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ABSTRACT
Format transformation is one of the most labor intensive tasks

of a data wrangling process. Recent advances in programming

by example proposed synthesis algorithms that showed promis-

ing results on spreadsheet data. However, when employed on

repositories consisting of multiple sources and large number of

examples, such algorithms manifest scalability issues. This paper

introduces a new transformation synthesis technique based on

edit operations that enables efficient learning of transformation

programs. Empirical results show comparable effectiveness and

dramatic improvements in efficiency over the state-of-the art.

1 INTRODUCTION
Format transformation is a sub-task of data wrangling ([3], [8])

that carries out changes to the representation of textual infor-

mation, with a view to reducing inconsistencies. Such tasks are

typically coded manually by experienced users through scripts

that change the representation of data. Recent advances in Pro-

gramming By Example (PBE) led to algorithms such as FlashFill
[4] and BlinkFill [11] that synthesize transformation programs

from user given input-output examples. These algorithms repre-

sent important steps towards automatic format transformation in

the fields for which they have been devised: spreadsheets. Spread-

sheet processing often involves datasets of manageable size, a

small number of examples and active user involvement in provid-

ing additional example data when needed. In contrast, in areas

of data wrangling and data analysis, the task of format trans-

formation is applied repetitively on large datasets from many

sources, where more examples are available and user supervision

is impractical [2]. Increased volume of example data reveals the

opportunity for taking the human factor out of the synthesis

process. Automating format transformation by increasing the

number of examples represents a challenge for current synthe-

sis algorithms due to their high complexity: exponential in the

number of examples and highly polynomial in the length of the

examples [10].

In this paper we contribute a solution, which we call SynthEdit,
to the problem of automatic format transformation. We are moti-

vated by the high computational cost of current state-of-the-art

techniques when the number of available examples increases,

and propose an approach based on finite state automata that

scales better than algorithms such as FlashFill when there are

more than a few examples available - typically tens or hundreds.

The improved efficiency comes at the expense of expressiveness,

but allows SynthEdit to benefit from substantial example data

when available, and, therefore, to cover many inconsistency cases

and to eliminate the need for user involvement.
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Related work: The problem of learning transformations from

examples has been addressed in a number of settings ranging

from restructuring of textual information [4], [11], to table for-

matting [6], and text extraction [1]. More complex systems such

as TDE [5] embody a wider range of transformations using ex-

ternal information in addition to user-provided examples.

The closest to our work are algorithms such as FlashFill which

have specifically been designed for spreadsheets, assume high

user involvement and use DAG-based synthesis solutions that

aim to cover the entire space of possible transformations between

two given strings. The user’s main task in such systems is to

provide additional examples for cases not covered by the previous

instances. The resulting algorithms have exponential complexity

w.r.t. the number of examples [10].

While recent works [2], [7] have proposed techniques that

minimize the user involvement in generating examples, Syn-
thEdit aims to fully automate the task of format transformation

for larger repositories such as data lakes, richer in potentially

useful example data, and challenging to address through manual

authoring of scripts due to their size and diversity.

2 PRELIMINARIES
We start by describing a representative example where our algo-

rithm can be employed, inspired by web real world data.

Example 2.1. 1900s NY state governor names and term years:

Source Target

Hugh Leo Carey (74-82) Hugh L. Carey (1974-1982)

Jay Henry Lehman (33-42) Jay H. Lehman (1933-1942)

In Example 2.1, the task is to derive a transformation that can

generate the Target values using the Source values. In this paper

we refer to such pairs of strings as example instances.
Tokens: We view a string s as a collection of tokens, where

each token represents a sub-string of s . Similarly to existing

algorithms for format transformation, e.g., FlashFill, SynthEdit
supports three types of tokens: (i) regular expression tokens -

that match a predefined regular expression pattern; (ii) constant

string tokens - with a value equal to the corresponding constant

string, and (iii) special tokens - beginning/end of a string.

Regular expression primitives: Obtaining the set of tokens
for a string s builds on a set of primitive lexical classes defined

by regular expressions. The regular expression primitives we

use are notated as follows: N = [0-9]+, U = [A-Z ]+, L = [a-z]+,
A = [A-Za-z]+, Q = [A-Za-z0-9]+, P = [., ; : /-_?!&$]+, W = \s+.

