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ABSTRACT
Location-based apps provide users with personalized services
tailored to their geographical position. This is highly-beneficial
for mobile users, who are able to find points of interest close to
their location, or connect with nearby friends. However, sharing
location data with service providers also introduces privacy con-
cerns. An adversary with access to fine-grained user locations can
infer private details about individuals. Geo-indistinguishability
(GeoInd) adapts the popular differential privacy (DP) model to
make it suitable for protecting users’ location information. How-
ever, existing techniques that implement GeoInd have major draw-
backs. Some solutions, such as the planar Laplace mechanism,
significantly lower data utility by adding excessive noise. Other
approaches, such as the optimal mechanism, achieve good utility,
but only work for small sets of candidate locations due to the
use of computationally-expensive linear programming. In most
cases, locations are used to answer online queries, so a quick
response time is essential. In this paper, we propose a technique
that achieves GeoInd and scales to large datasets while preserving
data utility. Our central idea is to use the composability property
of GeoInd to create a multiple-step algorithm that can be used
in conjunction with a spatial index. We preserve utility by ap-
plying accurate GeoInd mechanisms and we achieve scalability
by pruning the solution search space with the help of the index
when seeking high-utility outcomes. Our extensive performance
evaluation on top of real location datasets from social media apps
shows that the proposed technique outperforms significantly the
benchmark in terms of utility and/or computational overhead.

1 INTRODUCTION
The unprecedented growth in the area of mobile apps allows users
to enjoy personalized services and receive information customized
to their locations. In return for sharing their locations with the
service provider, users can find restaurants and shopping malls
nearby, can plan their travel itinerary with ease, or can connect
with nearby friends. While the benefits of personalized location
services are clear, there are also increasing risks associated with
the sharing of fine-grained individual locations. A significant body
of research [15–17, 21] shows that uncontrolled sharing of users’
whereabouts can lead to a wide range of attacks, from stalking and
assault, to various privacy breaches that may disclose sensitive
personal details such as one’s health status, political or religious
orientation, etc.

The need for protecting users’ locations has been the subject of
intense study by the research community for more than a decade.
Initial approaches considered cloaking of user locations to de-
crease the precision of coordinate reporting. However, it has been
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shown [15, 17] that this category of solutions does not provide suf-
ficient protection, especially when dealing with sophisticated ad-
versaries with access to background knowledge. Another category
of techniques uses encryption [15]. While the privacy strength
achieved with encryption is high, there are two drawbacks: first,
only simple queries (e.g., nearest-neighbors) can be answered; sec-
ond, the computational overhead of processing encrypted queries
is high and requires extensive server-side changes.

The prominent model of differential privacy (DP) [13] has be-
come the de-facto standard for data protection in the last few years.
While there is work that shows how location can be protected with
DP, these solutions (and in fact, the model itself) assume an aggre-
gate release, where data are pooled together from a population of
users over a period of time, and then aggregates are disclosed cov-
ering various regions of the dataspace. The objective of this publi-
cation model is to hide the presence of an individual in a released
dataset, but cannot be used in operational mode (i.e., to protect
the location attributes of a specific user asking a query). The more
recent model of Geo-indistinguishability (GeoInd) [1, 2, 5] ex-
tends DP with a new distinguishability metric [6] which captures
precisely the operational setting, and prevents the association of
a user with an exact location. Specifically, GeoInd adds random
noise to the actual user location in a way that prevents an adver-
sary from inferring with high probability the user’s whereabouts,
regardless of the amount of background knowledge available to
the attacker. Its powerful semantic protection guarantees derived
from DP make GeoInd the only viable approach available at the
present time for protecting locations in the operational setting1.

Despite GeoInd being a promising model, existing techniques
that implement it have some important drawbacks. We provide a
simplified argument, without going into technical details, as the
formal aspects of GeoInd will only be introduced in Section 2. In
essence, GeoInd achieves protection by adding noise, but noise
also decreases data utility. In addition, the protection achieved is
independent of the adversary’s background knowledge, further
referred to as prior. However, an interesting result in [2] shows
that, if one is aware of the adversary’s prior, then it is possible
to construct a GeoInd mechanism that improves utility consider-
ably, while still providing protection for any prior. This result is
important, because in practice locations where a user is expected
to be are not random. For instance, datasets derived from social
media apps show that users check in (i.e., report their location) at
a set of well-defined points of interests (POI). This discrete set of
POI, combined with some other background knowledge factors
(e.g., popularity of various POI) effectively functions as the adver-
sary’s prior. One can construct mechanisms for enforcing GeoInd
in two ways: at one extreme, completely ignore the prior, and
simply generate a reported location by adding (planar) Laplace
noise to the actual location [1]. This approach is very efficient
computationally, but can yield poor utility by generating large

1Another model exists which functions in the operational setting [24], but it only
works against a well-defined set of adversarial prior knowledge. Constructing such a
detailed prior is often not feasible in practice.
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noise. At the other extreme, one can take into account the prior
and attempt to add the optimal amount of noise to any possible
user location such that the expected distance between actual and
reported locations is minimized (while still preserving GeoInd).
The latter is called optimal mechanism [2] and is implemented
using linear programming (LP).

Consider a regular grid on top of a set of locations of interest
in a city area (grid partitioning is used for ease of presentation,
the concept we convey remains valid for any set of discrete, or
logical locations [12]). Each cell has a certain prior value, cor-
responding, for instance, to the weighted popularity of all POI
in the respective cell. An optimal GeoInd protection mechanism
will produce an output given by a linear program that considers
all possible combinations of actual and reported cells, with spe-
cific constraints related to location protection. The computational
complexity is cubic to the number of cells. Even for a relatively
small search space, such as 12 × 12 = 144 cells, the execution
time for LP solvers can be in the order of hours (we provide exact
measurement results in Section 6). Such an approach is too slow.

Our proposed approach uses a multi-step algorithm that applies
GeoInd recursively along a data indexing structure, according
to the composability property of DP (see Section 2 for details).
We illustrate this in Figure 1, on a three-level index. The actual
location is the black dot. LevelA consists of nine cells, and assume
A5 is selected by the mechanism in the first step. In step two, we
“zoom in” cellA5, and re-apply the mechanism on top of a four-cell
grid this time. Finally, at the third level, C3 is chosen for release.
The privacy budget is split across the three levels. Our approach
can work with a relatively fine-grained grid at the leaf level; in this
example, at the leaf level we obtain 144 cells, same as in the non-
hierarchical case. However, in our case the size of the problem
at each step consists of nine, four and four cells, respectively, so
our approach will perform much faster. Also, since index node
selection is performed at each step according to the output of the
mechanism at the previous index level, GeoInd is preserved. Note
that, the actual location may fall outside the selected cell at each
level, but that is less likely to occur at the higher (i.e., coarser)
index levels, so utility will not suffer significantly.

