∈ V ∪ C. T (®u)
is the query head, denoted head(Q), and R1(®v1), . . . ,Rl (®vl) is
the query body and is denoted body(Q). The variables appearing
in ®u are called the head variables of Q , and each of them must

also appear in the body. We useCQ to denote the class of all CQs,

omitting details of the schema when clear from context.

We next define the notion of derivations for CQs. A derivation

α for a query Q ∈ CQ with respect to a database instance D is a

mapping of the relational atoms of Q to tuples in D that respects

relation names and induces a mapping over arguments, i.e. if

a relational atom R(x1, ...,xn) is mapped to a tuple R(a1, ...,an)
then we say that xi is mapped to ai (denoted α(xi) = ai). We

require that a variable xi will not be mapped to multiple distinct

values, and a constant xi will be mapped to itself. We define

α(head(Q)) as the tuple obtained from head(Q) by replacing each
occurrence of a variable xi by α(xi).

Example 3.1. Reconsider our example query Qr eal presented

in Example 1.2 (the database is depicted in Figures 1a, 1b, 1c, and

1d). Now, consider the result tuple (1, 300). It is obtained through

the derivation that maps the atoms to six distinct tuples from the

database to the three atoms (in order of the atoms). These are the

tuples annotated by a, c, f, h, l. The tuple (2, 1000) is obtained
through three derivations: the first (second and third) maps the

tuple annotated b (b) to the first atom, the tuple annotated by a
(b) to the second atom, the tuple annotated by d (e) to the third

atom, the tuple annotated by i (i) to the fourth, and j (k) to the

remaining atom.

3.2 Provenance
The tracking of provenance to explain query results has been

extensively studied in multiple lines of work, and [29] has shown

that different such models may be captured using the semiring
approach (originally proposed in [30]). We next overview several

aspects of the approach that we will use in our formal framework.

Commutative Semirings. A commutative monoid is an algebraic
structure (M,+M , 0M) where +M is an associative and commuta-

tive binary operation and 0M is an identity for +M . A commutative
semiring is then a structure (K ,+K , ·K , 0K , 1K) where (K ,+K , 0K)
and (K , ·K , 1K) are commutative monoids, ·K is distributive over

+K , and a ·K 0K = 0 ·K a = 0K .

Annotated Databases. Wewill capture provenance through the

notion of databases whose tuples are associated (“annotated")

with elements of a commutative semiring. For a schema S with

relation names {R1, ...,Rn }, denote by Tup(Ri) the set of all

(possibly infinitely many) possible tuples of Ri .

Definition 3.2 (adapted from [30]). A K-relation for a rela-

tion name Ri and a commutative semiring K is a function R :

279

Tup(Ri) 7→ K such that its support defined by supp(R) ≡ {t |
R(t) , 0} is finite. We say that R(t) is the annotation of t in R. A
K-database D over a schema {R1, ...,Rn } is then a collection of

K-relations, over each Ri .

Intuitively a K-relation maps each tuple to its annotation.

We will sometimes use D(t) to denote the annotation of t in its

relation in a database D. We furthermore say that a K-relation is

abstractly tagged if each tuple is annotated by a distinct element

of K (intuitively, its identifier).

Provenance-Aware Query Results. We then define CQs as map-

pings from K-databases to K-relations. Intuitively we define the

annotation (provenance) of an output tuple as a combination

of annotations of input tuples. This combination is based on

the query derivations, via the intuitive association of alternative

derivations with the semiring “+" operation, and of joint use of

tuples in a derivation with the “·" operation.

Definition 3.3 (adapted from [30]). Let D be a K-database and
let Q ∈ CQ , with T being the relation name in head(Q). For
every tuple t ∈ T , let αt be the set of derivations of Q w.r.t. D
that yield t . Q(D) is defined to be a K-relation T s.t. for every t ,
T (t) =

∑
α ∈αt

∏
t ′∈Im(α) D(t

′). Im(α) is the image of α .

Summation and multiplication in the above definition are done

in an arbitrary semiring K . Different semirings give different

interpretations to the operations [29].

Provenance Polynomials (N[X]). The most general form of

provenance for positive relational algebra (see [30]) is the semir-
ing of polynomials with natural numbers as coefficients, namely

(N[X],+, ·, 0, 1). The idea is that given a set of basic annotations

X (elements of which may be assigned to input tuples), the out-

put of a query is represented by a sum of products as in Def. 3.3,

with only the basic equivalence laws of commutative semirings

in place. Coefficients serve in a sense as “shorthand" for multiple

derivations using the same tuples, and exponents as “shorthand"

for multiple uses of a tuple in a derivation. In Example 3.1, we

see that a tuple may have several derivations, serving as the ex-

planations for it. The two monomials are separated by a + sign,

as opposed to a single monomial. We address this as part of our

solution presented in Section 5.

Many additional forms of provenance have been proposed in

the literature, varying in their level of abstraction and the details

they reveal on the derivations. [29] showed that these can be

captured by congruence relations. Formally, consider the function

fK : N[X] 7→ N[X] as a congruence relation defined by P1 ≡ P2
if fK (P1) = fK (P2), where fK varies based on the semiring K .
We exemplify these notions using our running example of the

third row in Figure 1e.

Boolean Provenance Polynomials (B[X]). The boolean prove-

nance semiring, (B[X],+, ·, 0, 1), is the semiring of polynomials

over variables X , where coefficients are either 1 or 0 (intuitively

corresponding to boolean coefficients). We can think of the B[X]
semiring as theN[X] semiring after applying the homomorphism

fB[X] : N[X] 7→ N[X] which maps all non-zero coefficients to 1.

In the third row of our example, the polynomial 2b2eik + badij
becomes b2eik + badij after mapping the two coefficients 2, 1 to

1.

In the context of our loan example, if we were to obtain the

provenance as N[X] or B[X], we could infer that a client can get

a loan without needing a guarantor.

Trio. This semiring can again be modeled as the image of the

surjective homomorphism ftr io : N[X] 7→ N[X] dropping all

exponents in the provenance polynomial. Consider again the

third row of our example. For instance, the polynomial 2b2eik +
badij becomes 2beik + badij after the function ftr io maps all

exponents to 1.

Why. A natural approach to provenance tracking, referred

to as why-provenance [12], capturing each derivation as a set
of the annotations of tuples used in the derivation. The overall

why-provenance is thus a set of such sets. As shown (in a slightly

different way) in [29], this corresponds to using provenance poly-

nomials but without “caring" about exponents and coefficients.

Formally, consider the function fwhy : N[X] 7→ N[X] that drops
all coefficients and exponents of its input polynomial. Using our

example again, the polynomial 2b2eik + badij is converted to

beik + badij under fwhy .

Positive Boolean Expressions. This is a semiring of positive

boolean expressions over variables X , i.e., the expressions are
composed of disjunction, conjunction, and constants which are

true or false. Formally, we define fPosBool : N[X] 7→ N[X]
that dropping all exponents and coefficients in the provenance

polynomial, and considers + as ∨ and · as ∧, i.e., allowing for the

absorption of monomials. For the purpose of the demonstration,

consider the abstract polynomial 2b2eik +baeik . Under fPosBool
it is converted to beik since all exponents and coefficients, and

the monomial baeik are absorbed into beik ((b ∧ b ∧ e ∧ i ∧ k) ∨
(b ∧ a ∧ e ∧ i ∧ k) ≡ b ∧ e ∧ i ∧ k).

