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ABSTRACT
Point of Interest (POI) data constitutes the cornerstone in many

modern applications. Fromnavigation to social networks, tourism,

and logistics, we use POI data to search, communicate, decide

and plan our actions. POIs are semantically diverse and spatio-

temporally evolving entities, having geographical, temporal, and

thematic relations. Currently, integrating POI datasets to increase

their coverage, timeliness, accuracy and value is a resource-

intensive and mostly manual process, with no specialized soft-

ware available to address the specific challenges of this task. In

this paper, we present an integrated toolkit for transforming,

linking, fusing and enriching POI data, and extracting additional

value from them. In particular, we demonstrate how Linked Data

technologies can address the limitations, gaps and challenges

of the current landscape in Big POI data integration. We have

built a prototype application that enables users to define, manage

and execute scalable POI data integration workflows built on

top of state-of-the-art software for geospatial Linked Data. This

application abstracts and hides away the underlying complex-

ity, automates quality-assured integration, scales efficiently for

world-scale integration tasks, and lowers the entry barrier for

end-users. Validated against real-world POI datasets in several

application domains, our system has shown great potential to

address the requirements and needs of cross-sector, cross-border

and cross-lingual integration of Big POI data.

1 INTRODUCTION
Our daily lives evolve around locations. From navigation appli-

cations, to social networks, tourism, and logistics, we use infor-

mation about locations to search, communicate, decide, and plan

our actions. Selecting a location for a given activity has a varying

complexity and significance, ranging from simple, everyday rou-

tines (e.g., where to have dinner), to more complex planning (e.g.,

where to open a shop), and to life-changing decisions (e.g., where

to live, work or invest). Locations that exhibit a certain interest

or serve a given purpose are commonly referred to as Points of

Interest (POIs), covering anything from shops, restaurants or mu-

seums to ATMs or bus stops. POIs are complex entities that are

characterized by their geospatial shape (points, lines, polygons)

along with various thematic attributes indicating their name, type,

functionality, services, etc., as well as their relations to each other

(e.g., containment, part-of) with respect to spatial, temporal, and

thematic contexts.
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Creation, update, and provision of POI datasets is a multi-

billion, cross-domain, and cross-border industry. Advances in

the timely and accurate provision of POIs result into signifi-

cant direct and indirect gains throughout our Digital Economy
1
.

The value and impact of POIs is reflected in the complex, ex-

pensive and labor-intensive effort required for their production

and maintenance, which inherently involves stakeholders and

users throughout their value chain. Initial production involves

field-work, constant monitoring for their evolution and accuracy,

integration of user-feedback mechanisms for reporting errors,

quality assurance of new data, and roll-out across a plethora of

services and products. The greater the size, timeliness, richness,

and accuracy of POI data, the better the product’s value. Inversely,

incomplete or inaccurate information has a profound effect on

all types of end-users and applications.

The value chain of POI data has rapidly changed in the last

few years. The advent of open data, crowdsourcing, and social

media provides new data sources of even greater volume, het-

erogeneity, diversity, veracity, and timeliness. Such Big POI Data

assets are harnessed by both startups and established commercial

vendors alike to enrich their products, while also giving rise to

new business models founded on domain-specific collection and

provision of POIs (e.g., Foursquare
2
, Yelp

3
). Enrichment, curation,

and update of POI data is increasingly becoming collaborative,

with stakeholders and end-users actively involved in all steps of

the value chain. This intensifies the challenges relating to their

quality-assured integration, enhancement, and sharing.

POI data is by nature semantically diverse and spatiotemporally

evolving, representing different entities and associations depend-

ing on their geographical, temporal, and thematic context. Due to

its use in various domains and contexts, POI information is typi-

cally fragmented across diverse, heterogeneous sources. These

are common issues in Big Data integration [7], but combining

and assembling POI information is further hindered in practice

by the lack of common identifiers and data sharing formats. Even

the way we typically identify and share information about POIs is

inherently ambiguous. Addresses, coordinates, and place names

are equally used throughout applications as pseudo-identifiers;

but practice shows that they fail to effectively disambiguate POIs.

Integrating POI data using current approaches remains labor-

intensive and does not scale, thus limiting data coverage. The

industrymakes typically two compromises to reduce the complex-

ity to feasible levels: focus on a specific domain (e.g. fuel stations),

and/or restrict the spatial-, temporal-, and feature-space of data.

In both cases, this leads to loss of information and thus lost value.

1
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2018:0232:FIN

2
https://enterprise.foursquare.com/products/places

3
https://www.yelp.com
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To tackle these challenges of Big POI data integration in the

context of the SLIPO project
4
, we transfer knowledge and ap-

ply state-of-the-art techniques and tools from the domains of

Linked Data, Big Data and GIS. We argue that Linked Data tech-

nologies [2] are ideally suited to handle the inherent geospatial,

thematic, and semantic ambiguities of POIs, without resorting

to general-purpose entity matching platforms [16]. Recent ad-

vances in spatially-aware Linked Data technologies
5
address the

scalability challenges of integrating, enriching, and querying

semantically diverse geospatial Big Data assets and can effec-

tively maximize the value extracted from open, crowdsourced

and proprietary data sources.

The scope and ambition of our work in terms of complexity

and coverage is inherently defined by current practices and needs

in the industry. Indicatively, HERE Places API
6
offers information

about 55 million POIs with names and categories in 237 countries;

Google Places API
7
advertises over 150 million POIs globally;

from OpenStreetMap, we have extracted more than 18.5 million

POIs regarding specific categories
8
. Hence, we are targeting data

integration concerning millions of POIs. We provide a complete

suite of integrated software and services for POI data integration,

supporting all stages of the POI data lifecycle (transformation,

linking, fusion, enrichment). Our prototype application employs

mature, scalable, open-source software specialized in geospatial

linked data integration. We have tested its operation against

several use cases for POIs in different application domains (geo-

marketing, tourism, navigation) with very encouraging results

concerning execution cost and accuracy. Our experience shows

that stakeholders can orchestrate those tools in coordinated, iter-

ative workflows to progressively increase both the size and the

quality of the integrated POI data.

The remainder of this paper is organized as follows. Section 2

presents the main challenges concerning Big POI data integration.

Section 3 outlines the POI data integration lifecycle applied in

SLIPO. Section 4 describes the SLIPO data model for representing

information about POIs throughout the executed workflows. In

Section 5, we explain the specific processes involved in the POI

data integration process. Section 6 outlines the provided function-

alities for extracting value-added analytics from the integrated

POI datasets. Section 7 presents the current status of our proto-

type application. In Section 8, we report our experience from POI

data integration scenarios in two real-world use cases. Finally,

Section 9 summarizes the paper and discusses future work.

2 CHALLENGES IN POI DATA INTEGRATION
POIs are complex entities, described and associated with multi-

faceted and multi-modal information. They also exhibit complex

(spatial, temporal, thematic) relationships, and they often have a

long and complex lifespan. Any effective and systematic approach

towards POI data integration needs to rely on robust, flexible and

semantically-rich modeling of POI profiles and handling of POI

identifiers, especially for applications dealing with cross-sector,

cross-border, and cross-lingual content.