Although the underlying concept is simple, our approach raises
a number of difficult challenges. Specifically, one must take care-
fully into account several factors that affect utility and perfor-
mance, such as: how to determine the parameters of the index,
such as height and fan-out; and how to decide how to split the
privacy budget across distinct index levels. We provide an analyti-
cal model to synthesize important relationships between system
parameters on one hand, and performance metrics such as utility
and computational overhead on the other.

Our specific contributions include:

• We identify important drawbacks of existing techniques for
geo-indistinguishability in terms of utility and/or computa-
tional overhead.
• We propose a multi-step algorithm that applies GeoInd

mechanisms in conjunction with an index data structure
in order to prune the search space when seeking optimal
solutions.
• We develop an analytical cost model to characterize the

utility-performance trade-off, and to select an appropriate
set of parameter values for our approach.
• We perform an extensive experimental evaluation to mea-

sure utility and execution time on real datasets, and we
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Figure 1: Multi-Step Approach Overview

show that the proposed approach significantly outperforms
the benchmark.

The rest of the paper is organized as follows: Section 2 provides
essential background information, followed by an overview of our
approach in Section 3. We provide the details of our algorithm in
Section 4. We derive an analytical model for performance char-
acterization in Section 5 and we present a detailed experimental
evaluation in Section 6. We survey related work in Section 7 and
conclude with directions for future research in Section 8.

2 PRELIMINARIES
We introduce fundamental concepts used in the rest of the paper,
such as the privacy model we adopt, and the mechanisms that
implement it. We also discuss utility metrics, as well as the impor-
tant property of composability on which our proposed multi-step
algorithm for location protection relies.

2.1 GeoInd Definition
Geo-indistinguishability (GeoInd) was first introduced in [1],
and extends the popular protection model of differential privacy
(DP) [13]. DP is designed to prevent an adversary from learning
with significant probability whether an individuals’ data is present
or not in a dataset. DP is achieved by adding random noise to the
result of aggregate queries (e.g., count or sum). The fundamental
concept behind DP is to bound the probability of distinguishing
between the results of computations performed on neighboring
datasets, defined as sets of records that differ in at most one en-
try. More formally, when the Hamming distance between two
candidate datasets D1 and D2 is 1, then an adversary cannot deter-
mine with significant probability whether D1 or D2 was used to
produce a certain result. The corresponding probabilities P1 and
P2 are similar within a small multiplicating factor eε , where ε is
called privacy budget (lower ε values correspond to tighter privacy
settings).

However, DP is not suitable to protect the locations of mobile
users in the online setting, for two reasons: first, DP works only
for aggregate queries, and cannot be directly used for sanitizing
individual records; second, DP can hide the presence of an individ-
ual record in a dataset, but it cannot protect the attribute values of
individual data records, due to the distinguishability metric used
(Hamming distance). The work in [4] extends DP by proposing a
more flexible distinguishability metrics, resulting to the GeoInd
definition.

Consider a set X of possible user locations, a setZ of possible
reported locations (the two sets X and Z may coincide), and a
distance metric dX . A probabilistic mechanism K : X → P(Z)
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takes as input a location in X, and obfuscates it to produce some
locationZ, which is reported to a location-based service (since
K is a probabilistic function, its co-domain is the power-set ofZ,
as it assigns each output location a probability of being reported).
Mechanism K is said to achieve geo-indistinguishability with
privacy level ε if for all x ,x ′ ∈ X, z ∈ Z:

K(x)(z) ≤ eεdX (x,x
′) · K(x ′)(z) (1)

Intuitively, Eq. (1) specifies that, given a reported value z, an
adversary cannot distinguish whether the user location is x or
x ′ by a factor larger than eεdX (x,x

′). In practice, one appropriate
choice for the dX metric is the Euclidean distance, denoted in
the rest of the paper as d(·, ·). Effectively, geo-indistinguishability
enforces a constraint on the distributions K(x), K(x ′) produced
by two different points x ,x ′. The authors in [5] also propose a
practical interpretation of this definition: for all locations x ′ within
a radius r from x , the user enjoys εr -indistinguishability. For small
values of r , the adversary gains little information, i.e., s/he cannot
pinpoint the user within a small region of a city (e.g., specific bar,
restaurant, building). However, for large r values, the probability
of locating the user within a circle of radius r increases, which
preserves utility of location reporting. In other words, the mobile
user is still able to retrieve information relevant to her current city
or neighborhood, at a coarser granularity.

2.2 Utility and Composability
Utility. In order to enforce GeoInd, actual user locations must be
perturbed through addition of random noise. Inherently, there is
utility loss associated to this process: location-based services will
return information relevant to the reported location, instead of the
actual one. Ideally, a GeoInd mechanism should add the minimum
amount of noise to achieve the GeoInd constraints, so utility is
maximized and the deterioration in the quality of service received
by the user is constrained. Inspired from previous work [1, 2, 5]
we use the following practical measures of utility loss2:

• Euclidean distance d: this utility metric measures the Eu-
clidean distance between the reported and actual user lo-
cations. It is a natural metric to describe the additional
distance traveled by the user as a result of location obfus-
cation (assuming free-space movement). For instance, the
nearest-neighbor Italian restaurant of the reported location
could be several hundred meters away from the user loca-
tion, even though there is another one situated only meters
away from the user.
• Squared Euclidean distance d2: the square of the Euclidean

distance between reported and actual locations is also im-
portant, as it estimates the number of results that a user
receives in a certain area. In practice, the user—knowing
that the location will be obfuscated—may ask for more
results. For instance, instead of asking for restaurants in
a 200 meters radius, the user may increase the range to
increase the chance that a nearby POI is actually returned.
The size of the result set, and the effort required to filter the
results, are estimated to increase linearly with the area of
search, so the squared Euclidean distance may be a good
predictor of utility loss.

2We emphasize that a utility loss metric is a different concept than a distinguishability
metric. Although the Euclidean distance can serve as both, the purpose of the two
types of metrics is different: distinguishability metrics characterize the ability of
an adversary to attack location privacy, whereas utility loss metrics measure the
decrease in quality experienced by the user.

Composability. An important property of GeoInd (inherited from
its parent model DP) is composability. Specifically, if two mech-
anisms are applied in succession with budgets ε1 and ε2, the net
amount of privacy obtained is equivalent to a privacy budget
(ε1 + ε2). Conversely, given a total privacy budget ε, we can split
it into several terms and assign each term to a separate processing
step, effectively obtaining a combined multiple-step algorithm
that achieves the same amount of protection.