In our running example, trio, why and PosBool provenance

reveals less information about the loan conditions, e.g., who is

the guarantor of the client with id 2 in Figure 1e.

As we demonstrated, each provenance model represents the

provenance in a specific level of detail, and all models other

than N[X] incur some loss of information in the provenance

description.

4 QUERY-BY-PROVENANCE
We define in this section the problem of learning queries from

examples and their provenance. We first introduce the notion of

such examples, using provenance.

Definition 4.1 (Examples with provenance). Given a semiring

K , a K-example is a pair (I ,O) where I is an abstractly-tagged

K-database called the input andO is aK-relation called the output.

Intuitively, annotations in the input only serve as identifiers,

and those in the output serve as explanations – combinations of

annotations of input tuples contributing to the output.

We next define the notion of a query being consistent with

a K-example. In the context of query-by-example, a query is

consistent if its evaluation result includes all example tuples

(but maybe others as well). We resort to [29] for the appropriate

generalization to the provenance-aware settings:

Definition 4.2. Let (K ,+K , ·K , 0, 1) be a semiring and define

a ≤K b iff ∃c . a +K c = b. If ≤K is a (partial) order relation then

we say that K is naturally ordered.

Given two K-relations R1,R2 we say that R1 ⊆K R2 iff
∀t .R1(t) ≤K R2(t).

Note that if R1 ⊆K R2 then in particular supp(R1) ⊆ supp(R2),
so the notion of containment w.r.t. a semiring is indeed a faith-

ful extension of “standard" relation containment. In terms of

280

provenance, we note that for N[X] andWhy(X), the natural or-
der corresponds to inclusion of monomials: p1 ≤ p2 if every

monomial in p1 appears in p2. The order relation has different

interpretations in other semirings.

We are now ready to define the notion of consistency with

respect to a K-example, and introduce our problem statement.

Intuitively, we look for a query whose output is contained in the

example output, and for each example tuple, the provenance is

“reflected” in the computation of the tuple by the query.

Definition 4.3 (Problem Statement). Given a K-example (I,O)

and a CQ Q we say that Q is consistent with respect to the

example ifO ⊆K Q(I). QUERY-BY-PROVENANCE is the problem

of finding a consistent query for a given K-example.

The above definition allows multiple CQs to be consistent

with a given K-example. This is in line with the conventional

wisdom in query-by-example. Throughout the paper we will

always assume that the provenance is non-empty, since if it is

empty, we return to the setting of the classic query-by-example

problem.

A consistent query can be very general, as we demonstrate in

the following example. A natural desideratum (employed in the

context of “query-by-example"), is that the query is “inclusion-

minimal". This notion extends naturally to K-databases.

Definition 4.4. A consistent query Q (w.r.t. a given K-example

Ex) is inclusion-minimal if for every queryQ ′ such thatQ ′ ⊊K Q
(i.e. for every K-database D it holds thatQ ′(D) ⊆K Q(D), but not
vice-versa), Q ′ is not consistent w.r.t. Ex .

We next demonstrate the notion of consistent and inclusion-

minimal queries with respect to a given K-example.

Example 4.5. We now treat Figure 1e as an N[X]-example.

Consistent queries must derive the example tuples in the ways

specified in the polynomials (and possibly in additional ways).

The queryQr eal from Example 1.2 is of course a consistent query

with respect to it, since it generates the example tuples and the

provenance of each of them according toQr eal is the same as that

provided in the example. Qr eal is not the only consistent query,

since the following query, Qдeneral (which simply performs a

Cartesian product), is also consistent:

Qдeneral (id1,b2) : −B(id1,b1),B(id2,b2),G(id3, id4),

PCS(id5), PB(id6)

However, Qr eal is also an inclusion-minimal query, as opposed

to Qдeneral since Qr eal ⊊ Qдeneral .

In the following section we study the complexity of the above

computational problems for the different models of provenance.

Wewill analyze the complexity with respect to the different facets

of the input, notations for which are provided in Table 1.

Table 1: Notations
Ex K-example

I Input database

O Output relation and its provenance

m Total number of monomials

k Number of attributes of the output relation

n (Maximal) Number of elements in a monomial

r Sum of arities in the atoms of a query body

d Number of distinct relation names in the provenance

We list our results for the QUERY-BY-PROVENANCE problem

in Table 2. The columns of the table list: the bound for the num-

ber of possible consistent queries for each of the semirings, the

maximal length of a consistent query if one exists, and the lower

and upper bounds of finding a consistent query. Each result has

a reference to the relevant proposition. Some of the proofs are

omitted for brevity and can be found in the full version [22].

5 LEARNING FROM N[X], B[X]-EXAMPLES
We start our study with the case where the given provenance

consists of N[X] expressions. This is the most informative form

of provenance under the semiring framework, and thus the most

informative explanation. In particular, we note that given the

N[X] provenance, the number of query atoms (and the relations

occurring in them) are trivially identifiable. What remains is the

choice of variables to appear in the query atoms (body and head),

and as a consequence, decide how to order the tuples in each

monomial.

We first bound the number of possible consistent queries:

Proposition 5.1. For every choice of r ,k ∈ N, every N[X]-
example has at mostO(Br rk2r) consistent queries, where Br is the
Bell number of r . Furthermore, there exists anN[X]-example whose
output tuples have arity of k , and monomials have arity of r , for
which there exists exponentially many (in both r and k) consistent
queries.

Proof. We start by analyzing the case for boolean queries, i.e.,

k = 0. Consider the set of indexes {1, . . . , r } in the query body.

Every partition of this set of indexes defines a different consistent

query, since the partition determines exactly which indexes will

have the same variable, assuming we impose an order on the

query atoms (e.g., the queryQ() : −R(x ,x ,x),R(x ,x ,x),T (x ,y) is
determined by the partition {1, 2, 3, 4, 5, 6, 7}, {8}). We can thus

say that the maximum number of consistent boolean queries w.r.t

an N[X]-example is the number of partitions of the set {1, . . . , r }
into disjoint non-empty subsets. This number is the Bell number

Br . Each subset of the partition can then either be instantiated

with a constant or with a distinct variable. As there can be at most

r subsets in the partition, the number of options is bounded by

2
r
. In the general case, when queries are not boolean but have k

output attributes, we further have to choose which variables will

be projected to the head. Since the maximum number of unique

variables in the query body is r , there are at most rk options

to do so. Therefore the number of consistent queries can be

bounded by Br r
k
2
r
. For the second part of the claim, consider an

N[X]-example for which a query with a single constant at every

index, both in the head of the query and its body, is consistent

(e.g. Q(1, 1) : −R(1, 1, 1),R(1, 1, 1),T (1, 1)). In this case, replacing

every subset of 1s with different variables, will also result in a

consistent query. As there are exponentially many subsets of

attributes to the query, there are exponentially many consistent

queries w.r.t the N[X]-example. □

We have shown a bound for the number of different consistent

queries, but it is also important to note that there can be multiple

inclusion-minimal queries. It is easy to show an example where

there are may be exponentially many inclusion-minimal queries.