Consider a simple example regarding an imaginary POI. Sup-

pose that the “Acropole Palace Hotel” was registered in 2015 at

the local Yellow Pages directory and was assigned an identifier,

along with some basic information (name, address, telephone,

4
Acronym for Scalable Linking and Integration of big POI data, http://slipo.eu/

5
blog.geoknow.eu/the-linked-data-stack, http://aksw.org/Projects/LOD2.html

6
https://developer.here.com/products/geocoding-and-search

7
https://cloud.google.com/maps-platform/places/

8
http://slipo.eu/?p=1397

Figure 1: Matching different representations of the same
POI coming from two data sources.

fax), as illustrated at the upper side in Figure 1. Later on, its ad-

dress was geocoded and the resulting location coordinates were

also included in the record to be used in a mobile city guide. At

some point in time, this hotel was acquired by another company,

which renovated and rebranded it to “Xenia Hotel”, and also

opened a restaurant at the roofgarden. This hotel is since listed

in a hotel reservation application under a new identifier and with

updated, multi-lingual information, which also features its cur-

rent offers and services, as well as customer ratings (shown at the

bottom side of Figure 1). Such changes need to be detected and

included in the mobile city guide application, by matching and

integrating new POI representations with old ones to avoid dupli-

cates and to update obsolete information. In this example, such a

matching (denoted with an owl:sameAs link) can be based on the

phone number and the address of this POI (properties marked

with red color in Figure 1). The challenge arises from the inherent

heterogeneity in POI data characteristics. As shown in this exam-

ple, this involves diverse attribute schemata, varying formats in

values (e.g., in phone numbers) or different representations of

the same information (e.g., address represented in a structured

or unstructured format), which need to be resolved to determine

whether these two records actually refer to the same POI.

This example is only indicative of how different companies in

different sectors and application domains collect, use, and extend

information about the same POI. It also points out the importance

of volatile data in the POI profile, e.g., its facilities, prices, events,

etc. Moreover, it brings up several cases of ambiguity that arise

and lead to data integration challenges that stakeholders have to

face throughout this process. Next, we outline these challenging

issues in POI data integration:

• Lack of standardization. Even though POI data is ubiquitous,

there are no de jure standards yet for POI models, formats and

identifiers. This is due to licensing and commercial competition,

different hardware and software characteristics, and diverse

requirements among mobile and web applications. Thus, POI

datasets provided by different vendors are often not compati-

ble with each other and require excessive effort and domain

knowledge to be integrated and reused. At the most basic level,

there are no (globally) unique identifiers assigned to POIs, mak-

ing it difficult to identify duplicates among datasets and to link

together different pieces of information for the same POI.
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• Inherent ambiguity of POIs. POIs are entities having a twofold

nature, geospatial and semantic; moreover, their characteristics

and associated information evolves over time. This results in

multiple sources of ambiguity when dealing with POI data.

In the spatial dimension, coordinates given for the same POI

in different sources typically differ, while the spatial extent

of a POI is often ignored, and its location is abstracted and

approximated by a single point. Even if the shape is retained,

it may have varying levels of accuracy. Hence, when encoun-

tering multiple POIs in different sources with slightly different

coordinates or shapes, it is challenging to determine whether

these refer to the same or different real-world entities. Similar

issues arise when using POI names. The same POI may ap-

pear with slight naming variations in different sources, while

different POIs may in fact have the same or similar names.

Furthermore, different sources employ different classification

or tagging schemes to categorize POIs and describe their type.

This ambiguity is amplified when the temporal dimension is

introduced, e.g., for determining whether two different repre-

sentations refer to the same POI that evolved over time (as in

Figure 1) or to two distinct POIs.

• Long update cycles. Due to the effort needed for maintaining

and curating POI datasets, the contained information often

remains relatively static. Further, it typically focuses on cer-

tain, mostly factual aspects of a POI, such as its title and a

set of categories or tags. When and how this information is

updated depends on the way it is collected and the available

resources. Hence, for most providers, POI data is updated in

yearly cycles. Moreover, if and when it is refreshed, typically

the dataset will just be updated to the latest version, as it is not

straightforward to apply a systematic and principled approach

for recording and representing the evolution that has occurred,

or more generally to track and record events that are related to

that entity. Hence, even though such information may actually

exist, there is often no historical profile of a POI that evolves

over time and keeps track of associated events.

• Fragmented POI profiles. Based on how and for what purpose

a POI dataset has been created, its contents typically cover

only certain aspects of the POIs. For example, a navigation

service and a city guide may have different priorities when

deciding which POIs to include and what kind of information

about them to collect. Although a wealth of information may

exist for a POI, different parts and pieces may be found in

different (types of) sources. Still, more complete POI profiles

would allow more sophisticated and accurate analyses.

• POIs treated independently and out of context. POI datasets

are typically treated as collections of individual entities. Each

POI is modeled, stored and analyzed independently, without

considering or establishing connections and links to other POIs.

The reason is that relationships between POIs are more difficult

to model, represent and analyze. However, this significantly

limits the type of analyses that can be carried out over sets of

POIs and creates gaps with the actual needs of users.

In SLIPO, our approach places particular emphasis on these

issues related to POI models, identifiers, and resolving the afore-

mentioned cases of ambiguity, as explained next.

3 THE POI DATA INTEGRATION LIFECYCLE
In this Section, we provide an overview of the POI data integra-

tion lifecycle supported in SLIPO. The underlying idea of our

Figure 2: The POI data integration lifecycle.

proposed system is to address the POI data integration challenges

in the Linked Data domain [2]. Thanks to a simple, standardized,

yet flexible model (Resource Description Framework
9
), Linked Data

technologies can handle the inherent geospatial, thematic, and

semantic ambiguities of POIs. Existing POI data assets need first

to be transformed into RDF, so that individual POI profiles can be

interlinked, fused, and enriched. This takes place in successive

steps that progressively increase the size and/or the quality of

POI data throughout a virtuous cycle, implementing an iterative

workflow (Figure 2). Next, we outline the purpose of each stage,

the processes that take place, and their output.

The lifecycle begins with a transformation stage. This assumes

as input POI data collected from heterogeneous and diverse data

sources (proprietary, open, crowdsourced), having different at-

tribute schemata and formats. The spatial, temporal, and thematic

attributes in the input data are transformed into RDF triples con-

forming to a common, vendor-agnostic, well-defined, yet agile

and extendable POI ontology. Hence, schema mappings from at-

tributes of the original schemata to the classes and properties

of this ontology are applied. After transformation, the resulting

RDF triples can be stored in files or in an RDF store.

Subsequent stages are applied in the Linked Data domain

against the previously transformed RDF data comprising an itera-

tive, step-wise workflow that first increases the size, and then the

quality of POIs. This forms a virtuous cycle that begins by expand-

ing POI coverage, completeness, and richness, delivering data of

greater size. Then, it focuses on increasing the quality of the POI

data, fusing these intermediate results and enforcing appropriate

quality assurance algorithms. This inherently reduces the size of

data in absolute numbers, but increases their value. This process

can be repeated in the same manner, iteratively increasing the

size and then refining to increase quality, as many times as re-

quired. For example, an expert user can introduce additional data

sources, apply different rules, focus on other types of metadata,

etc. Such an iterative workflow involves the following stages:

• Interlinking. This is applied among transformed RDF datasets

to link together individual RDF representations of the same

real-world POI. It exploits structural properties, textual simi-

larities, spatial proximity, etc., based on various user-specified

9
https://www.w3.org/RDF/
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metrics and thresholds. This deduplication process creates

owl:sameAs links between matching POI entities, thus tack-

ling the lack of common identifiers between POI entities across

data sources, and enabling their management at later stages of

the integration process.

• Enrichment. This step identifies and retrieves additional infor-

mation from external sources that relates to the processed POIs,

and creates extra properties for these POIs, increasing the rich-

ness and completeness of the data. It also discovers semantic

relations between POI entities and other resources (e.g. areas,

events, time), such as partOf relations (e.g., a school yard is

part of a school etc.) or occursAt relations (e.g., events at a

certain venue). Essentially, this phase enhances and contextu-

alizes POI profiles with information extracted and assembled

from other relevant sources, leading to a multi-faceted and

more comprehensive view of POIs. For instance, it can enrich a

POI profile with extra information concerning opening hours,

price ranges, event timelines, etc.