Transformations:Going back to Example 2.1, we can express

the source string in the first row as a collection of token types,

henceforth called a token-type representation: A W A W A W P N P N P.
Such representations will be used to derive a transformation

that will produce the target string from the source string. One

simple such transformation would have the following English

language specification: Replace "Leo", "74", and "82" from the source
with "L", "1974", and "1982" from the target, resp.. Although such
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Reдex pr imitive r := N | U | L | A | Q | P | W

Posit ion expression P := Pos(r1, r2, c)

Token t := (r, P)

Str inд expression E := Copy(t) | Const (s)

| Substr (t, i, j) | Concat (E1, . . . , En )

Edit operation O := I N S (E) | DEL(t) | SU B(t, E)

T ransf ormation T := O1; O2; . . . ; On ;

Figure 1: Transformation language syntax

a transformation is consistent with the first example instance,

it is too specific to correctly transform the string in the second

row. Fortunately, we can generalize the transformation by using

token types instead of actual sub-string values: Replace the second
A-type token, the first N-type token, and the second N-type token
from the source with the first U-type token, the first N-type token,
and the second N-type token from the target, resp.. Now, the same

transformation is consistent with both example instances.

3 TRANSFORMATION LANGUAGE
In this section we propose a transformation language that is

expressive enough to describe the previous transformation using

simple edit operations: Insert (referred to as INS), Delete (referred
to as DEL), and Substitute (referred to as SUB). The complete

syntax of the transformation language is in Figure 1, while the

semantics are described below. We use the notation ϵ to denote

an empty string, len(s) for the length of a string s , s[i : j] for the
sub-string that starts at index i in s and ends at index j, and c to

denote the cth occurrence of a token type in a string
1
.

The semantics of a position expression, Pos(r1, r2, c), is to
evaluate to a sub-string s[j : k] of a given string s , such that

∃ i, j,k, l 0 ≤ i < j < k < l ≤ len(s) − 1, where s[i : j]matches r1
and s[k : l] matches r2. Furthermore, s[j : k] is the cth such sub-

string in s . If such a sub-string does not exist then the expression

evaluates to ϵ . Such an expression allows us to uniquely identify

each token in a given string using its neighbour tokens and, at the

same time, ensures that the expression will (likely) evaluate to ϵ
when applied on strings with different format representations.

We can now redefine a token t as a pair consisting of a token

type r and a position expression P. Note that t only exists if the

string value returned by P matches r.
The Copy(t) expression evaluates to the string value of t.

Const(s) evaluates to a constant string s . Substr (t, i, j) returns
the sub-string that starts at position i and ends at position j −
1 of the string value of t. Concat(E1, . . . ,En ) performs string

concatenation on the results of the underlying string expressions

E1, . . . ,En . The edit operations INS(E), DEL(t), and SUB(t, E)
perform insertion, removal, and replacement, resp. of some string

resulting from the expressions given as parameters, on a given

string s . Lastly, T is a sequence of edit operations applied on s .
Figure 2 shows 5 operations (from a total of 12) of a transfor-

mation that can be used to edit both source strings from Example

2.1 into their corresponding target strings. Considering the first

row from Example 2.1, the intuition in (1) and (2) is to replace

the first occurrences of an A-type token, i.e., Hugh, and the first

white space with a copy of themselves. Similarly, in (3), the to-

ken Leo from the source string is replaced with the first letter of

itself. In (4), a dot, ".", is inserted after the result of operation (3).

1
All string positions, i.e. indexes, start from 0.

SU B((A, Pos( ,̂ W, 0)), Copy((A, Pos( ,̂ W, 0)))); (1)

SU B((W, Pos(A, A, 0)), Copy((W, Pos(A, A, 0)))); (2)

SU B((A, Pos(W, W, 0)), Substr ((A, Pos(W, W, 0)), 0, 1)); (3)

I N S (Const (”.”)); (4)

SU B((N, Pos(P, P, 0)), Concat (Const (”19”), Copy((N, Pos(P, P, 0))))); (5)

Figure 2: Transformation for Example 2.1

Operation (5) replaces the first number between two punctuation

tokens, i.e., 74, with the result of the concatenation of a constant

string, 19, and the same number to obtain 1974. Note that the
transformation in Figure 2 is applied on a copy of the source,

as opposed to modifying the string in-place. This ensures that

source tokens used by later operations are not lost if an early

operation deletes/substitutes them.