We next show an upper bound

281

Table 2: Results for the QUERY-BY-PROVENANCE Problem

Semiring

Number of

consistent queries

Small world

query length

Lower bound Upper bound

N[X]
O(Br r

k
2
r) (Prop. 5.1) n (Trivial) NP-complete in k (Prop. 5.4) O(n2km + krnk) (Prop. 5.2)

B[X]

Trio(X)
∞ (Prop. 6.1) k + d(n − 1) (Prop. 6.5)

Find minimal sized query is

NP-complete in k (Prop. 6.4)

O(nO (k)mkr) (Prop. 6.7)PosBool(X)
Why(X)

5.1 An Efficient Algorithm for Finding a
Query

Although the number of query atoms is known from the given

example, finding a consistent query efficiently is non-trivial. An

important observation in this respect is that we can focus on

finding atoms that “cover" the attributes of the output relation

(i.e. that include the right values of the output tuples, in the

right order), and the number of required such atoms is at most k
(the arity of the output relation). We may need further atoms so

that the query realizes all provenance tokens (eventually, these

atoms will also be useful in imposing e.g. join constraints), and

this is where care is needed to avoid an exponential blow-up

with respect to the provenance size. To this end, we observe that

we may generate a “most general" part of the query simply by

generating atoms with fresh variables, and without considering

all permutations of parts that do not contribute to the head. This

will suffice to guarantee a consistent query, but may lead to the

generation of a too general query; this issue will be addressed in

Section 5.2.

Algorithm 1: FindConsistentQuery (N[X])

input :An N[X] example Ex = (I ,O)
output :A consistent query Q or an answer that none

exists

1 Let (t1,M1), ..., (tm ,Mm) be the tuples and

corresponding provenance monomials of O ;

2 (V ,E) ← BuildLabeledGraph((t1,M1), (t2,M2)) ;

3 foreach consistent matchings E ′ ⊆ E s.t. |E ′ | ≤ k do
4 if ∪e ∈E′label(e) = {1, . . . ,k} then
5 Q ← BuildQueryFromMatch(E ′,Ex) ;

6 foreach 1 < j < m do
7 if not consistent(Q, tj ,Mj) then
8 Go to next matching ;

9 return Q ;

10 Output “No consistent query exists";

We next detail the construction, shown in Algorithm 1. We

separate (line 1) monomials so that each (ti ,Mi) is a tuple along

with a single monomial of its provenance expression. We then

start by picking two tuples and monomials (see below a heuristic

for making such a pick) and denote the tuples by t1 and t2 and
their provenance by M1 = a1 · ... · an and M2 = b1 · ... · bn
respectively. Our goal is to find all “matches" of parts of the
monomials so that all output attributes are covered. To this end,

we define (line 2) a full bipartite graphG = (V1∪V2,E)where each
ofV1 andV2 is a set ofn nodes labeled bya1, . . . ,an andb1, . . . ,bn
respectively. We also define labels on each edge, with the label

of (ai ,bj) being the set of all attributes that are covered by ai ,bj ,
in the following sense: an output attribute A is covered if there

is an input attribute A′ whose value in the tuple corresponding

to ai (bj), matches the value of the attribute A in t1 (respectively
t2).

We then (lines 3-4) find all matchings, of sizek or less, that cover
all output attributes; namely, that the union of sets appearing

as labels of the matching’s edges equals {1, ...,k}. As part of
the matching, we also specify which subset of the edge label

attributes is chosen to be covered by each edge (the number of

such options is exponential in k). It is easy to observe that if such
a cover (of any size) exists, then there exists a cover of size k or

less. We further require that the matching is consistent in the

sense that the permutation that it implies is consistent.

For each such matching we generate (line 5) a “most general

query" Q corresponding to it, as follows. We first consider the

matched pairs ai ,bj one by one, and generate a query atom for

each pair. This is done by assigning the same variable to the head

attribute A covered by the edge and to the attribute covering

it in the new atom A′. Note that the query generation is done

here based only on k pairs of provenance atoms, rather than all

n atoms, since we only examine the k edges of the matching.

To this end, we further generate for each provenance token ai
that was not included in the matching a new query atom with

the relation name of the tuple corresponding to ai , and fresh

variables. Intuitively, we impose minimal additional constraints,

while covering all head attributes and achieving the required

query size of n.
Each such query Q is considered as a “candidate", and its con-

sistency needs to be verified with respect to the other tuples

of the example (line 7). One way of doing so is simply by eval-

uating the query with respect to the input, checking that the

output tuples are generated, and their provenance includes those

appearing in the example. As a more efficient solution, we test

for consistency of Q with respect to each example tuple by first

assigning the output tuple values to the head variables, as well

as to the occurrences of these variables in the body of Q (by our

construction, they can occur in at most k query atoms). For query

atoms corresponding to provenance annotations that have not

participated in the cover, we only need to check that for each

relation name, there is the same number of query atoms and

of provenance annotations relating to it. A subtlety here is in

handling coefficients; for the part of provenance that has par-

ticipated in the cover, we can count the number of assignments.

This number is multiplied by the number of ways to order the

other atoms (which is a simple combinatorial computation), and

the result should exceed the provided coefficient.

Proposition 5.2. Given a N[X]-example, Algorithm 1 finds a
consistent query if one exists.

Choosing the two tuples. For correctness and worst case com-

plexity guarantees, any choice of tuples as a starting point for

the algorithm (line 1) would suffice. Naturally, this choice still

affects the practical performance, and we aim at minimizing the

282

number of candidate matchings. A simple but effective heuristic

is to choose two tuples and monomials for which the number

of distinct values (both in the output tuple and in input tuples

participating in the derivations) is maximal.

b

b

e

i

k

a

c

f

h

l

M1 M2

{2}

{1}

(a) Matching A

b

a

d

i

j

a

c

f

h

l

M1 M2

{1}

{2}

(b) Matching B
Figure 2: Matchings for Example 5.3

Example 5.3. Reconsider our running example depicted in Fig-

ure 1e. Assume that the monomials b2eik and ac f hl were picked
for graph generation. Each monomial forms a side in the bipartite

graph. The algorithm now traverses all partial matchings of size

≤ 2, and checks whether aligning two tuples that are connected

by an edge, one below the other, forms a vector of constants

that also appears in an attribute of the two corresponding output

tuples. Figure 2a depicts a matching of size 2 which consists of

the edges (b,a), (b, c) where the first attribute of input tuples b
and a covers the first output attribute (aligning the tuple b below

the tuple a creates the constants vector

(
2

1

)
that appear in the

first attribute of the output tuple), and the second attribute of

input tuples b and c covers the second output attribute (aligning

the tuple b below the tuple c creates the constants vector
(
1000

300

)
that appears in the second attribute of the output tuple).

Generating a query based on this matching results in the query

Qдeneral from Example 4.5, since the first and second projected

variables have been set to the first and third attributes of the most

general atoms B(id1,b1) and B(id2,b2), respectively and the other
atoms remain most general with no joins and projected attributes.