• Fusion. This stage consolidates linked POIs and their proper-

ties. From two linked POI entities, it produces a unified and

consolidated representation that is more complete, concise and

accurate than the individual initial linked entities. For match-

ing properties (e.g., similar names, nearby geometries) between

a pair of linked entities, potentially different fusion actions

can be applied. Fusion actions may include selection of proper-

ties from one of the entities, merging of properties from both

entities, selection of those properties that satisfy a specific

criterion (e.g., more complex, more timely), etc. Eventually,

this leads to significant increase in completeness, coverage,

timeliness and quality of POI data.

• Value Added Analytics. The POI data lifecycle includes an addi-

tional step, offering large-scale aggregation analytics in various

dimensions, clustering, association rule mining, and predictive

analytics. We can perform large-scale spatial, temporal, and

thematic aggregation or extract associations between POIs and

other entities. Results can be modelled as integrated sets or

sequences of POIs. For instance, such a set can represent a

thematic area of interest not explicitly defined in the original

data, but implicitly discovered; this encapsulates a set of POIs

that are spatially co-located and related thematically for direct

exploitation in several use cases (e.g., geomarketing).

Quality assurance is performed throughout all steps of the life-

cycle and ensures that each phase produces correct and accurate

results, taking into account dataset-specific and use-case-specific

quality indicators and rules, including also manual validation and

authoring. Several indicators can be used, most of them already

adopted by industrial vendors that manage and exploit POIs: size,

timeliness, coverage, accuracy, etc.

Eventually, at the end of the POI data integration lifecycle,

another transformation is also required. This involves the reverse

transformation of the integrated POI data back to conventional

formats (i.e., de facto POI formats), enabling their use in existing

products, systems and services.

4 POI DATA MODEL
We have developed a comprehensive ontology for POI data to

model and represent multi-faceted and enriched POI profiles and

thus leverage Linked Data techniques and tools for POI data in-

tegration. This model accommodates and extends existing POI

formats, providing a uniform and semantically rich model for

Figure 3: Main classes and properties in the POI ontology.

assembling and managing POI data from heterogeneous sources,

since a widely accepted, de facto model is missing. To design this

ontology, we have taken into consideration POI data represen-

tations employed by several well-known and widely used POI

data sources. These included both open data sources, like Open-

StreetMap andWikimapia
10
, as well as proprietary data schemata

like Foursquare or Google Places. We also studied the structure

of POI data assets based on samples obtained by commercial

vendors in several countries (Austria, Germany, Greece). Finally,

we investigated other efforts, especially an ongoing work on POI

modelling by W3C and OGC Working Groups
11
, as well as mod-

els for representing places proposed by collaborative projects
12
.

The main challenge in POI data modelling arises from the high

degree of heterogeneity across sources, given that these have

different scope, goals and purposes. Thus, they model POIs from

different perspectives and with varying levels of detail. Among

the main issues we addressed with our POI data model are:

• Names: Accommodate the presence of different types of names

(e.g., official vs. commonly used ones), alternate or historical

names, acronyms, multi-lingual names, etc., as well as phonetic

transcriptions or transliterations useful for internationalized

POI information.

• Addresses: Represent addresses both in structured formats (sep-

arate components for country, city, street, house number, etc.)

and flat formats (concatenated strings), with potentially miss-

ing information in either case.

• Geometry: Allow both for point geometries (longitude and lati-

tude coordinates) and more complex geometries (lines, poly-

gons), potentially in different coordinate reference systems.

• Classification: Support both hierarchical categorizations (i.e.,

categories, subcategories, etc.) and free tags.

• Source of POI data (e.g., a commercial vendor) may be specified

using its title, homepage, description, license, logo, etc.

• Media: Support for auxiliary assets such as photos, videos or

audio associated with a POI.

10
http://wikimapia.org/api/

11
http://www.opengeospatial.org/projects/groups/poiswg

12
https://schema.org/Place
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• Contact information: Include various elements, such as phone,

email, fax, Web page, social media accounts, etc., with different

structures and formats.

• Amenities: Include extra information on a variety of attributes

such as offered services, opening and/or popular hours, ratings,

payment methods, etc.

Figure 3 illustrates a graph with the main classes and object

properties of our OWL ontology
13

as used internally in the POI

data integration lifecycle. POI is the main class for representing

POI features and is modelled as subclass of a spatial Feature in
GeoSPARQL [24], thus directly inheriting properties regarding

geospatial location. It supports multiple geometric representa-

tions, and the type of each geometry (e.g., centroid, navigation

point, map pin, boundary) may be specified as well. Extra at-

tributes for specialized use cases not covered by the ontology can

be represented in the form of key/value pairs.

Overall, this ontology adheres to well-established standards

(RDF, GeoSPARQL) and is geared towards processing efficiency.

In addition, it can be extended and enhancedwith domain-specific

POI profiles, which include additional properties and relation-

ships. We are currently working on modelling the provenance of

POIs and their metadata, their evolution across time leading to

different versions, as well as changes occurring to their contents

and representation (e.g., extra attributes).

5 POI DATA INTEGRATION STEPS
SLIPO offers a complete and integrated suite of software tools that

support all steps of the POI data integration lifecycle. All tools are

available as open source software and are the state of the art in

geospatial linked data integration. Specifically, the suite includes:

(a) TripleGeo, for POI data and metadata transformation into

RDF; (b) Limes, for interlinking of POIs; (c) Fagi, for the fusion of

linked POI data into unified, concise and complete descriptions;

and (d) Deer, for enrichment of POIs with implicit metadata, third

party datasets and thematic, temporal and spatial metadata. Next,

we describe them in more detail.

5.1 Transformation
Transformation is the entry point for POI datasets, converting

them from their original format to RDF, thus enabling their subse-

quent processing in the Linked Data domain. We have extended

our open-source Extract-Transform-Load (ETL) software Triple-

Geo [25] to enable scalable and efficient transformation of POI

datasets from a variety of de facto geospatial formats into RDF

triples. In TripleGeo
14
, we employ adaptable, configurable, and

reusable mappings from existing attribute schemata into our POI

ontology (Section 4). We also support classification hierarchies

for assigning categories to POIs. Moreover, TripleGeo can han-

dle all common geometry data types and established coordinate

reference systems. Its main features include:

• Native support for a multitude of geospatial data formats. Cur-

rently, TripleGeo supports 9 common file formats (e.g., ESRI

shapefiles, GML, KML, CSV, JSON), and JDBC-based access to

8 geospatially-enabled DBMSs (e.g., Oracle Spatial, PostGIS).

• Improved geospatial support not only of primitive geometry

types (points, linestrings, polygons), but also more complex

geometries (MultiPolygons, Geometry Collections), as well as

on-the-fly reprojection to another coordinate reference system.

13
OWL ontology is available at https://github.com/SLIPO-EU/poi-data-model

14
https://github.com/SLIPO-EU/TripleGeo

• User-defined mappings specify rules that dictate how to gener-

ate RDF triples from original thematic attributes in the input

POI data according to a given ontology. Such mappings allow

transformation of all available attributes per POI entity and

can be specified in the generic RDF Mapping Language RML

[5, 6]. We also provide an alternative, simplified mapping facil-

ity specifically tailored to our ontology, offering much faster

transformation even for very large volumes of POI data.