2.3 GeoInd Mechanisms
The GeoInd definition specifies the constraints that a protection
technique must satisfy in order to obtain strong privacy guarantees.
A GeoInd mechanism is a specific construction that achieves the
GeoInd requirements. Next, we enumerate the most prominent
mechanisms that implement GeoInd, introduced in [1, 5]. These
mechanisms achieve various trade-offs in terms of performance
and utility.
Planar Laplace Mechanism (PL). The simplest approach to pre-
serving GeoInd is the Laplace mechanism [1]. The key idea is to
perturb the exact user location by additive random noise drawn
from a bi-variate Laplacian distribution with density defined as:

Dε (x , z) =
ε2

2π
e−εd (x,z) (2)

Drawing an element from this distribution can be done by (i)
switching to polar coordinates, (ii) selecting an angle θ uniformly
from [0, 2π ), and (iii) selecting a radius r from the Gamma dis-
tribution Γ−1ε (p), where Γ−1ε (p) = 1 − (1 + εp)(−εp), and p is
uniformly chosen from (0,1). Finally, the reported location is
z = x + (r cosθ , r sinθ ).

If only a restricted set of reported locations is allowed (e.g.,
discrete set Z), the location produced by the mechanism can
be mapped back to the closest element in the set. Although the
Laplace mechanism provides an easy and practical way of achiev-
ing geo-indistinguishability, its utility may be low, as it introduces
large noise.
Optimal Mechanism (OPT). While the PL mechanism is simple
to implement and efficient to execute, it does not provide any opti-
mality guarantees for utility. As a result, its resulting utility may
be low in practice. To address this issue, the optimal mechanism
of GeoInd (denoted further by OPT) has been introduced in [2].
We provide the details of OPT in Section 3.2. In a nutshell, OPT
uses information about an adversary’s prior knowledge, such as
the likelihood of a user being present at a certain location. For in-
stance, a user is more likely to be found in a city center area where
there is a high concentration of POI, rather than in a secluded
area near a suburb. OPT uses such prior information to produce a
reported location z that minimizes utility loss. The disadvantage
of OPT is that it has high computational overhead, as it requires
solving a linear program with complexity cubic in the number of
possible locations. In contrast, our multi-step algorithm allows
us to reduce overhead by applying OPT recursively on an index
structure.

A remarkable property of GeoInd related to the OPT mecha-
nism is the following: even if the mechanism is tuned for a specific
prior, it still preserves the privacy constraint for any prior. If the
prior is not known by a GeoInd mechanism, then the utility cannot
be improved significantly compared to PL. If the prior is known,
then it can boost utility. Furthermore, GeoInd is satisfied even if
the assumed prior and the adversary’s background knowledge are
different. In contrast, privacy models such as the one in [24] can
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Table 1: Summary of Notations

Notation Definition
x Actual user location
z Reported user location
X,Z Set of actual and reported user locations
G,Gi Set of grid cells (global, and at index level i)
x̂ Actual location cell of user
ẑ Reported location cell of user
д Grid granularity
L Side length of the square spatial region
h Height of hierarchical grid index
ϵi Privacy budget for grid level i
B Array storing budget at each index level
d(x , z) Euclidean distance between locations x and z

only provide protection if the assumed prior and the adversary’s
knowledge coincide.

3 APPROACH OVERVIEW
In Section 3.1 we provide an overview of our system model; in
Section 3.2 we introduce a baseline approach that applies the
optimal mechanism of GeoInd on top of a regular grid. Table 1
summarizes the notations used in our presentation.

3.1 System Model
We consider an online scenario where mobile users are interested
in retrieving points of interest relevant to their current location
from an untrusted server. Based on the actual user location x ∈ X,
the sanitization algorithm computes a reported location z ∈ Z.
Both X andZ are assumed to be discrete and finite sets. Discrete
locations, also called logical locations [12], are often used in the
location privacy literature. In practice, this can be achieved by
snapping continuous coordinates to an arbitrary granularity grid.
We note that, in many existing geosocial network applications, the
reported locations take the form of check-ins at discrete sets of
two-dimensional coordinates corresponding to restaurants, coffee
shops or other POIs. Our model is fully compatible with that
setting.

In our model, the location sanitization is performed online at
the user’s mobile device. This approach is made possible by the
properties of the GeoInd model, and it is an important advan-
tage compared to other types of solutions that require a trusted
centralized service, such as spatial k-anonymity (SKA) [16, 21].
Thus, the system model is much simpler, and it does not rely
on unrealistic security assumptions, such as the presence of a
trusted third party that performs anonymization, or the presence
of a collaborating set of other mobile users who participate in the
formation of cloaking regions. Furthermore, there are no changes
required on the processing side at the server, which is an advan-
tage compared to approaches that use encryption [15]. However,
due to the fact that location protection is performed at the mobile
device, the computational overhead incurred by sanitization is a
very important concern. In our design, we focus on this constraint.

The mobile device will execute our sanitization technique be-
fore reporting its location (i.e., at runtime), and will also download
in advance (offline) a set of objects that are required to support
our technique, such as a set of maps annotated with additional
pre-computed information (e.g., the properties of a certain city
map and associated details required to construct a balanced index

structure, as discussed in Section 5). This offline component is
common for many software packages that support location-based
apps, e.g., navigation services. Furthermore, in our approach, the
amount of data that needs to be downloaded offline is small (in
the order of tens of megabytes).

3.2 Baseline Approach
We provide a detailed description of the optimal GeoInd mecha-
nism OPT [2] adapted to a regular grid. OPT is used as a building
block in our multi-step approach, and also as a baseline in our
evaluation. OPT produces the maximum utility achieveable un-
der a given prior while preserving GeoInd. Specifically, given a
privacy budget ε, a distinguishability metric dX(·, ·), a utility (or
quality) metric dQ (·, ·), and a prior Π defined over set X, OPT
determines mechanism K as the solution to the following linear
programming problem:

Minimize: ∑
x ∈X,z∈Z

Πx · K(x)(z) · dQ (x , z) (3)

Subject to:

K(x)(z) ≤ eϵdX (x,x
′) · K(x ′)(z) x ,x ′, z ∈ X (4)∑

z∈X

K(x)(z) = 1 x ∈ X (5)

K(x)(z) ≥ 0 x , z ∈ X (6)

This linear optimization problem can be solved by using stan-
dard techniques such as the Simplex or the Interior Point meth-
ods. However, the number of linear constraints in the program is
O(|X|2 × |Z|) (or cubic in the total number of locations, assuming
that actual and reported locations belong to the same set). As a
result, the method is unfeasible even when the set of locations has
low cardinality (i.e., several hundred). In previous work [5] the
cardinality of X is reduced by using a coarser grid, and locations
in X are snapped to the centers of the grid cells. Let L denote the
side length of the dataset (assumed to be a square, but any rectan-
gular region can be scaled to suit the assumption). Grid granularity
д is achieved by splitting the data domain into a regular grid with
д × д cells, each with dimensions L/д × L/д. While this approach
reduces computational overhead, it also decreases utility, as all
locations are snapped to the coarse grid.