The algorithm now verifies the consistency of Qдeneral with re-

spect to the other monomials by assigning the output tuple to

the head, e.g. assigning id1 and b2 to 2 and 1000 (for the output

tuple (2, 1000)), and returns Qдeneral . There are other valid par-

tial matchings of these two tuples that will yield a somewhat

different query toQдeneral . If we were to choose the monomials

badij and ac f hl , we would have the different matching shown

in Figure 2b (where the edges (b,a) and (a, c) cover the head

attributes). Note that, in general, a single edge can cover several

attributes of the output.

Qдeneral is a very general query, and is probably not the

original one. We will adapt our solution so that it finds a more

“precise” query, i.e., an inclusion-minimal query (Definition 4.4

in Section 4) in the next subsection.

Complexity. The algorithm’s complexity is O(n2km + krnk):

at most nk matchings are considered; for each matching, a single

query is generated, and consistency is validated inO(nk) for each
of them example tuples. Furthermore, for each of the matchings,

we scan the attributes of the tuples in the matching inO(kr). The
exponential factor only involves k , which is much smaller than n
andm in practice. Can we do even better? We can show that if

P , NP , there is no algorithm running in time polynomial in k .

Proposition 5.4. Deciding the existence of a consistent query
with respect to a given N[X]-example is NP-complete in k .

5.2 Achieving a tight fit
To find inclusion-minimal queries, we next refine Algorithm 1 as

follows. We do not halt when finding a single consistent query,

but instead find all of those queries obtained for some match-

ing. For each consistent query Q , we examine queries obtained

from Q by (i) equating variables and (ii) replacing variables by

constants where possible (i.e. via an exact containment mapping

[1]). We refer to both as variable equating. To explore the pos-

sible combinations of variable equatings, we use an algorithm

inspired by data mining techniques (e.g., [5]): in each iteration,

the algorithm starts from a minimal set of variable equatings that

was not yet determined to be (in)consistent with the example.

E.g., in the first iteration it starts by equating a particular pair of

variables. The algorithm then tries, one-by-one, to add variable

equatings to the set, while applying transitive closure to ensure

the set reflects an equivalence relation. If an additional equating

leads to an inconsistent query, it is discarded. Each equatings

set obtained in this manner corresponds to a homomorphism h
over the variables of the query Q , and we use h(Q) to denote the

query resulting from replacing each variable x by h(x).
Importantly, by equating variables or replacing variables by

constants we only impose further constraints and obtain no new

derivations. In particular, the following result holds, as a simple

consequence of Theorem 7.11 in [29] (note that we must keep the

number of atoms intact to be consistent with the provenance):

Proposition 5.5. Let Q be a CQ over a set of variablesV . Let
h : V 7→ V ∪ C be a homomorphism. For every N[X]-example
Ex , if Q is not consistent with Ex , then neither is h(Q).

We can model the homomorphism process between queries,

achieved by variable equating, as a lattice whose leaves represent

a single variable equating in the query and its top element is the

query with a single variable in all atoms. Every variable equating

implies a move from the current lattice node to a parent of that

node (see next an illustration and example). By this model, the

proposition above actually determines that if a query represented

by a node in the lattice is consistent, then all of the queries

represented by the descendants of this node are also consistent

and furthermore, all queries represented by the frontier of the

lattice are consistent. We next use these observations to establish

an algorithm for finding an inclusion-minimal query.

Consequently, the algorithm finds a maximal set of variable
equatings that is consistent with the query, by attempting to

add at most O(r2) different equatings, since there are
(r
2

)
pairs

of variables (r is the sum of arities of the atoms in the body of

Q , see Table 1). We record every query that was found to be

(in)consistent – in particular, every subset of a consistent set of

equatings is also consistent – and use it in the following iterations

(which again find maximal sets of equatings).

Checking for consistency. This check may be done very effi-

ciently for query atoms that contribute to the head, since we only

need to check that equality holds for the provenance annotations

assigned to them. For other atoms we no longer have their consis-

tency as a given and in the worst case we would need to examine

all matchings of these query atoms to provenance annotations.

Example 5.6. Reconsider our running example queryQдeneral
in Example 4.5. A part of the lattice is depicted in Figure 3. The

algorithm starts by considering individually each pair of variables

as well as pairs of variables and constants co-appearing in the

two output tuples or in the tuples used in their provenance. In our

example, when considering the lattice element {id1 = id4}, the

283

{{id1 = id4}, {id1 = id5}, {id1 = id6}}

{{id1 = id4}, {id1 = id5}}

{id1 = id4} {id1 = id5} {id1 = id6} {id2 = id6}

Figure 3: Part of the lattice in Example 5.6

algorithm will find that the query Qid1=id4 (i.e. Qдeneral after

equating id1 and id4), is still consistent. Next, the algorithm will

find that equating id1, id5 in Qid1=id5 also yields a consistent

query so it will proceed with Qid1=id4,id1=id5 . However, if we

try to add the equality id1 = id6, the consistency check will

discover that Qid1=id4,id1=id5,id1=id6 is not consistent anymore,

so we will not continue on this path of the lattice (marked with a

red “x” in Figure 3). Of course, multiple steps may yield the same

equivalence classes in which case we perform the computation

only once. The resulting query is Qr eal shown in Example 1.2.

Any further step with respect to Qr eal leads to an inconsistent

query, and so it is returned as output.

Proposition 5.7. Given a consistent query w.r.t anN[X]-example,
the procedure finds an inclusion-minimal query.

For each consistent query found by Algorithm 1, there may be

multiple inclusion-minimal queries obtained in such a manner

(though the number of such queries observed in practice was not

very large, see Section 7). If we wish to provide a single query as

output, when multiple inclusion-minimal queries are obtained,

a natural heuristic that we employ is to prefer a query with the

least number of unique variables (this was implemented in our

experimental study).

Adapting the Solution for B[X]. In the B[X] semiring, expo-

nents are kept but coefficients are not, so we can adapt the al-

gorithm of N[X] (Algorithm 1), omitting the treatment of coef-

ficients. In N[X], for the part of the provenance that has partic-
ipated in the cover, we count the number of assignments and

multiply by the number of ways to order the other atoms (which

is a simple combinatorial computation), and verify that the result

exceeds the provided coefficient. In B[X], we remove this step of

the algorithm.

6 LEARNING FROMWHY, TRIO, AND
POSBOOL EXAMPLES

We next study the problem of learning queries fromWhy(X)-
examples. This semiring is less detailed than N[X] and thus often
easier to store and present, but is in turn more challenging for

query inference. We will adapt the solution to the Trio(X) and
PosBool(X) semirings.

A natural approach is to reduce the problem of learning from

aWhy(X)-example to that of learning from an N[X]-example

(note that aWhy(X)-example without self-joins is equivalent

to an N[X]-example). Recall that the differences are the lack of

coefficients and the lack of exponents. The former is trivial to

address (see solution for B[X] in the previous section), but the

latter means that we do not know the number of query atoms. In

particular, forWhy(X)-examples we have:

Proposition 6.1. There exists aWhy(X)-example with an infi-
nite number of non-equivalent consistent queries.

A first plausible idea is to consider theWhy(X)-example as an

N[X]-example, i.e., assume the number of query atoms is equal

to the number of tuples in the largest monomial of the example.