• Classification schemes. POI data providers employ diverse clas-

sification or tagging schemes to categorize POIs and describe

their type. TripleGeo accepts specification of (possibly hierar-

chical) classification schemes for POIs, produces RDF triples

that fully describe this information along with especially as-

signed URIs, and introduces extra links between a POI and its

respective category under this scheme.

• Customized URIs. We construct HTTP Universal Resource Iden-

tifiers for POIs based on automatically generated Universally

Unique Identifiers (UUIDs). This follows recommended pat-

terns and best practices for creating persistent, unique, vendor

and technology independent URIs. Thus, POI data owners have

enough flexibility and control over creating andmanaging their

own POI identifiers, while still adhering to a uniform format.

• Reverse transformation from RDF to all common geographical

file formats. POI data that have been interlinked, fused, and

enriched in previous executions of the POI data integration

lifecycle can become accessible and exploitable by existing

software (e.g., DBMS, GIS) or services (e.g., web mapping, route

planning) commonly utilized in the industry.

• Comprehensive configuration. Users can control various pa-

rameters of the transformation process at different levels of

complexity based on their technical background and expertise.

• Compliance to standards. The produced RDF geometries are

fully compliant with the OGC GeoSPARQL standard for RDF

spatial entities [24]. Transformation of INSPIRE-aligned data

and metadata [10] is also supported [26], thus abiding by the

EU Directive for interoperable Spatial Data Infrastructures.

• Scalability. Our experiments with various data sources show

that TripleGeo is currently orders of magnitude faster com-

pared to its original release [25], aswell as faster thanGeoTriples

[17]. It can efficiently transform millions of POIs even without

any sophisticated data partitioning schemes. Indicatively, it can

transform all 7.4 million POIs extracted from OpenStreetMap

for Europe into RDF triples in less than 3 minutes, effectively

generating more than 715,000 triples/sec.

Using TripleGeo, we have launched a free download service
15

that offers global POI data extracted from OpenStreetMap and

transformed into RDF format, retaining all original tags and also

creating resolvable, machine-readable URIs per POI.

We are currently working on extending TripleGeo towards

semi-automatic workflows to assist and guide users in creating

attribute mappings for new datasets. We have built a utility that

employs Machine Learning to learn new mappings from a corpus

of previously specified ones, available from the various use cases

of POI datasets we have handled so far. This utility also analyzes

the contents of each attribute in a new POI dataset, based on

its data type (string, numeric, etc.), formatting (e.g., phone num-

bers, postal codes), as well as the presence of special characters.

Users can then verify or modify the automatically suggested

mappings through a graphical interface before applying them for

transforming their POI data into RDF.

15
http://download.slipo.eu/results/osm-to-rdf/
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5.2 Interlinking
The aim of interlinking POI datasets is to develop scalable ap-

proaches for integrating massive heterogeneous, and incomplete

POI data at a world-scale. Limes
16

is integrated in SLIPO and in-

corporates many algorithms for performing efficient interlinking

among POI resources. In the context of SLIPO, Limes receives as

input two RDF POI datasets conforming to the SLIPO ontology.

Thus, Limes’s input POI data are first transformed by TripleGeo,

into the proper RDF format and schema. Further, apart from the

two input POI datasets, Limes requires as input a configuration

file containing the Limes configuration parameters. Limes’s out-

put consists in a single file, which contains the links between

corresponding POI entities from both input POI datasets. The

output of Limes is essential for running other SLIPO tools in a

POI data integration cycle (Figure 2).

Limes v1.0.0 is the first version of Limes that has been devel-

oped in the context of the SLIPO project and focuses on POI-

specific interlinking. One of the major goals was to abstract as

much complexity as possible from the end users. So, in order to

keep user interaction at a minimum and requiring no knowledge

of Linked Data technologies and concepts, we aimed at adapting

and fine-tuning Limes’s functionality specifically for POI data,

as well as at automating the interlinking process as much as

possible. To this end, we emphasized on the development of the

backend of the platform, aiming to enrich and specialize the core

interlinking functionality of the framework. Next, we outline the

new features and functionality of Limes:

• POI-specific point-set distances. New point-set distances based

on the vector representations of the POI resources (e.g. Haus-

dorff, mean, surjection and sumOfMin). Altogether, we imple-

mented a set of 10 point-set distance functions based on our

survey published on [30].

• Topological relation discovery based on the vector representa-

tions of the POI resources (e.g. a POI resource contains, crosses

or touches another POI resource). For instance, find all park-

ing locations within shopping malls. Therefore, we develop

Radon [8, 29], an efficient algorithm for rapid discovery of

topological relations among POI resources with 2D geometries.

• Temporal relation discovery based on timestamps associated

with the POI resources (e.g., one POI takes place after, before

or during another POI). For example, a specific area is used

as a parking location only during a football match. To tackle

this problem, we proposed Aegle [13], a novel approach for

efficient computation of links between POIs’ temporal repre-

sentations according to Allen’s interval algebra.

• Combining the new techniques with the ones already in Limes.

In Limes v.1.0.0 we integrated the novel algorithms for the 10

POI-point-set distances as well as Radon and Aegle into the

Limes core. In particular, a new mapper is implemented for

each of the new relation types. Such mappers are combined

with the already existing mappers for efficient link discovery

of the new types of relation specific for POI resources.

• Novel machine learning approaches for POI interlinking. In most

cases, finding a good metric expression
17

(i.e. one that achieves

high F-Measure in interlinking POI entities) is not a trivial task.

Therefore, in Limeswe implementedWombat, a novel machine

learning approach for auto-generation of mappings among POI

resources. Wombat is inspired by the concept of generalisation

16
https://github.com/dice-group/LIMES

17
A metric expression is a logical expression that describes when two resources

should be linked.

in quasi-ordered spaces [28]. Wombat minimizes the Limes

configuration task by providing unsupervised, supervised and

active learning versions.

• Integration with the SLIPOWorkbench. Limes v.1.0.0 realizes two

deployment modes: (a) standalone, as an individual software

that accepts as input linked POI datasets and provides as output

a mapping file containing the links between the input POI

datasets; (b) deployment within the SLIPO Workbench, where

Limes serves as an integral component of the SLIPO Toolkit and

is loosely integrated by the SLIPO Workbench with the other

software components into forming POI integration workflows.

• Scalability. In addition to the original Limes parallelization algo-

rithm [31] and optimized planners [12, 22], in Limes v1.0.0 we

evaluated the scalability of our novel POI-specific approaches.

Our evaluation proves that Radon [8, 29] is able to outper-

form state-of-the-art approaches up to 3 orders of magnitude

while maintaining a precision and a recall of one. Also, our

evaluations of the runtime of Aegle [13] show that Aegle

outperforms the state of the art by up to 4 orders of magnitude

while maintaining a precision and a recall of one. Recently,

we have implemented a simple, yet efficient in our setting,

distributed execution scheme, which functions independently

of core interlinking in Limes. Specifically, we have two imple-

mentations based on Spark and Flink frameworks. Currently,

we run an intensive evaluation for both frameworks to find

the pros and cons of each. Finally, we studied the effect of

geometry simplification on the scalability of POI interlink-

ing [1]. We found that a suitable simplification setting can

reduce interlinking cost with a minimum effect on quality.

5.3 Fusion
The fusion process in SLIPO follows the interlinking of different

representations of the same POI across data sources. Fusion ad-

dresses the problem of assembling partial and incomplete POI

profiles as well as resolving conflicting information in order to

derive a more complete, consolidated profile per POI.