K(x1)(Z) : 0.31 0.100.31 0.10 0.05 0.040.05 0.04... ...
z1 z2 z8 z9

...

 Eq(5): K(x1)(z1) + … + K(x1)(z9) = 1
K(x4)(Z) :

0.03 0.030.03 0.03 0.11 0.370.11 0.37

... ...

K(x9)(Z) :

...

Eq(4): K(x1)(z2)  ≤  exp(εd(x1,x9)) x K(x9)(z2)

Figure 2: An instance of K(X)(Z) for a 3 × 3 grid.

Next, we focus on the application of OPT on top of a grid.
Denote by G the set of grid cells, which represent the logical loca-
tions from which both actual and reported locations are selected,
i.e., X = Z = G. The prior is also defined with respect to G. We
can abstract an invocation of the OPT mechanism as a function
call with the following parameters: OPT(ϵ , G, Π,dQ ).

To provide an in-depth understanding of how OPT works, we
consider the example of a regular grid of granularity д = 3, i.e.,
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a total of nine cells. We illustrate in Figure 2 the layout of the
stochastic matrix K(X)(Z) from Eq.(4). We represent three of
the nine rows of matrix K , corresponding to cells x1, x4 and x9.
The box at the top of the diagram illustrates the constraint in
Eq. (5), representing the normalization condition, namely: the
sum of probabilities in each matrix row must be 1 (each input
cell must be mapped to some output cell). Likewise, the box in
the middle of the diagram illustrates one of the |X|3 = 81 ε-geo-
indistinguishability constraints corresponding to Eq. (4) in the
linear program of the optimal mechanism.

The main drawback of OPT is its prohibitively high computa-
tional cost. To illustrate this drawback, we show in Figure 3 the
trade-off between performance and utility when varying granular-
ity, using a state-of-the-art commercial linear program solver on
the Gowalla dataset (please see Section 6 for experimental setup
details). As grid granularity increases, the utility improves but
at the expense of a sharp rise in computation time. For the next
higher granularity д = 12 (not shown in the graph), the optimiza-
tion program was terminated after 24 hours without a solution.

The objective of our approach is to address these conflicting
trends between utility and performance. Next, we present our
multi-step mechanism (MSM) which operates on top of a hierar-
chical index structure and achieves a good compromise between
utility and performance.
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Figure 3: Effect of д on utility and running time of OPT

4 MULTI-STEP MECHANISM (MSM)
We introduce the multi-step mechanism (MSM) which operates
over a GeoInd-preserving Hierarchical Index (GIHI) and trans-
forms the user location according to OPT at each index level. The
user inputs the total privacy budget ε to the algorithm, according
to her privacy requirement. A separate component of our solution,
the budget allocation strategy (discussed in detail in Section 5),
determines how to distribute the privacy budget among the index
levels. The output of the budget allocation procedure consists of
the index height h, and the amount of privacy budget allocated
to each level Bi ∈ B, where B is the set of budget amounts per
level, and h = |B|. In the rest of the section, we focus on how the
mechanism operates given the index height and budget splits.

Given granularity д and height parameter h, a GIHI is con-
structed over a data domain of size L2 in a top-down fashion3.
Each intermediate cell points to д2 cells at the lower level that lie

3If the input dataset domain is not square, it can be scaled in advance of executing
our algorithm to equalize the range in each dimension.
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Figure 4: GeoInd preserving Hierarchical Index (GIHI)

inside its spatial extent. Figure 4 illustrates the index structure4

for д = 2 and h = 3. The cells in the hierarchical grid are labeled
per level, and also within each level, as shown for level 1 in the
diagram (to improve readability, we do not include the labels at
lower levels). For instance, the leaf cell C33,0 is a child of C21,0,
which in turn is a child of nodeC10,0. MSM iteratively visits each
level of the hierarchical structure, starting with the virtual root
node that covers the entire region. The root node is not a level in
the tree, but it serves the purpose of simplifying the presentation,
so that the algorithm can be expressed recursively starting from
a single node. We denote as x̂i the logical location of the user
snapped to the center of the enclosing cell in the grid of granularity
дi × дi at level i. Likewise, ẑi denotes the logical location of the
user output by the mechanism at level i. We define two simple
procedures: EnclosingCell(x , i), which returns the cell at level i
enclosing the input location x , and centerOf(C), which takes as
input a cell C and returns the logical location at its center.

Algorithm 1 presents the pseudo-code of our multi-step iterative
process of location sanitization. In each iteration, the algorithm
takes as input the location ẑi−1 selected in the previous iteration
(in the first iteration it is set to the center of the virtual root node)
and determines the cell that encloses ẑi−1, denoted byC (lines 4-6).
Next, it translates the user’s actual location x to a logical location
x̂i in the current level (lines 7-8) and constructs a partial grid
Gi of д2 cells within the spatial extent of C. Next (lines 11-13),
MSM computes the matrix K(Xi )(Zi ) as the solution to a linear
optimization problem over the logical locations Xi ,Zi ∈ Gi ,
consuming the privacy budget εi allocated to level i. MSM marks
the end of the iteration at the current level by outputting ẑi as a
sample from the distribution K(x̂i )(Zi ). These iterations repeat
for the entire height of the GIHI, consuming the entire privacy
budget ε = ε1 + ... + εh . After the final iteration (at the leaf level

4For simplicity, we focus in this paper on an hierarchical grid, but the MSM concept
applies to any hierarchical data structure without node overlap, e.g., R+-trees or
k-d-trees.
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of the index), the output is the sanitized location that is reported
to the service provider (line 14).

Note that, the actual location x may fall outside the selected cell
at one or more levels of the index. This is an effect of the privacy
requirement imposed by GeoInd, and thus a necessary aspect of
protecting locations. However, it may also increase utility loss,
as the distance between reported and actual cell may be large.
To control the amount of utility loss, the objective of our budget
allocation strategy (Section 5) is to split the budget in such a
way that it is less likely for this event to occur at the higher (i.e.,
coarser) index levels. If this objective is achieved, utility will not
decrease significantly.