Surprisingly, we cannot be sure that this suffices:

Proposition 6.2. There exists aWhy(X) example for which
there is no consistent CQ with n atoms (recall that n is the length
of the largest monomial, see Table 1), but there exists a consistent
CQ with more atoms.

prov. A B C

a 1 2 3

b 3 4 5

c 6 7 8

d 7 6 8

(a) Relation R

A B C prov.

1 1 5 a · b
6 7 8 c · d

(b)Why(X) Example
Figure 4: Source andWhy(X) Example for Prop. 6.2

Proof. Let Ex denote the example depicted in Figure 4. A con-

sistent query with two atoms can impose two possible orderings

on the tuples in each monomial. We show that both orderings do

not form a consistent query. Consider the first ordering of the tu-

ples. A consistent query needs to be satisfied by the assignments:

Q(1, 1, 5) : −R(1, 2, 3),R(3, 4, 5)

Q(6, 7, 8) : −R(6, 7, 8),R(7, 6, 8)

But no query can be satisfied by these two assignments because

the first assignment requires that the second variable in the head

will be bound by the first variable in the first atom in the body. But,

the second assignment requires that the second variable in the

head will be different from the variable in the mentioned position.

Thus, there is no query that is satisfied by both assignments.

Consider the second ordering. A consistent query needs to be

satisfied by the assignments:

Q(1, 1, 5) : −R(3, 4, 5),R(1, 2, 3)

Q(6, 7, 8) : −R(6, 7, 8),R(7, 6, 8)

Again, observe that in the first assignment, the first variable in the

head must be bound by the first variable in the second atom in the

body. But, in the second assignment, the first variable in the head

is different from the variable in the mentioned position. Thus,

again, there is no query that is satisfied by both assignments,

establishing that there is no consistent query of length 2 w.r.t Ex .
Now, consider themonomials are a ·a ·b and c ·d ·d . A consistent

query w.r.t these monomials needs to satisfy the assignments:

Q(1, 1, 5) : −R(1, 2, 3),R(1, 2, 3),R(3, 4, 5)

Q(6, 7, 8) : −R(6, 7, 8),R(7, 6, 8),R(7, 6, 8)

Hence, the following query is consistent:

Q(x ,y, z) : −R(x ,w,u),R(y,v,u),R(k,m, z)

□

However, finding one consistent query is not difficult, using a

method that takes all possible tuple alignments into account:

Proposition 6.3. If there exists a consistent query w.r.t a given
Why(X)-example, there is a consistent query of length nm .

Proof. Denote the example as Ex and the consistent query

as Q ′. Consider the query Q which has at most nm atoms and is

built in the following manner: have each tuple in Ex participate

in all possible permutations of tuples in the rows above and below

it with the same relation, imposing an order on the tuples in a

284

monomial and then treat the resulting monomials as an N[X]-
example, and create a query by replacing each unique constant

column with a variable (see previous example). We first show

thatQ is safe (note thatQ ′ is consistent, so it is in particular safe).

Suppose the atoms that have attributes projected to the head in

Q ′ are a′
1
, . . . ,a′i . Take the tuples to which they are mapped to

in each row j, t
j
1
, . . . , t

j
i , then Q also contains atoms a1, . . . ,ai

mapped to t
j
1
, . . . , t

j
i , respectively in each row j (this is because

in part of the ordering imposed on the monomials, t1
1
, . . . , tm

1

appear one below another and the same goes for t1x , . . . , t
m
x for

every 2 ≤ x ≤ i). Therefore, the same attributes of a′
1
, . . . ,a′i

exist in a1, . . . ,ai and can also be projected to the head in Q .
Furthermore, Q is consistent by the way it was built. Every atom

was created for a specific combination of tuples, so every atom

ofQ can be mapped to a specific tuple appearing in every row. In

addition, for every row j, the atoms of Q cover all tuples in this

row since an atom was created for each permutation of tuples,

and in particular, there is at least one atom that was created to

match each tuple in row j. □

Based on this result, we can find a consistent query in a

straightforward way. However, a query that has nm atoms is

very long and probably overfits the example. In general, in the

N[X] case, the number of query atoms is set by the provenance

and the only degree of freedom is variable equatings. On the

other hand, for theWhy(X) case, the number of query atoms is

also flexible. This calls for a different criterion of “tight fit” for

Why(X) provenance, which is minimizing the number of atoms

in a consistent query. In general, we can show the following

result regarding this criterion:

Proposition 6.4. Given aWhy(X)-example, deciding the ex-
istence of a consistent query with ≤ n atoms is NP-complete in
k .

We can however show a “small world" property, that will guide

our solution.

Proposition 6.5. For anyWhy(X)-example, if there exists a
consistent query then there exists a consistent query withk+d ·(n−1)
atoms or less, where d is the number of distinct relation names
occurring in the provenance monomials (see Table 1).

Intuitively, there are at most k atoms contributing to the head.

The worst case is when only one “duplicated" annotation con-

tributes to the head, and then in each provenance monomial there

are at most n − 1 remaining annotations. If the query includes

a single relation name (d = 1), then a query with at most n − 1
more atoms would be consistent. Otherwise, as many atoms may

be needed for each relation name.

Together with our algorithm for N[X], Proposition 6.5 dic-

tates a simple algorithm that exhaustively goes through all N[X]
expressions that are compatible with theWhy(X) expressions
appearing in the example, and whose sizes are up to k +d · (n−1).
This, however, would be highly inefficient.

Instead of the inefficient exhaustive algorithm, we next present

a much more efficient algorithm for finding a consistent query of

minimal length. The algorithm will operate greedily by duplicat-

ing atoms in the query body when a self-join is implied by one

of the provenance monomials.

The pseudo-code for an efficient algorithm for finding CQs

consistent with a givenWhy(X)-example is given in Algorithm

2. The idea is to traverse the examples one by one, trying to

“expand” (by adding atoms) candidate queries computed thus far

to be consistent with the current example. We start (line 1), as in

the N[X] case, by “splitting” monomials if needed so that each

tuple is associated with a single monomial. We maintain a map

Q whose values are candidate queries, and keys are the parts

of the query that contribute to the head, in a canonical form

(e.g. atoms are lexicographically ordered). This will allow us to

maintain only a single representative for each such “contributing

part”, where the representative is consistent with all the examples

observed so far. For the first step (line 2) we initialize Q so that

it includes only (t1,M1) (just for the first iteration, we store an

example rather than a query). We then traverse the remaining

examples one by one (line 3). In each iteration i , we consider

all queries in Q; for each such query Q , we build a bipartite

graph (line 6) whose one side is the annotations appearing in

Mi , and the other side is the atoms of Q . The label on each edge

is the set of head attributes covered jointly by the two sides:

in the first iteration this is exactly as in the N[X] algorithm,

and in subsequent iterations we keep track of covered attributes

by each query atom. Then, instead of looking for matchings in
the bipartite graph, we find (line 7) all sub-graphs whose edges
cover all head attributes (again specifying a choice of attributes

subset for each edge). Intuitively, having e edges adjacent to the

same provenance annotation corresponds to the same annotation

appearing with exponent e , so we “duplicate” it e times (lines

8-10). On the other hand, if multiple edges are adjacent to a single

query atom, we also need to “split” (Lines 11-13) each such atom,

i.e. to replace it by multiple atoms (as many as the number of

edges connected to it). Intuitively each copy will contribute to the

generation of a single annotation in the monomial. Now (line 14),

we construct a queryQ ′ based on the matching and the previous

query “version”Q : the head is built as in Algorithm 1, and if there

were x atoms not contributing to the head with relation name

R in Q , then the number of such atoms in Q ′ is the maximum

of x and the number of annotations in Mi of tuples in R that

were not matched. Now, we “combine” Q ′ with Q ′′ which is the

currently stored version of a query with the same contributing

atoms (lines 15- 16). Combining means setting number of atoms

for each relation name not contributing to the head to be the

maximum of this number in Q ′ and Q ′′.
Algorithm 2 stores queries according to the atoms that have the

same variables as the ones in the head. Each matching that does

not stem from the existing matchings in Q (i.e., splitting some

of the atoms in an existing cover) will not result in a consistent

query since it will not be consistent with the previous rows. The

number of combinations of size k can there be out of n different

relations is nk . Q does not store sets of contributing atoms that

are subsets of other existing keys.