Fusion receives as input two POI datasets as well as a set

of links between them. The output is a third merged dataset,

which contains consolidated descriptions of the linked POIs. Each

POI in the fused dataset is described by a set of richer, non-

redundant, non-conflicting and complete properties, which have

been derived by merging the initial descriptions of the linked

POIs. The main challenge in this task is to efficiently apply the

most appropriate fusion action in such way that the best elements

of individual datasets are kept in the final composite dataset.

To support scalable and quality assured fusion of large POI

datasets, we have extended our fusion framework Fagi [14]. Ini-

tially, Fagi was a map-based, user-interactive platform for manu-

ally performing property matching and fusion actions on individ-

ual properties of linked geospatial entities. In SLIPO, we adapted

Fagi
18

to effectively handle the fusion of POI data, while we also

minimized manual user effort. Specifically, the current version

offers the following main features:

• Advanced fusion facilities for POIs. Fagi supports the graphi-

cal authoring of POI fusion specifications. These sets of rules

examine the individual properties of pairs of linked POIs and

decide, for each property, the most fitting fusion action. Fagi

currently incorporates 25 condition functions for examining the

properties of linked POIs, including string similarity, geome-

try comparison, etc. Further, it implements 15 fusion actions

18
https://github.com/SLIPO-EU/FAGI
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(regarding both thematic and geospatial properties) for decid-

ing how to merge the values of matching properties. Fusion

actions include: aligning geometries, maintaining the most

complex value, maintaining both values for the same property,

etc. Finally, combining several condition functions can be used

to construct more elaborate fusion rules, while fusion results

can also be marked as ambiguous for later inspection by the

end user.

• Link validation functionality. An important aspect of quality as-

surance lies in validating the fusion input and decidingwhether

the linked entities should be either fused, further examined,

or rejected as erroneous. To this end, in Fagi we define a set

of validation actions, as well as a validation rule specification

scheme. Similarly to POI fusion specifications, the user can

define elaborate link validation specifications that jointly ex-

amine several properties of pairs of linked POIs in order to

maintain or reject the specific linked POIs.

• Quality indicators extraction. Further emphasizing on quality

assurance, Fagi supports the extraction of more than 25 quality

indicators. The user is able to review several statistics on the

input linked POI datasets before performing fusion on them

(pre-fusion statistics), as well as on the output fused data (post-

fusion statistics). The former provide an overview of the data

at hand, which assists the integrator to properly define and

configure the validation/fusion rules. The latter assist the user

in the inspection of the fusion results, and potentially guide

her into re-configuring and re-executing the fusion process.

• Recommendation of link validation and fusion actions. Fagi

implements learning mechanisms for training on past user

actions and recommending link validation and fusion actions

for new POIs. It learns binary (for link validation) and multi-

class (for fusion actions) classifiers on a series of extracted

training features regarding the properties of the linked POIs.

Then, it recommends actions for new pairs of linked POIs.

The aforementioned functionality of Fagi satisfies commercial-

level data fusion needs. In a typical fusion scenario, the user can

define configurable and re-usable fusion rule specifications of

varying complexity, which collect names from different datasets

in multiple languages or types (such as official, international,

brand-names etc.) and complete other attributes, such as address

information, websites, phone numbers, emails, ratings, reviews,

opening hours, image links, etc. The resulting fused dataset then

contains POIs with the most complete and accurate descriptions,

as well as more precise and/or more complex geometries. Addi-

tionally, the user is able to examine a plethora of quality indicators

and use them to assess and potentially improve the quality of the

fusion process.

Fagi v2.0 focuses on satisfying the effectiveness and perfor-

mance requirements of fusing Big RDF POI data. Thus, an impor-

tant effort has been made to fine-tune the underlying algorithms

in order to increase their efficiency and scalability. The perfor-

mance of the current implementation of Fagi is tested against

real-world commercial POI datasets, by applying a custom parti-

tioning and distributed processing scheme that occupies 10 nodes

and takes less than five minutes to fuse 1 million linked POIs,

which corresponds to a country-level fusion process.

5.4 Enrichment
Enrichment is one of the main parts of the data integration pro-

cess. In SLIPO, enrichment focuses on POI entities that are char-

acterized by a set of major properties (e.g. name, coordinates and

category) as well as potentially several additional properties (e.g.

address, telephone, email, rating, etc.). Enrichment considers one

or more input dataset(s) containing POIs. The goal of enrichment

is to produce one or more enriched dataset(s), containing better

descriptions of the input POIs based on information retrieved

from external, third-party RDF data sources (e.g., SPARQL end-

points, DBpedia). That is, each POI entity in the final, enriched

dataset must be described by a set of RDF triples that have been

derived by merging the initial description for the POI with those

generated via various enrichment operations. Note that some

enrichment approaches can define a set of triples to be removed

from the original POI descriptions. Those removed set of triples

are either wrong or inaccurate. The enrichment process can also

replace inaccurate triples with ones with correct values. Consid-

ering the big picture of the POI integration lifecycle (Figure 2),

the enrichment process is tightly interconnected with validation

and quality assurance. To this end, the enrichment process needs

to incorporate several mechanisms to assess the quality of the

proposed enrichment operations and their results.

The enrichment task is carried out via our generic enrichment

component Deer
19

[27]. Deer incorporates many approaches

for performing efficient enrichment among POI resources. In the

context of SLIPO, Deer receives as input one or more RDF POI

dataset(s) conforming to the SLIPO ontology. Thus, Deer’s input

POI data are first transformed by TripleGeo into the proper

RDF format and schema. Moreover, Deer input datasets may be

linked via Limes prior to be enriched by Deer. Further, Deer

requires as input a configuration file containing its configuration

parameters. Deer’s output consists of one or more files that

contain the enriched versions of the respective input datasets.

Deer offers a set of enrichment operators, i.e., artifacts in charge

of enriching input POI dataset(s). The input for such an enrich-

ment operator is a set of one or more datasets. The output is

also a set of one or more enriched datasets. In the following, we

highlight some of Deer’s enrichment operators:

• The Dereferencing enrichment operator. For POI datasets which

contain similarity proprieties links (e.g. owl:sameAs to DBpe-

dia resources), we deference all links from our source dataset

to other datasets (e.g., DBpedia) by using a content negotiation

on HTTP. The returned set of triples needs to be filtered for rel-

evant POI resources. Here, we use a predefined list of attributes

of interest. Among others, we look for geo:lat, geo:long,
geo:lat_long, geo:line and geo:polygon. This list can be

reconfigured via Deer’s configuration.

• The NLP Enrichment Operator enriches POI resources by ex-

tracting embedded POI information hiddenwithin the datatype

properties and making it explicit as new triples added to the

original POI dataset. For example, find all POIs embedded

within the description of all hotel POIs and add them as new

triple to the respective hotel POI. The current version of Deer

uses the Fox [33] framework for Named Entity Recognition

(NER). By default, Deer extracts the POIs based on DBpedia

as the background knowledge base. As Deer is a generic POI

enrichment framework, the used NER framework can be con-

figured as well as the used background knowledge base.

• The Geo-Distance Enrichment Operator aims to enrich a set of

POI pairs (not necessarily of the same type) with the great

elliptic distance between them. For example, the geo-distance

operator can enrich all hotel POIs by adding the distance to

the nearest POIs of bus stations/parking lots/hospitals.