Algorithm 1 Multi-Step Mechanism (MSM)

Input: ϵ , д, Π, dQ
Output: ẑ

1: procedure PRIVATELYREPORTLOCATION(x)
2: B ← getGridParameters(ϵ , д)
3: h ← |B|
4: ẑ0 ← RootNode ▷ stores output cell of each iteration
5: for i ← 1,h do
6: C ← EnclosingCell(ẑi−1, i − 1)
7: Gi ← set of д × д cells in the spatial bounds of C
8: x̂i = centerOf (EnclosingCell(x ,i))
9: if x̂i < Xi then ▷ Xi ,Zi ∈ Gi

10: x̂i ← a random location in Xi
11: ϵi ← B[i]
12: K(Xi )(Zi ) ← OPT(ϵi , Gi , Π(Xi ),dQ (.))
13: ẑi ← sample from distribution K(x̂i )(Zi )

14: return location ẑ to the service provider

We illustrate the proposed mechanism with a running example
over the GIHI structure from Figure 4. The exact location of
the user x is depicted as a red-colored dot, while the logical
locations (snapped to cell centers) x̂ are shown as red colored
squares. The shaded cells depict the cells enclosing the output
location (ẑ) of each iteration. The algorithm first takes as input
the entire dataspace domain (represented as the root node), and
splits it into a grid G1 consisting of cells {C1i, j : 0 ≤ i, j ≤
1 ∧C1i, j ∈ RN }. Next, it maps the user’s exact location x to x̂1 at
the center of its enclosing cell at level 1, i.e., C10,0. Then, MSM
computes K(X1)(Z1), and outputs a location ẑ1 sampled from the
distribution K(x̂1)(Z1).

Denote the selected cell as ẑ1 = centerOf(C10,0). In the next
iteration, G2 is composed of the set of д × д cells within the
spatial extent of C10,0, which is the enclosing cell of the output in
the previous iteration. Location ẑ2 is selected as output. Suppose
ẑ2 =centerOf(C20,0), which implies that for the purposes of the
last iteration, the actual location x falls outside the spatial extent
of the cell enclosing ẑ2. In this situation the user’s location is
assumed to be a random cell (e.g., C31,1) in {C3i, j : 0 ≤ i, j ≤
1}. The remainder part of the iteration continues by outputting
ẑ3 =centerOf(C31,0). Finally, ẑ3 is reported to the service provider,
with a quality loss dQ (x , ẑ3).

A consequence of the grid based discretization scheme is that,
the position of every user is always approximated by the center
of the enclosing cell before being obfuscated by the mechanism.
For example, consider that a user with his exact coordinates at
a random location in a 1km2 cell, requests the nearest bar to his
position. In this case, he will receive an answer that is tailored, in
the best case, to the center of his cell, which is on average 0.38km

[14] away from the current location of the user. It is clear that
the situation gets more problematic as the grid cells are larger,
i.e., at coarser granularities. This is often the case when applying
the conventional optimal mechanism [2] over a coarse grid (as
discussed in Section 3.2, OPT can work only for very coarse grids,
otherwise the execution time is extremely high). In contrast, our
approach operates on a much finer-grained grid at the leaf level,
thus gaining significantly in terms of utility. MSM also limits
the size of the linear optimization problem, given that there are
exactly д2 logical locations at each step. This enables efficient
computation of the linear program, making the overall execution
time practical.

We end this section by informally discussing the fact that MSM
preserves GeoInd. MSM is a textbook example of applying the
composability property [19, 20] of differential privacy. The initial
iteration of MSM takes as input the real user location, and the
final iteration outputs the perturbed location. At each index level
i, the OPT mechanism is applied with a fraction εi of the total
privacy budget ε. The output of each MSM step (i.e., level) is
pipelined into the input of the following step (at the next level).
According to the composability property introduced in Section 2,
MSM satisfies GeoInd with budget

∑h
i=1 εi = ε.

5 BUDGET ALLOCATION STRATEGY
The utility of MSM depends on important system parameters such
as the height of the index and the budget allocation across levels.
In this section, we provide an analytical cost model of utility
that guides our decision on how to choose GIHI parameters. We
assume we are given as input the size of the data domain specified
as side length L, the grid granularity д (corresponding to a fanout
of д2 at each level), and the total budget ε. The objective is to
determine index height h and the budget allocation εi for each
level i, 1 ≤ i ≤ h.

A fundamental factor that guides our allocation strategy is the
observation that if the actual location is mapped to a reported loca-
tion in another cell, the utility loss is likely to be larger when the
grid cell size is also large. Consequently, the utility loss is much
larger when this event occurs near the root of the index, compared
to the case when it occurs at the leaf level. Intuitively, the impact
on utility of the event occurring at level i is д times higher than
the same event occurring at level i + 1. Consider a stochastic ob-
fuscation mechanism that satisfies geo-indistinguishability, and
denote its probability of mapping location (i.e., cell) x to z by
Pr [z |x]. The probability density function of the output is indeed
the distribution K(x)(z), as discussed in Section 2. The proposed
budget allocation strategy aims to precisely control Pr [x |x], i.e.
the probability of reporting cell x when the actual location is also
within x . Based on the earlier observation, to reduce utility loss
it is important to maintain Pr [x |x] high at the upper levels of the
index.

To calculate Pr [x |x] precisely, we can solve the |X|3 constraints
in the linear optimization program of Eq. (3), according to the
input prior Π. However, estimating Pr [x |x] in isolation poses a
challenge, since it is not feasible to narrow down the effect on
a single location of all other cells (as per Eq. (4)). Hence, we
devise a method to estimate this value to an arbitrary precision.
We denote the approximation of Pr [x |x] as Φ(x), and compute it
by estimating its complement, i.e., the probability of mapping x
to another grid cell.
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Φ(x) =
1∑

n exp (− εLд
√
n)

n = a2 + b2, (a,b) ∈ Z2 (7)

where Z2 denotes the 2-dimensional infinite integer lattice whose
points are tuples of integers. Switching to coordinates with origin
at zero, and defining 0̂ ≜ x , the denominator can be understood
to be the sum over the exponents of the multiplicative distances
between Pr [0̂|0̂] and Pr [0̂|n̂]. Φ(x) is constrained to the integer
lattice to ensure that the probability mass of the entire cell is
assigned to the center of the cell, giving us a close estimate of our
desired probability.