Complexity. The number of keys in Q is exponential only in

k ; the loops thus iterate at mostm ·nk ·nk · (n +n2) times, so the

overall complexity is O(nO (k) ·mkr).

Achieving a tight fit. Algorithm 2 produces a set of candidate

queries, which may not be syntactically minimal. To discard

atoms that are “clearly" redundant, we first try removing atoms

not contributing to the head, and test for consistency. We then

perform the process of variable equating as in Section 5.2.

Example 6.6. Reconsider our running example, but now with

the why-provenance given in Figure 1e. If we start from the first

monomials of the tuples (2, 1000) and (1, 300) then we generate

a bipartite graph with V1 = {b, e, i,k} and V2 = {a, c, f ,h, l},
and obtain the cover E ′ (seen in Figure 5a) where the edge (b,a)

285

Algorithm 2: FindConsistentQuery (Why(X))

input :AWhy(X) example Ex

output :A set of consistent queries (possibly empty, if

none exists)

1 Let (t1,M1), ..., (tm ,Mm) be the tuples and

corresponding provenance monomials of Ex ;

2 Q ← {NULL : (t1,M1)} ;

3 foreach 2 ≤ i ≤ m do
4 foreach Q ∈ values(Q) do
5 Q ← Q − {Q} ;

6 (V1 ∪V2,E) ← BuildGraph(Q, (ti ,Mi)) ;

7 foreach sub-graph E ′ ⊆ E s.t. |E ′ | ≤
k and ∪e ∈E′ label(e) = {1, . . . ,k} do

8 foreach provenance annotation a inMi do
9 if a is an endpoint of more than one edge

in E ′ then
10 E ′ ← split(E ′,a) ;

11 foreach atom C ∈ Q do
12 if C is an endpoint of more than one edge

in E ′ then
13 E ′ ← split(E ′,C) ;

14 Q ′ ← BuildQuery(E ′,Q);

15 Q ′′ ← Q.дet(contribs(Q ′)) ;

16 Q.put(contribs(Q ′), combine(Q ′,Q ′′)) ;

17 return values(Q) ;

covers the first head attribute and (b, c) covers the second. The
fact that the tuple b is connected to two edges will lead to the

split of this tuple to the atoms B(id1,b1) and B(id2,b2). When

we continue with E ′, no duplication is performed, and we get

a query Q with the two atoms B(id1,b1), B(id2,b2) contributing
to the head, and three most general atoms. Then, we match Q
to the monomial badij, resulting in a sub-graph matching both

B(id1,b1) and B(id2,b2) to b and a, respectively. After variables
equating (see Subsection 5.2), we obtain the query Qr eal shown

in Example 1.2 (other covers are possible, but they will also result

in Qr eal after variable equating). If instead we start with the

monomials badij and ac f hl , the partial matching chosen will be

the edge (b,a) which covers the first head attribute and the edge

(a, c) which covers the second and forming the atoms B(id1,b1),
B(id2,b2) again. Continuing to the monomial beik , we would

split the tuple b into two tuples since the matching will include

the edges (B(id1,b1),b) that covers the first head attribute and

(B(id2,b2),b) which covers the second.

Proposition 6.7. Given aWhy(X)-example, Algorithm 2 finds
a consistent query if one exists.

Adapting the Solution forTrio(X) and PosBool(X). In theTrio(X)
semiring coefficients are kept but exponents are not. To handle

this case we employ Algorithm 2, with a simple modification:

upon checking consistency of a candidate query with a tuple,

then we further check that there are as many derivations that use

the tuples of the monomial as dictated by the coefficient (as done

in Section 5). In the semiring of positive boolean expressions

(PosBool(X)) + and · are interpreted as disjunction and conjunc-

tion, respectively. If the expressions are given in DNF, Algorithm

2 may be used here as well. The only difference is the possible

b

e

i

k

a

c

f

h

l

M1 M2

{1}

{2}

(a) 1st iteration in 6.6

A1, {1}

A2, {2}

A3, ∅

A4, ∅

A5, ∅

b

a

d

i

j

Q M3

{1}

{2}

(b) 2nd iteration in 6.6
Figure 5: Subgraphs for Example 6.6

absorption of monomials (a + a · b ≡ a), but we already assume

that only a subset of the monomials are given. If the expressions

are given in an arbitrary form there is an additional (exponential

time) pre-processing step of transforming them into DNF.

7 IMPLEMENTATION AND EXPERIMENTS
Our experimental study is composed of experiments based on

the actual output and provenance of the benchmark queries in

[40, 43] measuring both accuracy and scalability. All experiments

were performed on Windows 8, 64-bit, with 8GB of RAM and

Intel Core Duo i7 2.59 GHz processor. We have implemented

our algorithms in JAVA with MS SQL server as the underlying

database management system.

As we have shown in Sections 5 and 6, the algorithms for the

N[X] andWhy(X) semirings also capture the other semirings we

have studied, with slight modifications. Namely, the algorithms

forN[X] also apply for theB[X] semiring, ignoring the treatment

of coefficients, and the algorithms presented forWhy(X) also cap-
ture the PosBool(X) semiring (since there is only an absorption of

monomials), and the Trio(X) semiring with the handling of coef-

ficients as done for N[X] in Algorithm 1. Hence, our experiments

focus on the N[X] andWhy(X) models. In particular, Algorithm

1 will behave in the same manner for B[X]-examples as forN[X]-
examples, and Algorithm 2 will behave in the same manner for

PosBool(X)\Trio(X)-examples as forWhy(X)-examples.

To examine our approach, we have used multiple queries with

varying complexity. Namely, Q1–Q6 from [43] as well as (mod-

ified, to drop aggregation and arithmetics) the TPC-H queries

TQ2–TQ5, TQ8 and TQ10. The queries have 2–8 atoms, 18–60

variables, and multiple instances of self-joins (we show Q6 for

illustration in Figure 6; the reader is referred to [40, 43] for the

other queries).