19
https://github.com/dice-group/DEER
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5.5 Quality Assurance
Each SLIPO component provides a collection of several qual-

ity indicators and statistics. They all produce verbose execution

metadata that can either be visualized or downloaded for fur-

ther inspection by the end user. Particular effort has been put in

Limes, Deer, and Fagi for POI linking, enrichment and fusion

respectively. In particular, both Limes and Deer implement a

series of quantitative quality indicators, such as run-time, num-

ber of added triples and percentage of data increase after link-

ing/enrichment. Further, both Limes and Deer provide the quali-

tative quality indicators of precision, recall, and F-measure in cases

where benchmark datasets are available. In case no benchmark

dasasets are available, Limes is still able to provide the pseudo-

precision, pseudo-recall, and pseudo-F-measure first introduced

in [23]. The basic assumption behind these pseudo measures is

that symmetrical one-to-one links exist between the resources in

source and target datasets. Our pseudo-precision computes the

fraction of links that stand for one-to-one links and is equivalent

to the strength function presented in [15]. The pseudo-recall

computes the fraction of the total number of resources (i.e. from

both source and target datasets) that are involved in at least

one link. Finally, the pseudo-F-measure is the harmonic mean of

pseudo-precision and pseudo-recall.

Fagi implements a series of quality indicators (e.g., percent-

ages of fused properties vs. initial POIs/initial links, average num-

bers of POI property completeness) that compare the linked POI

datasets and the resulting fused POIs. In particular, attribute gain

indicates the percentage of extra properties compared to the orig-

inal (e.g., a gain of 0.4 on a given POI means it was complemented

with 40% additional attribute values). Confidence indicates the

degree of similarity (in names, geometry, phone number, etc.)

between the original features that were fused into a unified one,

with values close to 1 indicating almost perfect match. These in-

dicators are utilized both internally in Fagi (similarity measures,

learning mechanisms) and as output for the end user, for further

inspection and manual validation of fused POIs.

6 VALUE-ADDED POI ANALYTICS
At the end of the POI data integration workflow, various services

are provided to perform advanced analytics and extract added

value from POIs. Currently available functionality includes Best

Region Search and extraction of Areas of Interest, which can be

further modeled using techniques such as LDA or semantic clus-

tering. We describe these functionalities in more detail below.

6.1 Best Region Search
Given a set of POIs D, an α × β rectangle R, and a utility score

function f : P → R that assigns an objective score to any subset

P ⊆ D, the goal of the Best Region Search problem is to find the

optimal placement of R over the space containingD such that the

value of f over the enclosed subset of POIs P is maximized [11].

This problem has many applications in various domains, from

geomarketing and tourism to real estate and urban planning,

facilitating decisions about, e.g., selecting the best location to

open a new store or to place an advertisement.

However, the existing state-of-the-art algorithm for this prob-

lem [11] only computes the best, i.e., the top-1 result. This is

usually not sufficient in practice. For instance, it may not be pos-

sible to open a store at the identified best location (no available

facilities to rent or purchase), or all hotels in the identified best

area may be occupied or too expensive. Then, the user needs to

examine alternative solutions in decreasing order of quality, until

one is found that meets all desired criteria.

To address this shortcoming, we have introduced the k-Best
Region Search (k-BRS) problem, which computes a ranked list of

the top-k best regions according to the utility score function. The

main challenge in doing so, is that by simply returning a top-k
list of results ordered by their objective score, typically produces

highly overlapping results. Instead, our proposed algorithm is

able not only to compute top-k results progressively, but also to

diversify the returned results by either minimizing or completely

excluding overlap among them. This is achieved by progressively

retrieving subsequent results beyond the top-1, and selecting the

next best candidate based on their marginal gain, i.e., the added

value of each new result in the context of those already selected.

A detailed description of the algorithm can be found in [32].

6.2 Extracting and Modelling Areas of
Interest

Another functionality for POI data analytics involves the applica-

tion of spatial clustering to extract Areas of Interest (AOIs) from

the integrated and enriched POI dataset and then the use of topic

modelling techniques to characterize and compare those areas.

For the first step, we employ density-based clustering to iden-

tify areas with high concentration of POIs (e.g., shopping malls,

transportation hubs, touristic attractions, etc.). We use the DB-

SCAN [9] or HDBSCAN [4] algorithms for this purpose. DBSCAN

can identify clusters of arbitrary shapes. Moreover, it does not

require the user to specify the desired number of clusters in ad-

vance; instead, the user specifies two parameters that control the

density. HDBSCAN extends DBSCAN by offering a mechanism

to adjust the density automatically based on the data distribution.

The resulting clusters comprise a set of AOIs but provide no

additional information regarding their nature or characteristics.

They merely point out that these areas have a higher concentra-

tion of POIs compared to the rest of the space. To provide further

insights to the user as to what these AOIs are about and how

they can be compared to each other, we employ topic modelling.

Essentially, this draws inspiration from extracting a set of top-

ics over a document collection and representing each document

according to those topics.

In our case, we represent each AOI as a “document”, with the

contents of the document being a bag-of-words representation

of the union (multiset) of terms appearing in the POIs contained

in that AOI. These terms may refer to POI categories or tags, or

any other terms extracted from POI names, descriptions, reviews,

etc. We then perform Latent Dirichlet Allocation (LDA) [3] over

this “document” collection. The basic idea behind LDA is that

each document can be described by a distribution of topics and

each topic can be described by a distribution of words. The result

of the process comprises two matrices. The first is a topic-terms

matrix that defines each extracted topic as a distribution over

POI terms. The second is an AOI-topics matrix that represents

each AOI as a distribution over the identified topics.

This approach is quite flexible in practice because it allows

to model each AOI as a mixture of topics, instead of assigning

each AOI to a single category. This better reflects the fact that

typically a region contains a mixture of different types of POIs

and serves a mixture of purposes, rather than a single one.

The resulting AOI-topics matrix can be used to compare AOIs

to each other, e.g., find AOIs with similar mixture of topics, pro-

viding a means to quantify these similarities and differences.
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Figure 4: Example of extracted AOIs in London, with col-
ors determined via topic modelling.

Moreover, it allows for intuitive visualizations of the extracted

AOIs based on their topic distributions. An illustrative example is

provided in Figure 4, where LDA was used to extract 3 topics for

a given set of AOIs in London, and then each AOI was assigned

a color by determining the RGB values based on its mixture of

these 3 topics. Such visualizations allow not only to depict where

AOIs are located, but also to intuitively identify similarities and

differences between AOIs according to the underlying mixture

of different types and attributes of POIs they contain.

6.3 Implicit POI Clustering
We have also developed strategies to group POIs together ac-

cording to thematic, contextual and/or temporal considerations.

For that purpose, we have integrated into SLIPO’s toolkit the

Power Iteration [19] and K-Means [20] clustering algorithms into

Sansa
20

[18] since this semantic-web open-source stack provides

these algorithms for RDF data out-of-the-box. We first process

the input RDF data using Sansa and then apply the clustering

methods. To facilitate the explanation of the algorithms, we use

the following example data as input and give the corresponding

results. Let’s consider three POIs and their associated categories:

P1(A,B,C), P2(A,C,D) and P3(A,B,D).

Power Iteration Clustering (PIC). In general, given a set of data

points, we could represent the similarity between each pair of

data points with a similarity matrix. For example, we could use

Jaccard Similarity between two sets of categories that belong to

corresponding POIs to represent the similarity between them.

Therefore, a similarity matrix S , a diagonal matrix D and a Lapla-

cian matrix L = D − S are created. In Spectral Clustering [35],

a subspace matrix consisting of eigenvectors corresponding to

the smallest K eigenvalues was derived from the Laplacian ma-

trix. The subspace matrix indicates the clustering results with K
clusters. In PIC, the subspace matrix is an approximation to an

eigenvalue-weighted linear combination of all the eigenvectors

of a normalized similarity matrix [19]. The subspace matrix also

indicates the clustering results. In order to prepare the correct

input to the algorithm, we first collect the categories for each POI,

and then we compute the Jaccard Similarity between category

sets for each pair of POIs. Afterwards, we construct a similarity

matrix which could be used by PIC algorithm.