4 SYNTHESIS ALGORITHM
In this section we describe an algorithm that, starting from the

example instances provided in Example 2.1, learns the transfor-

mation from Figure 2. Given an example instance, the algorithm

consists of 4 phases: 1) tokenize the source and target strings; 2)

synthesize edit operations; 3) synthesize string expressions; 4)

merge the results of 2) and 3) to create a transformation.

Tokenization: Both source and tarдet strings are split into to-
kens using a function Tokenize. Specifically, the function searches
for sub-strings that match one of the regular expression primi-

tives defined in Section 2. Each such match represents a new to-

ken ti . Next, by looking at the neighbouringmatches, the function

learns a position expression which uniquely identifies ti in the

parent string. Tokenizing the source string of the first row in Ex-

ample 2.1 returns: (A, Pos(ˆ, W, 0)), (W, Pos(A, A, 0)), (A, Pos(W, W, 0)),
(W, Pos(A, A, 1)), (A, Pos(W, W, 1)), (W, Pos(A, P, 0)), (P, Pos(W, N, 0)),
(N, Pos(P, P, 0)), (P, Pos(N, N, 0)), (N, Pos(P, P, 1)), (P, Pos(N, $, 0))

Edit operation synthesis: The top-level transformation is a

collection of edit operations parameterized with tokens and/or

string expressions. Given an example instance, with its corre-

sponding token-type representation of source (Ts ) and target

(Tt ) derived from the token sets obtained at the previous step,

a function EditSynthesis(Ts ,Tt ) generates a sequence of edit
operations that edits Ts into Tt . This can be done using an edit

distance algorithm, such as the one proposed in [9], where the

composition operation on weighted finite state automata (WFSA)

is used to generate all possible edit operations that transform the

source into the target. By assigning equal weights to each edit

operation, the shortest path of the lattice of operations returned

by the composition of WFSA denotes the simplest way to obtain

the token-type representation of the target. Note that each path

of the obtained lattice denotes a valid sequence of edit opera-

tions which would produce the target string, but we are only

interested in the simplest one. As an example, consider again the

first row from Example 2.1 with the token-type representations

Ts = A W A W A W P N P N P and Tt = A W U P W A W P N P N P.
EditSynthesis(Ts ,Tt ) can produce the following sequence of

edit operations
2
that transform Ts into Tt :

SU B(As0, A
t
0); SU B(Ws0, W

t
0); SU B(As1, U

t
0); I N S (Pt0);

SU B(Ws1, W
t
1); SU B(As2, A

t
1); SU B(Ws2, W

t
2); SU B(Ps0, P

t
1);

SU B(Ns0, N
t
0); SU B(Ps1, P

t
2); SU B(Ns1, N

t
1); SU B(Ps2, P

t
3);

(6)

Asi/A
t
j : the i

th
/jth token of type A from source/target, i, j ≥ 0.

Note that Expression (6) denotes the transformation between

a given source and a given target, but it cannot be used directly

2
Expression (6) omits the Pos constructors for clarity.
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Algorithm 1 String expression synthesis

Input: Index entry: ti → pairs ti
Output: A string expression E

1: function ExpressionSynthesis

2: if pairs ti == [] then return Const (ti ) end if
3: (sj , lcs j ) ← best_pair(pairsti )
4: if sj == lcs j == ti then E ← Copy(sj )
5: else if lcs j ⊂ sj && lcs j == ti then
6: E ← Substr (sj , indexOf(lcs j , sj ))
7: else
8: E ← Concat (ConcatSynthesis(ti , pairs ti ))
9: end if
10: return E
11: end function

when the target is not given. As such, our next objective is to

express each target token in Expression (6) as a string expression

applied on some source token, e.g., Figure 2. This will allow us

to apply the newly obtained operations on new input strings.