7.1 Accuracy
We have used the system to “reverse engineer” the queries men-

tioned above. This part of the experiments had two objectives: (1)

understanding the number of examples needed to infer the exact

query (2) measure the precision and recall of the query inferred

by the systemwith comparison to the original. We have evaluated

each query using a provenance-aware query engine, and have

then sampled random fragments (of a given size that we vary)

of the output database and its provenance (we have tried both

N[X] and Why(X)), feeding it to our system. In each experiment

we have gradually added random examples until our algorithm

has retrieved the original query. This was repeated 3 times. We

report (1) the worst-case (as observed in the 3 executions) number

of examples needed until the original query is inferred, and (2)

for fewer examples (i.e. before convergence to the actual query),

286

Table 3: Results for the TPC-H query set and the queries from [43] with N[X] provenance

Query Worst-case number of examples
to learn the original query Difference between original and inferred queries for fewer examples

Q1 (TQ3) 14

The inferred Query includes an extra join on a “status" attribute of two relations.

Only 2–3 values are possible for this attribute, and equality often holds.

Q2 2

Q3 5

For 2 examples, the inferred query contained an extra constant.

For 3 and 4 examples, it included an extra join.

Q4 19

For 2 examples, the inferred query included an extra constant.

For 3–18, it included an extra join on a highly skewed “status" attribute.

Q5 11 The inferred query included an extra join on a “name" attribute.

Q6 3 The inferred query included an extra constant.

TQ4 234

The inferred query included an extra join on “orderstatus" and “linestatus"

attributes of two relations (they have two possible values). One of the original

join conditions has led to the occurrence of the same value in these attributes

in the vast majority of joined tuples.

TQ10 4 The inferred query contained an extra constant.

TQ2 3 The inferred query contained an extra constant.

TQ5 3 The inferred query contained an extra constant.

TQ8 18

For 2 examples, the inferred query contained an extra constant. For 4-17 exam–

–ples, the query had an extra join between a “status" attribute of two relations.

ans(a, b) : −supplier (c, a, add, k, p, d, c1),
par tsupp(h, c, v, j, c2), nation(w, na2, r, c8),
par t (h, i, z, q, t, s, e, rp2, c3), r eдion(r, u, c7),
par tsupp(h, o, x, n, c4), nation(k, na1, r, c6),
supplier (o, b, y, w, p2, d2, c5)

Figure 6: Q6

the differences between the inferred queries and the actual one

in the worst-case run of the experiment.

The results are reported in Table 3. For some queries the con-

vergence is immediate, and achieved when viewing only 2–5

examples. For other queries, more examples are needed, but with

one exception (TQ4), we converge to the original query after

viewing at most 19 tuples for the different queries. For TQ4 only

a very small fraction of the output tuples reveal that an extra join

should not have appeared, and so we need one of these tuples to

appear in the sample. Furthermore, even for smaller sets of exam-

ples, the inferred query was not “far" from the actual query. The

most commonly observed difference involved extra constants oc-

curring in the inferred query (this typically happened for a small

number of examples, where a constant co-occurred by chance).

Another type of error was an extra join in the inferred query;

this happened often when two relations involved in the query

had a binary or trinary attribute (such as the “status" attribute

occurring in multiple variants in TPC-H relations), which is fur-

thermore skewed (for instance, when other join conditions almost

always imply equality of the relevant attributes). We have also

measured the precision and recall of the output of the inferred

query w.r.t. that of the original one. Obviously, when the original

query was obtained, the precision and recall were 100%. Even

when presented with fewer examples, in almost all cases already

with 5 examples, the precision was 100% and the recall was above

90%. The only exception was Q5 with 75% recall for 5 examples.

The results forWhy(X) are shown in Table 4. For queries with

no self-join, the observed results were naturally the same as in the

N[X] case; we thus report the results only for queries with self-

joins (some queries included multiple self joins). When presented

with a very small number of examples, our algorithm was not

always able to detect the self-joins (see comments in Table 7);

but the overall number of examples required for convergence has

only marginally increased with respect to the N[X] case.

7.2 Execution Times
As we have established in the accuracy experiments, a small

number of examples will usually suffice to infer the original

query. To also account for the execution time of our algorithms,

we have increased the number of examples up to 500, which

is about twice as many examples needed to infer each of the

queries. The results for N[X] provenance and Q1–Q6 exhibit

good scalability: the computation time for 500 examples was 0.4

seconds for Q1 (TQ3), 0.1 seconds for Q2, 0.7 seconds for Q3, 1

second for Q4 and 0.4 and 1.1 seconds for Q5 and Q6 respectively.

The performance for the TPC-H queries was similarly scalable:

for 500 examples, the computation time of TQ2 and TQ10 (which

are the queries with the maximum number of head attributes: 8

and 7, resp.) was 0.2 and 0.4 seconds respectively. The runtimes

for TQ4 and TQ8 were 0.1, 0.9 seconds resp. The number of

example for TQ5 was limited due to the query output size. For

15 examples, the runtime for this query was 0.2 seconds. We

have repeated the experiment usingWhy(X) provenance. The
computation time was generally fast, and only slightly slower

than the N[X] case, with a max runtime of 1.3 seconds for Q4

and TQ8. This is consistent with our complexity analysis.

Effect of Tuples Choice. Recall that Algorithm 1 starts by finding

consistent queries w.r.t two example tuples and explanations. In

Section 5, we have described a heuristic that chooses the two

tuples with the least number of shared values. We have measured

the effect of this optimization on Q6 and found that using the

optimization leads to a single matching in the graph, as oppose

to a random choice of tuples that has led to 4 matchings. Making

such a random choice, instead of using our optimization led to a

runtime which was more than 1.3 times slower on average.

8 DISCUSSION AND CONCLUSIONS
Wehave formalized and studied the problem of “query-by-provenance",

where queries are inferred from example output tuples and their

287

Table 4: Results for the TPC-H query set and the queries from [43] containing self-joins withWhy(X) provenance

Query Worst-case number of examples
to learn the original query Difference between original and inferred queries for fewer examples

Q2 2

Q3 5 The inferred query for 2–4 examples did not include self-joins.

Q4 19

For 2–3 examples, the inferred query did not include self-joins.

For 4–18 examples, the query had an extra join on a “status" attribute.

Q5 13 The inferred query for 2–12 examples did not include self-joins.

Q6 3 The inferred query included an extra constant.

TQ8 18

For 2–3 examples, the inferred query contained an extra constant.

For 4-17 the query had an extra join between a “status" attribute of two relations.

provenance. We have theoretically analyzed and experimentally

demonstrated the effectiveness of the approach in inferring highly

complex CQs, including ones with multiple self-joins, based on

a small number of output and provenance examples and their

provenance. Note that for UCQs, a stronger definition is needed.

A notable provenance model that we have not discussed so far

is that of lineage [16], which entails a set representation of the

provenance, i.e., the contributing input tuples’ annotations for a

given output tuple are represented as a set. The semiring model

can support lineage, and the interpretation of Definition 4.2 in

this case is simply that each output example is associated with

a subset of its contributing tuples. In general, this means that

without looking at the full input database or at least its schema,

we gain very little information (e.g. we are not guaranteed that

the given annotations come from a relation that is projected to

the head). In particular it is straightforward to show a reduction

from the classic reverse engineering query problem, which is

intractable by [42].

Acknowledgments. This research has been funded by the Eu-

ropean Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (grant agree-

ment No. 804302). The contribution of Amir Gilad is part of a

Ph.D. thesis research conducted at Tel Aviv University.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of

Databases. Addison-Wesley.