While Φ(x) needs to be summed over the infinite lattice, the
function T (ε,д) ≜

∑
n exp (−εL/д

√
n) converges quickly. In or-

der to approximate this value within a factor of exp (−N ) for any
arbitrarily large N , we need only O(N 2 f /εL) terms. However,
when the value of ε is small, which is often the case in differential
privacy literature (with values of ε ≤ 0.5 being the most common
settings to achieve a reasonable privacy protection), straightfor-
ward computation of this value can be prohibitive. To this end,
we can apply the two-dimensional Poisson summation to expand
the series, followed by taking its Fourier transform, to obtain an
efficient approximation when 0 ≤ ε ≤

2πд
L :

T (ϵ,д) =
2πд2

ε2L2
+

∞∑
k=1

c2k−1(
εL

д
)2k−1 (8)

where the coefficients c1, c3, c5, . . . are given by

c2k−1 = 4
(
−3/2
k − 1

)
(2π )−2kζ

(
k +

1
2
)
L
(
k +

1
2
, χ4

)
. (9)

where ζ is the Riemann zeta function [23] and L(·, χ4) is the
Dirichlet L-series[25] of the non-principal Dirichlet character χ4
(mod 4), which is known to converge absolutely as

L(s, χ4) =
∞∑
n=0

(−1)n

(2n + 1)s
= 1 −

1
3s
+

1
5s
−

1
7s
+ − · · · . (10)

Since we can approximate T (ε,д) efficiently, the same is true of
Φ(x). In order to configure the budget at each level of the grid, we
formulate our problem as follows:

PROBLEM 1. Given a desired value of Pr [x |x] as ρ, and the
grid parameters: side length L, and the granularity д, estimate
the minimum budget εi that ensures at least ρ percent chance
of remaining within the boundaries of the current cell at level
i. The budget εi can be calculated according to the following
optimization problem:

Minimize:

Privacy Budget ε (11)

Subject to: (∑
n

exp (−
εL

д

√
n)
)−1
− ρ ≥ 0,

ε > 0,
0 ≤ ρ ≤ 1

(12)

Since T (ε,д) can not be written in a closed form, solving di-
rectly for ε is not achievable. Nevertheless, the expression in
Eq. (12) is monotonic in ε, hence we can utilize a simple branch-
and-bound technique [10] to efficiently get an answer with arbi-
trary precision.

Algorithm 2 summarizes the functionality of the proposed bud-
get allocation strategy. Procedure getGridParameters calculates

Algorithm 2 Grid Configuration

Input: ε, д
Output: height h, budgets ε1, ε2, · · · , εh

1: procedure GETGRIDPARAMETERS

2: υ ← ε ▷ stores the remaining budget
3: i ← 1 ▷ denotes the current grid level
4: B ← ∅ ▷ stores the budget for each level
5: while true do
6: B[i] = εi ← max{solution to Problem 1,v}
7: υ = υ − εi
8: i = i + 1
9: if υ ≤ 0 then ▷ budget expended

10: return B

the minimum budget required for each level of the grid, such that
with probability at least ρ a location enclosed within cell x is
mapped to the same grid cell. For every iteration of the while loop,
the procedure determines if there is any budget remaining for
additional levels of the multi-step mechanism. Finally, the process
halts when it expends all the budget, returning the height h and
the budget allocated at each level of the grid.
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Figure 5: Accuracy of estimated Φ for varying д

We conclude this section by providing a numerical result to val-
idate our analytical model. We illustrate the precision with which
our budget allocation algorithm estimates an effective configura-
tion of the grid for MSM (we defer the details of the experimental
setup to Section 6.1). We plot the probability Pr [x |x] for various
levels of ρ and granularity д using the Gowalla dataset. Figure 5
shows the results, assuming a uniform global prior as input. Ex-
cluding the case when the granularity is 2, the predicted value
of Φ is within ±5 percent of Pr [x |x] reported in K(X,Z), thus
validating the efficacy of the budget allocation scheme.

6 EXPERIMENTAL EVALUATION
In this section we evaluate the performance of our proposed Multi-
Step Mechanism (MSM) in terms of utility and computational
overhead. In Section 6.1 we present the details of the experimental
setup. We provide the results of comparison with benchmarks in
Section 6.2, followed by an in-depth analysis of MSM behavior
when varying system parameters in Section 6.3.
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6.1 Experimental Setup
Datasets. We use two real datasets collected from the operation
of two prominent geo-social apps, namely Gowalla and Yelp.
Each dataset consists of a set of user check-ins. Every check-in is
described by a record consisting of user identifier, the latitude and
longitude of the check-in location. The Gowalla dataset is a subset
of the user check-ins collected by the SNAP project [9] from a
location based social networking website. In our experiments, to
simulate a realistic environment of a city and its suburbs, we focus
on check-ins within a single urban area, namely Austin, Texas. In
particular, we consider a large geographical region covering a 20×
20km2 area bounded to the South and North by latitudes 30.1927
and 30.3723, and to the West and East by longitudes −97.8698 and
−97.6618. The selected data contains a total of 265, 571 check-ins
from 12, 155 unique users during a time period between February
2009 and October 2010. The Yelp dataset was made available to the
public by Yelp, Inc [3] as part of a dataset challenge, and contains
user ratings for various points of interest. Again, to simulate a
typical urban area, we utilize location data within the city of Las
Vegas, NV and its surroundings. The filtered dataset contains
81, 201 check-ins from 7, 581 unique users within a 20 × 20km2

area bounded between latitudes 36.0645, 36.2442 and longitudes
−115.291, −115.069.

Implementation. All algorithms were implemented in C++ on
a Ubuntu Linux 14.04 LTS operating system, and executed on
an Intel Core 2 Duo 2.0 GHz CPU with 4GB RAM. All data
and indices are stored in main memory. For the computation of
the linear optimization problem, we utilize the C++ interface
of the state-of-the-art commercial linear program solver in the
Gurobi Optimization Suite [22]. We used the dual simplex method
of solving linear programs throughout our evaluation since it
consistently outperformed the primal simplex and interior-point
methods in terms of numerical stability.

Prior Modeling. We compute a global prior for the Gowalla
and Yelp dataset partitions with the help of a regular grid super-
imposed on top of the data domains. The grid granularity varies
to match the grid structure used in each specific experiment. For a
given granularity, we count the number of check-ins in every cell
relative to total number of check-ins in the entire grid (a similar
approach was taken in [2, 5]). The global prior Π describes the
behavior of an average user (as a vector of probabilities for each
grid cell), and is used in the computation of the optimal mecha-
nism. We store a global prior on the finest effective granularity
grid used in the experiments and aggregate this information to
obtain priors on coarser grids. This procedure mimics the scenario
where the aggregate information about past users of the service is
made available from the service provider.