20
https://github.com/SANSA-Stack

Figure 5: Example of AOIs in Vienna obtained after the-
matic and spatial clusterings.

K-means. This algorithm partitions POIs into different clusters

such that POIs within each cluster have the smallest distance to

the cluster centroid compared to placing them into any other clus-

ter. K-means requires a distance metric to represent the distance

between POIs. We use the following:

• One hot encoding converts categorical values into numerical

vectors. Going back to our example, P1 would be encoded into

(1, 1, 1, 0) since it belongs to categories A,B,C and not D.
• Multidimensional scaling [34] maps a distance matrix to some

vectors in certain dimensions. The relative distances between

different POIs are kept.

• Word2Vec [21] creates vector representations of words in a text

corpus, which here concerns the set of all categories.

Since these methods do not consider the location of the POIs

but only focus on implicit links, they produce thematic groups

of POIs which are not necessarily geographically close. Indeed,

since the groups are computed using categories, clusters might

contain POIs sharing the exact same set of categories but actually

located in different regions. For instance, Figure 5 represents the

results when running PIC over POIs in Vienna. Pins having the

same color are part of the same cluster. As expected, it appears

that POIs of the same thematic cluster are distributed at various

parts of the city center. Then, to get usable AOIs, we pipe together

the two considered kinds of clustering to sub-group the thematic

clusters according to their geographical locations. Thanks to that

strategy, we ensure that the resulting AOIs are composed by POIs

that are thematically related. This example demonstrates that

the combination of these two approaches allows us to refine the

thematic clusters and thus obtain the four AOIs depicted on map.

7 PROTOTYPE IMPLEMENTATION
We have been implementing a comprehensive open source soft-

ware prototype aiming to support stakeholders in all stages of

the POI data value chain. This prototype integrates all afore-

mentioned tools for transforming, linking, fusing, enriching, and

analyzing linked POI data. The SLIPO system (currently in beta

version
21
) consists of the following main modules:

• SLIPO Toolkit: This is a collection of the individual software

components (Section 5) applied in quality-assured POI data

integration: transformation (TripleGeo), interlinking (Limes),

fusion (Fagi), enrichment (Deer) and analytics (Sansa). These

software components can be either installed locally or invoked

21
All software is publicly available at https://github.com/SLIPO-EU
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as part of the SLIPO Workbench and APIs functionality ex-

plained next.

• SLIPO Workbench: This is a web application, which integrates

the Toolkit components to implement POI data integration

workflows in a coherent, simple to use, and flexible manner.

More specifically, it provides utilities for (a) uploading, search-

ing and managing POI datasets in several formats, (b) design-

ing, persisting and managing data integration workflows for

POI datasets based on the features provided by the SLIPO

Toolkit, (c) scheduling and monitoring the execution of the

data integration workflows, and (d) visualizing the results of

workflow executions.

• SLIPO APIs: This is a collection of RESTful HTTP programming

interfaces for invoking SLIPO Toolkit component functionality

and integrating it into third-party systems. APIs only support

the invocation of simple atomic functions (e.g., POI transfor-

mation); otherwise the Workbench web application should be

used. Both SLIPO Workbench and APIs are exposed through

the same web application server.

Our prototype implements a workflow engine that executes

data integration jobs and a scheduler for initializing workflow exe-

cutions. A workflow consists of several loosely coupled tasks that

together constitute a data integration process over POI datasets.

A task may invoke an operation implemented by a Toolkit compo-

nent (e.g., fusion), or perform secondary operations (e.g., prepare

configuration files, update metadata, copy files).

The workflow engine and the SLIPO Toolkit components are

deployed over a cloud infrastructure. Workbench and APIs ex-

change messages with the scheduler to execute workflows. The

scheduler propagates requests to the workflow engine, which

subsequently initiates the execution of one or more tasks. A task

is executed either in-process locally on the scheduler host, or

remotely using Docker containers. Each Toolkit component is

responsible for providing a scalable implementation for the re-

quested operation, inside the context of the running OS process.

A Toolkit component that advertises itself as capable of parti-

tioning its input (and, of course, merging its output) can also

scale to multiple Docker containers. The scheduler only controls

the total amount of resources allocated to a container, enforcing

CPU/memory quotas derived from component-specific require-

ments and input data size.

Thanks to its modular, service-oriented architecture, SLIPO

offers stakeholders the option to directly use the provided func-

tionalities following a Software-as-a-Service paradigm. Alterna-

tively, they are able to select specific tools to customize, extend

and incorporate in their own POI data management workflows

according to their specific needs and requirements. We expect

that this will allow the rapid uptake of our innovations in a pro-

duction setting without affecting any operations and processes

already in place.

8 USE CASES
We have been extensively testing and evaluating SLIPO in real-

world settings, against various POI data assets. These use cases

cover diverse domains (geomarketing, tourism, navigation), en-

suring that they reflect the requirements of cross-sector, cross-

border and cross-lingual POI data integration. Next, we examine

the ability of SLIPO to cope with two typical data integration

scenarios against real-world POI datasets in two countries.

Table 1: POI datasets tested in the use cases.

Dataset #POIs Geometry Thematic attributes (# in bold) #triples

G
e
r
m
a
n
y

D1 35640 point (14): name(s), category, address, 1114598

(vendor) contact details

D2 24416 point (13): name, address, business 1098755

(vendor) data (turnover, #employees, etc.)

point, > 25 tags: (multi-lingual) names,

OSM 45750 line, address, contact details, image, 1130220

(open) polygon opening hours, operator, etc.

GN 7156 point (12): name(s), city, zipcode, 161473

(open) text description, last update

G
r
e
e
c
e

D3 72373 point (13): bi-lingual names, address, 2517030

(vendor) category, contact details

point, > 25 tags: (multi-lingual) names,

OSM 102159 line, address, contact details, image, 2515476

(open) polygon opening hours, operator, etc.

8.1 Validation Settings
The first use case concerns hotel POIs in Germany, whereas the

second deals with general POIs in Greece. Table 1 lists information

concerning the datasets in each scenario. Note that data sources in

each use case have different schemata, content and quality. Some

datasets are crowdsourced such as OpenStreetMap (OSM) or

GeoNames (GN ), while others are offered by commercial vendors

(D1,D2,D3)
22
. Through SLIPO, we define integration workflows

that deliver an output dataset having:

– More POIs, i.e., POIs missing from an original dataset are com-

plemented from the other ones.

– Geometry representations get a more detailed shape, e.g., poly-

gons obtained from OSM can replace (or complement) the

original point (lat/lon) locations of certain POIs.

– Extra thematic attributes are derived by bringing together in-

formation (e.g., fax numbers, opening hours, links to photos,

multi-lingual names) across all original data sources.

– Attribute values per POI are more accurate and complete, e.g.,

missing telephone numbers are filled or updated after checking

against each available input.

In each use case, the original datasets are first transformed

into RDF according to the SLIPO ontology (Section 4) with suit-

able attribute mappings. The last column in Table 1 indicates the

number of resulting RDF triples. Next, each data integration cycle

handles a pair of RDF datasets, either transformed from original

data or intermediate ones derived from previous cycles. As men-

tioned in Section 3, a cycle involves these successive stages (cf.

Figure 2):

• Linking two POI datasets to identify matching POI entities.

The resulting RDF graph contains owl:sameAs links between

their respective URIs.

• Fusion of the linked datasets into a new one according to several

strategies for fusing spatial and thematic properties per POI.