[2] Azza Abouzied, Dana Angluin, Christos H. Papadimitriou, Joseph M. Heller-

stein, and Avi Silberschatz. 2013. Learning and verifying quantified boolean

queries by example. In PODS. 49–60.
[3] Azza Abouzied, Joseph M. Hellerstein, and Avi Silberschatz. 2012. Playful

Query Specification with DataPlay. PVLDB 5, 12 (2012), 1938–1941.

[4] Efrat Abramovitz, Daniel Deutch, and Amir Gilad. 2018. Interactive Inference

of SPARQL Queries Using Provenance. In ICDE. 581–592.
[5] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar

Raghavan. 1998. Automatic Subspace Clustering of High Dimensional Data

for Data Mining Applications. In SIGMOD. 94–105.
[6] Tarun Arora et al. 1993. Explaining Program Execution in Deductive Systems.

In DOOD. 101–119.
[7] Pablo Barceló and Miguel Romero. 2017. The Complexity of Reverse Engi-

neering Problems for Conjunctive Queries. In ICDT. 7:1–7:17.
[8] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. 2014. Query-Based

Why-Not Provenance with NedExplain. In EDBT. 145–156.
[9] Angela Bonifati, Radu Ciucanu, Aurélien Lemay, and Slawek Staworko. 2014.

A Paradigm for Learning Queries on Big Data. In Data4U@VLDB.
[10] Angela Bonifati, Radu Ciucanu, and Slawek Staworko. 2014. Interactive Join

Query Inference with JIM. PVLDB 7, 13 (2014), 1541–1544.

[11] P. Buneman, J. Cheney, and S. Vansummeren. 2008. On the expressiveness

of implicit provenance in query and update languages. ACM Trans. Database
Syst. (2008), 28:1–28:47.

[12] P. Buneman, S. Khanna, and W.C. Tan. 2001. Why and Where: A Characteri-

zation of Data Provenance. In ICDT. 316–330.
[13] Artem Chebotko, Seunghan Chang, Shiyong Lu, Farshad Fotouhi, and Ping

Yang. 2008. Scientific Workflow Provenance Querying with Security Views.

In WAIM. 349–356.

[14] James Cheney. 2011. A Formal Framework for Provenance Security. In CSF.
281–293.

[15] J. Cheney, L. Chiticariu, and W. C. Tan. 2009. Provenance in Databases: Why,

How, and Where. Foundations and Trends in Databases (2009), 379–474.
[16] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. 2000. Tracing the Lineage

of View Data in a Warehousing Environment. ACM Trans. Database Syst.
(2000), 179–227.

[17] Anish Das Sarma, Aditya Parameswaran, Hector Garcia-Molina, and Jennifer

Widom. 2010. Synthesizing View Definitions from Data (ICDT). 89–103.
[18] Susan B. Davidson, Sanjeev Khanna, Tova Milo, Debmalya Panigrahi, and

Sudeepa Roy. 2011. Provenance views for module privacy. In PODS. 175–186.
[19] Susan B. Davidson, Sanjeev Khanna, Sudeepa Roy, Julia Stoyanovich, Val

Tannen, and Yi Chen. 2011. On provenance and privacy. In ICDT. 3–10.
[20] Susan B. Davidson, Sanjeev Khanna, Val Tannen, Sudeepa Roy, Yi Chen, Tova

Milo, and Julia Stoyanovich. 2011. Enabling Privacy in Provenance-Aware

Workflow Systems. In CIDR. 215–218.
[21] Daniel Deutch, Nave Frost, and Amir Gilad. 2017. Provenance for Natural

Language Queries. PVLDB 10, 5 (2017), 577–588.

[22] D. Deutch and A. Gilad. 2018. Full Version. http://www.cs.tau.ac.il/~amirgilad/

full/RevEngFull.pdf. (2018).

[23] Daniel Deutch, Amir Gilad, and Yuval Moskovitch. 2015. Selective Provenance

for Datalog Programs Using Top-K Queries. PVLDB 8, 12 (2015), 1394–1405.

[24] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2014. Explore-

by-example: An Automatic Query Steering Framework for Interactive Data

Exploration. In SIGMOD. 517–528.
[25] R. Fink, L. Han, and D. Olteanu. 2012. Aggregation in Probabilistic Databases

via Knowledge Compilation. PVLDB 5, 5 (2012), 490–501.

[26] F. Geerts and A. Poggi. 2010. On database query languages for K-relations. J.
Applied Logic (2010), 173–185.

[27] Yolanda Gil and Christian Fritz. 2010. Reasoning about the Appropriate Use

of Private Data through Computational Workflows. In AAAI.
[28] B. Glavic, J. Siddique, P. Andritsos, and R. J. Miller. 2013. Provenance for Data

Mining. In TaPP.
[29] T. J. Green. 2009. Containment of conjunctive queries on annotated relations.

In ICDT. 296–309.
[30] T. J. Green, G. Karvounarakis, and V. Tannen. 2007. Provenance semirings. In

PODS. 31–40.
[31] Garcia-Molina Hector, Jeffrey D Ullman, and Jennifer Widom. 2002. Database

systems: The complete book. Prentice-Hall.
[32] Tomasz Imieliński and Witold Lipski, Jr. 1984. Incomplete Information in

Relational Databases. J. ACM (1984), 761–791.

[33] Dmitri V. Kalashnikov, Laks V.S. Lakshmanan, and Divesh Srivastava. 2018.

FastQRE: Fast Query Reverse Engineering. In SIGMOD. 337–350.
[34] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas.

2014. Exemplar Queries: Give Me an Example of What You Need. PVLDB 7, 5,

365–376.

[35] Fotis Psallidas, Bolin Ding, Kaushik Chakrabarti, and Surajit Chaudhuri. 2015.

S4: Top-k Spreadsheet-Style Search for Query Discovery (SIGMOD). 2001–
2016.

[36] Anish Das Sarma, Martin Theobald, and Jennifer Widom. 2008. Exploiting

Lineage for Confidence Computation in Uncertain and Probabilistic Databases.

In ICDE. 1023–1032.
[37] Thibault Sellam and Martin L. Kersten. 2013. Meet Charles, big data query

advisor (CIDR).
[38] Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri, Bolin Ding, and Lev

Novik. 2014. Discovering Queries Based on Example Tuples. In SIGMOD.
493–504.

[39] Wang Chiew Tan. 2003. Containment of Relational Queries with Annotation

Propagation. In DBPL. 37–53.
[40] TPC. [n. d.]. TPC benchmarks. ([n. d.]). http://www.tpc.org/

[41] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2014. Query

Reverse Engineering. The VLDB Journal 23, 5 (2014), 721–746.
[42] Yaacov Y. Weiss and Sara Cohen. 2017. Reverse Engineering SPJ-Queries from

Examples. In PODS. 151–166.
[43] Meihui Zhang, Hazem Elmeleegy, Cecilia M. Procopiuc, and Divesh Srivastava.

2014. Reverse Engineering Complex Join Queries. In SIGMOD. 809–820.
[44] Moshé M. Zloof. 1975. Query by Example. In AFIPS NCC. 431–438.

288

	Reverse-Engineering Conjunctive Queries from Provenance ExamplesDaniel Deutch, Amir Gilad