6.2 Comparison with Benchmarks
We evaluate our proposed MSM approach in comparison with two
benchmarks: the basic optimal mechanism OPT introduced in [2]
and described in detail in Section 3.2; and the planar Laplace
(PL) mechanism, for which we also include a post-processing (or
re-mapping) step by projecting its output to the grid (as discussed
in [5]).

All evaluated mechanisms are constructed to satisfy GeoInd
with privacy budget ε ranging from 0.1 to 0.9, which is a common
range used in the majority of differential privacy work [11]. Re-
call from Section 2 that a smaller ε value corresponds to stronger
privacy. Values higher than 1.0 are typically considered insuffi-
cient in terms of privacy (i.e., the attacker’s gain in distinguishing

Table 2: MSM comparison against OPT, Gowalla dataset

Granularity Utility Loss (in km) Time (in sec)
OPT MSM OPT MSM OPT MSM

4 2 2.29 2.63 0.04 0.008
9 3 1.97 2.22 205.7 0.009
16 4 — 2.02 72hrs+ 0.53

among candidate locations becomes significant). We consider sev-
eral granularities of the grid index structure, ranging from д = 2
up to д = 6 (recall that for our method, the effective fanout is
д × д at each level). We consider a value range for the probability
of hashing the user location in the same cell at a certain level
(see Section 5 for details) between ρ = 0.5 and ρ = 0.9 (default
value is set to ρ = 0.8). In all experiments, we measure the utility
loss experienced by a user of a location-based service over a set
of 3, 000 requests randomly selected from the set of check-ins
corresponding to each dataset. We consider in turn both Euclidean
(dQ = d) and squared Euclidean (dQ = d2) utility metrics. The
default value of ε is set to 0.5.

First, we compare the proposed MSM approach with the opti-
mal mechanism OPT. Due to the high overhead of OPT, we are
only able to perform the comparison in a restricted setting, for
which the linear program completes within reasonable time. Table
2 presents the utility loss and execution time values of OPT and
MSM for the same effective grid granularity (e.g., 9 × 9 granu-
larity for OPT corresponds to a 3 × 3 granularity for our method,
where the second level of MSM will have the same number of
cells as the OPT grid). We focus on the Gowalla dataset for this
experiment. We were not able evaluate the performance of OPT
for the granularity of 16 (i.e., 256 locations) because the program
did not complete within 72 hours. For 121 locations (i.e., 11 × 11
grid) OPT took 3.3 hours to complete (see Figure 3). Even for
a granularity of 9, the optimal method would be completely un-
feasible for online queries, given its running time of 205 seconds,
whereas our approach achieves sub-second processing times in all
runs. In terms of utility, for the same granularity at the leaf level
OPT does outperform MSM. This result is not surprising, since
our execution time gain is obtained by pruning the search space.
However, the additional loss of MSM compared to OPT is not
large. Furthermore, in practice, our approach is able to increase
utility by using much finer-grained grids (as we show in the next
section), whereas OPT can only function for coarse-grained grids.
In the rest of our evaluation, we no longer consider OPT, since it
is clearly not feasible in practical settings.

Next, we focus on the comparison between MSM and the pla-
nar Laplace mechanism (PL). Figures 6a and 6b plot the utility
loss of MSM and PL for varying levels of privacy on both Gowalla
and Yelp datasets, using d as utility metric. As expected, utility
loss decreases for both mechanisms as ε grows: a larger budget
corresponds to a weaker privacy requirement, hence less noise is
added. The proposed MSM approach clearly outperforms PL in
terms of utility, especially at low ε values, which are more impor-
tant because they provide appropriate privacy. As ε approaches
1, the utility obtained by the two methods becomes similar, but
as mentioned earlier, ε = 1 or higher does not provide sufficient
protection. The gain of our approach over PL is more pronounced
at low ε settings. For ε = 0.1, MSM utility loss is three times
better than the one achieved by PL.

A similar trend can be observed when comparing MSM and PL
using the squared Euclidean distance as utilty metric (Figures 7a
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Figure 6: Effect of ϵ on utility loss (Euclidean utility metric).
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Figure 7: Effect of ϵ on utility loss (squared Euclidean utility
metric).
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Figure 8: Effect of varying granularity on the utility loss (Eu-
clidean utility metric).

and 7b). This time, the gap between the two approaches is even
larger, with MSM outperfoming PL by a factor of 5 at the low end
of the privacy budget range. PL does however catch up with our
method earlier than in the case of Euclidean utility metric (around
the ε = 0.5 threshold). Still, MSM remains clearly superior in the
range of tight privacy settings.

Our results show that MSM outperforms significantly the PL
benchmark in terms of utility loss. As discussed in Section 2, PL
is very fast in terms of execution time, and it takes on average
10 milliseconds to complete. In contrast, our method is more
expensive. Still, the execution time is always below 1 second in the
worst case (which occurred for the highest considered granularity
case д = 6 and a large ε value). In most cases, the average runtime
of our method is in the range of 100 − 200 milliseconds. Even
though this is higher than PL, 100 − 200 milliseconds per query
is a small price to pay in order to increase utility significantly.
Furthermore, recall that this cost will be incurred at the client
side, so there is no danger of the server being overloaded due to a
spike in request. In terms of user experience, the additional time
required for sanitizing locations is barely noticeable.

For the rest of the evaluation, we no longer consider PL, and
we focus on analyzing the performance of the proposed MSM
method when varying its system parameters values.

6.3 MSM System Parameter Analysis
Next, we evaluate the utility of MSM when varying grid granular-
ity, while also considering several settings of ρ (shown as distinct
lines in each graph). Recall that, for MSM the fanout at each level
is д × д, hence the first level (below the single virtual root node)
has granularity д × д, the second level granularity д2 × д2, and
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Figure 9: Effect of varying granularity on the utility loss
(squared Euclidean utility metric).

so on. Figures 8a and 8b show the obtained results for the two
datasets under Euclidean distance utility metric. The general trend
is that of a “U”-shaped dependency: utility loss decreases initially
as granularity increases, which intuitively is a result of a higher
precision in reporting locations. However, after a certain point, the
utility loss starts to increase, as a high granularity will determine
more cases where the reported and actual locations are in different
cells. As a side effect, as the area of each grid cell decreases, more
budget is required at a certain level to maintain the same required
probability ρ, which can starve lower index levels of privacy bud-
get. We notice that the ideal granularity may also vary with the
dataset, as data density typically affects accuracy. For the Gowalla
dataset the best-performing granularity is at д = 5, whereas for
the Yelp dataset it is д = 4. For a given granularity, we note that a
higher value of ρ typically results in better utility, although there
are some exceptions: for instance, at д = 4, the ρ = 0.7 case
outperforms the ρ = 0.9 setting, for the reason explained above,
namely the top level uses most of the budget, and the lower levels
do not receive sufficient budget to accurately execute the linear
program.