• Enrichment of fused data with extra information from DBpedia.

Once data integration is complete, its RDF output passes through

our reverse transformation service and delivers the integrated

dataset in a traditional POI format (e.g., CSV, shapefile) readily

expoitable by stakeholders.

Both scenarios were executed on a virtual machine deployed

on top of a cloud stack. This VM offers an Intel
®
Xeon

®
E-52600

CPU with 16 virtual cores, 32GB RAM, 16GB swap space, and

200GB disk running Linux Ubuntu 16.04 LTS. In each case, we

report data sizes, as well as the qualitative measures discussed in

Section 5.5. All tests have been conducted with “cold” caches.

22
Commercial vendors are anonymized for confidentiality.

486



8.2 Use Case A: Hotels in Germany
The first use case aims to integrate POIs in Germany concerning

hotels. We assume that a stakeholder maintains a base POI dataset

(D1) and wishes to enrich it with information from other datasets

(Table 1) in three successive integration cycles:

(#1) Integrate D1 with OSM ;

(#2) Integrate result of cycle #1 with D2;

(#3) Integrate result of cycle #2 with GN .

This workflow is illustrated in Figure 6(a). It includes transfor-

mation of each input dataset as well as the successive integration

cycles (linking, fusion, enrichment). After reverse transforma-

tion of the integrated output, the resulting dataset R1 is obtained.
Under this scenario, the stakeholder does not wish to increase

the number of POIs in its base data D1. Instead, it only wants to

enhance its content with extra thematic attributes, by filling in

missing values and also obtain more detailed geometry represen-

tation where available from the other datasets.

Indicative quality and performance measurements for each

cycle of Use Case A are listed in Table 2. In this use case, as all

data belongs to a specific category (hotels), we specified that links

between POI profiles should be based strictly on their spatial

proximity. This explains the high linking confidence (0.98) in

the resulting links. Although this choice can yield erroneous

matches (e.g., two hotels may be close, but have different names),

we sort them out later during fusion. As no ground truth is avail-

able, precision and recall concerning link detection cannot be

estimated by Limes. In Table 2, we only provide the respective

pseudo-measures (Section 5.5), but they yield rather poor esti-

mates because the source/target datasets involved in linking at

each cycle have different sizes (cf. Table 1).

Thanks to its validation rules, Fagi can filter out mismatches

not only based on proximity, but also checking with POI names,

phone numbers and addresses. The confidence of fused results re-

mains consistently high across all three cycles and demonstrates

the similarity among the original POIs that were fused together.

At the end of the fusion process, we were able to achieve an

increase in the amount of properties per POI, which at the final

cycle exceeds 26% on average. Note that there are some POIs

where the amount of their attributes increases by up to 47%, ac-

quiring extra properties progressively in each cycle. The more

the fused attributes, the faster the confidence stabilizes after each

subsequent cycle close to 0.87. It is also important to mention

that about a quarter of the POIs get more detailed geometry rep-

resentations due to integration with the OSM data in Cycle #1.

Since all other datasets include points only, no further geometric

improvement occurs in subsequent cycles. Finally, we stress that

the entire workflow concludes in about 6.5 minutes, delivering a

unified, richer dataset that otherwise would require considerable

human labor.

8.3 Use Case B: POIs in Greece
The second use case concerns general POIs in Greece of various

categories, i.e., not only hotels as in the previous use case, but also

restaurants, cinemas, schools, supermarkets, bus stops, ATMs,

etc. As illustrated in Figure 6(b), the goal in this workflow (in one

cycle only) is to create a single, integrated datasetR2 that includes
all available information from both input datasets (commercial

D3, open OSM data). In particular, apart from richer content

(geometries, extra thematic attributes, and filled missing values),

the resulting dataset R2 will grow in size as well, containing many

more POIs than any of the original ones.

(a) Hotels in Germany (b) POIs in Greece

Figure 6: Integration workflows for the two use cases.

Table 2: Execution Results.

Measurement

Use Case A

Use Case B

Cycle #1 Cycle #2 Cycle #3

# detected links 33645 15605 6448 29353

Pseudo-precision 0.69 0.81 0.61 0.65

Pseudo-recall 0.57 0.43 0.18 0.22

Pseudo-F-measure 0.62 0.56 0.28 0.33

Avg linking confidence 0.98 0.98 0.98 0.79

# fused pairs 19885 10903 1790 11036

Avg fusion confidence 0.91 0.88 0.87 0.86

Avg attribute gain 0.20 0.26 0.26 0.17

Max attribute gain 0.41 0.47 0.47 0.37

# resulting POIs 35640 35640 35640 159099

# non-point geometries 8728 8728 8728 28236

Execution cost (sec) 224.8 141.4 26.5 823.4

Statistics regarding this workflow are also listed in Table 2. In

this use case, interlinking is not just based on spatial proximity

but also on POI name similarity in order to avoid matching of

possibly dissimilar entities that are next to each other in densely

populated areas (e.g., city centers). Due to our relaxed criteria

for interlinking, enough potential matches were detected (29353),

although with less linking confidence (average: 0.79) compared

to the previous use case.

However, we observed that a POI was often linked to multiple

other POIs not always having a very similar name, but still close

enough in space. During the fusion stage, most of those links

were ignored based on our validation rules that also take into con-

sideration more properties (phone, address) in similarity checks.

Keeping only 11036 links that were deemed reliable, we derived

fused POIs achieving strong confidence (0.86) that they actually

concern the same entity. Regarding attribute gain, integrated re-

sults denote an average 17% increase in properties per POI. This

result may seem poorer compared to Use Case A, but note that

crowdsourced content in OSM for Greece is less rich than for

Germany. Still, the most important outcome of this integration is

that the final dataset R2 includes more than 159 thousand POIs,

which is over than double the size of commercial dataset D3. As
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Figure 7: POIs in Athens city center before (red) and after
integration (blue).

depicted in Figure 7, integration results (POIs in blue circles) su-

persede by far and drastically enhance the original information

of dataset D3 (shown with red stars). Furthermore, almost 18% of

the resulting POIs now have more detailed geometries (shown as

blue polygons) thanks to information extracted from OSM . Last,

but not least, the fact that this workflow delivers its result in less

than 14 minutes, clearly demonstrates the efficiency of SLIPO.

9 CONCLUSIONS AND FUTUREWORK
In this paper, we presented the SLIPO system, a cloud-based ap-

plication encapsulating Linked Data technologies to efficiently

address the challenges of large-scale integration of POI data as-

sets. SLIPO transfers data integration to the Linked Data domain,

thus allowing state-of-the-art software to be repurposed and fo-

cused to POI data, without requiring domain-specific knowledge

from stakeholders or alterations in existing operational work-

flows. Our tests and evaluations in diverse application domains

have shown that SLIPO offers clear advantages in terms of effi-

cient, reliable, quality-assured POI data integration.

Our effort in SLIPO continues along several directions aiming

to expand its relevance, efficiency, and value in an industrial set-

ting. First, we will improve the individual software components

with additional POI-specific rules and operations to increase

performance and effectiveness. Further, we are working with

our industrial partners to apply SLIPO in a plethora of domain-

specific and cross-border commercial data integration tasks, di-

rectly comparing and documenting the gains in productivity,

time-to-market, and value. In addition, we are creating periodic

world-scale data integration workflows beyond the current reach

of the industry, to enable low-cost and streamlined POI-based

services. Finally, we are expanding the interoperability of the

system to support third-party systems (e.g., signage recognition

from street-level imagery) and its quality-assurance services,

which will help embed SLIPO in the business workflows of most

stakeholders in the value chain.
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