A similar trend is observed when using squared Euclidean
distance as utility metric, as shown in Figures 9a and 9b. A higher
ρ results in better utility in the majority of cases.

Finally, we measure the effect of varying parameter ρ, with
several distinct settings of granularity (shown as different lines
in each graph). Figures 10a and 10b summarize the results for
Euclidean distance, whereas results for the squared Euclidean dis-
tance are shown in Figures 11a and 11b. For the lowest granularity
д = 2, we note a clear decreasing trend in utility loss. As the grid
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Figure 10: Effect of varying probability ρ on the utility loss
(Euclidean utility metric).
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Figure 11: Effect of varying probability ρ on the utility loss
(squared Euclidean utility metric).
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granularity grows gradually from one level to another, the algo-
rithm for budget allocation is able to allocate budget in a smoother
fashion, leading to steady progress as ρ grows (we emphasize
that although the trend is more pronounced, the absolute value of
utility is worse for the д = 2 setting compared to the rest). For
the other settings of д, due to the fact that the transition from one
level to the other is more abrupt, the net effect of ρ exhibits a
not-so-well defined trend. The д = 4 case still shows a decreasing
trend initially, but then utility loss starts to increase as ρ grows,
as a result of budget starvation at lower index levels. In the case
of д = 6, the budget starvation seems to manifest even at lower ρ
values, so the trend is constant to slightly increasing. Note that,
starvation is not necessarily a negative effect, in the sense that the
utility can still be better than the other settings. Starving lower
levels of budget may be a worthwhile choice, as long as the higher
levels keep the reported cell close to the actual cell, and in effect
the utility loss is low. We insist on the starvation concept mostly to
describe the observed trends. We do, however, note that excessive
starvation can sometime increase utility loss: in the case of the
Yelp dataset for instance, we observe that the utility loss obtained
at a finer granularity (д = 6) is higher than that obtained with
д = 4.

7 RELATED WORK
In the past decade, a vast amount of research focused on preserv-
ing location privacy. The earliest approaches used dummy genera-
tion [18, 27] to protect locations of users who issue location-based
queries. In [18], the user issues a number of redundant (fake)
queries at random locations, thus decreasing the probability that
an adversary guesses which is the real location. The work in [27]
chooses an anchor around the real location, and focuses on how
query processing can be done around the anchor in such a way that
precise results are obtained with respect to the real location (e.g.,
exact nearest-neighbor queries). Both approaches are vulnerable
to background-knowledge attacks: an adversary who knows the
map features or the patterns of user movement can filter out the
fake locations and reveal the real one.

The spatial k-anonymity (SKA) concept has been introduced
in [16] to address the limitations of dummy generation. The main
idea behind SKA is to construct a cloaking region (CR) that en-
closes at least k real users. This way, it is more difficult for the
adversary to filter out locations and narrow down the query source.
The work in [21] showed how SKA can be implemented on top
of a spatial index, but may be subject to reverse engineering at-
tacks because the CR generation algorithm is deterministic and
takes as seed the location of the querying user. Later on, [17]
introduced the reciprocity property, which shows that as long as
the same CR is generated for all k users in an anonymity set, the
adversary’s probability of identifying the user issuing a query is
bounded above by 1/k. However, all SKA approaches no longer
provide protection when users move, or when some users in the
anonymity sets disconnect. In addition, they may reveal the exact
user locations: for instance, if k users are situated inside a hospital,
it is possible for the CR to be completely enclosed by the hospital
area. Even if the attacker cannot identify which user issued the
query, s/he learns that all users are in a hospital, which is a seri-
ous privacy breach. Some later work considered spatial diversity
[12, 26], which attempted to enlarge cloaking regions such that
association with sensitive features (e.g., hospitals, nightclubs) is
reduced. However, the limitations of SKA remain in place for
spatial diversity when users move or disconnect.

The introduction of the novel semantic model of differential pri-
vacy (DP) changed the landscape of location privacy approaches.
DP is a statistical model designed to address the scenario of ag-
gregate queries, where the presence of an individual in a dataset
must be hidden. Therefore, it is not directly applicable in the con-
text of online location reporting, which is our problem setting.
However, DP can be used in the context of publishing histori-
cal datasets of locations or trajectories. For instance, the work in
[11] shows how spatial indexes can be used to release geospatial
datasets at different granularities. The authors consider quadtrees
and k-d-trees, and propose a cost model to help allocate budget
across different structure levels. While we also consider multiple
index levels, our context is a completely different one (that of
geo-indistinguishability). Furthermore, their model shows that it
is best to allocate smaller budgets towards the root of the index,
and preserve a larger proportion of the budget for the leaf level,
whereas our findings for the GeoInd setting are exactly the oppo-
site. Due to the fact that an error at the root of the structure has
more impact on data utility, we found that it is important to allo-
cate a higher proportion of the budget at the higher index structure
levels. Some other work in the context of DP [7, 8] focuses on
releasing trajectories using noisy counts of prefixes or n-grams
in a trajectory, but similar to [11], the results apply to the offline
setting only.

Geo-indistinguishability [1, 2, 5] is a novel and promising se-
mantic model that inherits the powerful guarantees of DP, but
adapts them to the setting of online location protection. Since its
introduction in 2013, several research efforts focused on finding ef-
ficient and utility-preserving techniques for implementing GeoInd.
Closest to our work is the research in [5], which proposed several
mechanisms and post-processing algorithms to improve utility.
However, as we show in our extensive performance evaluation,
those techniques are either fast and inaccurate (planar Laplace in
conjunction with remapping to grid), or they only work for very
small sets of candidate locations (as is the case with the optimal
mechanism). In contrast, our multiple-step approach is able to
achieve high utility with very reasonable computational overhead.

8 CONCLUSION
We proposed a multiple-step algorithm for protecting location
privacy according to the geo-indistinguishability model. By using
a multi-level index structure, we are able to prune the solution
search space of expensive GeoInd mechanisms, and achieve high
utility with low performance overhead. We also derived cost mod-
els that show how to judiciously allocate the available privacy
budget, and how to choose important index parameters to improve
accuracy. The resulting approach outperforms significantly ex-
isting benchmarks. In future work, we plan to investigate more
advanced cost models to better capture prior information, and
thus further improve the accuracy of our approach. We will also
investigate more complex index structures (e.g., k-d-trees and R+

trees) which can adjust better to skewed distributions of priors.
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