String expression synthesis: Expressing a target token ti as
a processing of some source tokens requires the identification of

the source token (or the group of source tokens) whose value(s)

are the closest to ti . To this end, we create an inverted index I

in which each target token value ti identifies a list of pairs of
the form (sj , lcs j ), where lcs j is the longest common sub-string
between a source token value sj and ti . The first two columns

from Table 1 depict three index entries obtained for the first row

of Example 2.1. The third column indicates the type of string

expressions that can be applied on the source tokens to obtain ti ,
as described next.

For each entry of I , we can apply a function StringSynthesis
(defined in Algorithm 1) to synthesize a string expression that

uses some source tokens to obtain the target token. The function

at line 3 in Algorithm 1 returns a pair (sj , lcs j ) where sj is the
source token value that best covers the target token value. Note

that we only process the best such pair because its source token

has the most useful value to derive the target token. For when

the best pair is not the desired one, i.e. the target token has to

be obtained from a different source token, we rely on multiple

example instances to disambiguate and to generalize a transfor-

mation. The indexOf(lcs j , sj ) function at line 6 returns the start

and end indexes of lcs j in sj .
When there is no source token that can be used to obtain ti ,

ExpressionSynthesis returns aConst expression. Alternatively,
when the longest common sub-string, the source and target token

values are all identical, the result is a Copy expression, e.g., Row

1 in Table 1. If the longest common sub-string is only equal to

the target token value, it means that ti can be obtained from the

source token using a Substr expression, e.g., Row 2 in Table 1.

Finally, a Concat expression is synthesized, using Algorithm

2, when the source token value is a sub-string of the target to-

ken value. The ConcatSynthesis function processes all pairs of

the current index entry, as opposed to only the best pair, and

consumes the target token value as soon as it is able to derive a

sub-string of it. For example, for Row 3 in Table 1, 74 is a source
token and, therefore, the condition at line 4 in Algorithm 2 is met.

At the next iteration ti = ”19” (because we consume the previous

value) but there are no pairs in pairsti that cover the new value

which means that the condition at line 9 evaluates to true and

the next expression learned is Const .
Transformation synthesis: The last step of the algorithm re-

places the target tokens in Expression (6) with the corresponding

Algorithm 2 Concat expression synthesis

Input: Index entry: ti → pairs ti
Output: A list of string expression exp
1: function ConcatSynthesis

2: exp ← [ ]
3: for all (sj , lcs j ) ∈ pairs ti do
4: if sj == lcs j then exp ← exp + [Copy(sj )]
5: else exp ← exp + [Substr (sj , indexOf(lcs j , sj ))]
6: end if
7: ti ← replace(ti , lcs j , ””)
8: end for
9: if len(ti ) > 0 then exp ← exp + [Const (ti )] end if
10: return exp
11: end function

Table 1: Index entries

ti [(sj , lcs (sj ,ti ))] Expression

1 Hugh [(Hugh, Hugh)] Copy
2 L [(Leo, L)] Substr
3 1974 [(74, 74)] Concat

string expressions learned by Algorithm 1. The result, listed be-

low, is a transformation consistent with the example instance and

applicable on new input strings, similar in format representation

with the source string of the example instance.

SU B(As0, Copy(A
s
0)); SU B(Ws0, Copy(W

s
0)); SU B(As1, Substr (A

s
1, 0, 1));

I N S (Const (”.”)); SU B(Ws1, Copy(W
s
0)); SU B(As2, Copy(A

s
2));

SU B(Ws2, Copy(W
s
0)); SU B(Ps0, Copy(P

s
0));

SU B(Ns0, Concat (Const (”19”), Copy(N
s
0))); SU B(Ps1, Copy(P

s
1));

SU B(Ns1, Concat (Const (”19”), Copy(N
s
1))); SU B(Ps2, Copy(P

s
2));

Learning from multiple examples: SynthEdit assumes the

existence of several example instances from which it can learn

multiple transformations. Although it is possible for a valid trans-

formation to be synthesized from a small sample of the examples,

it is not always possible to automatically identify the relevant

sample and, therefore, all examples have to considered. Synthesiz-

ing transformations from multiple example instances that follow

more than one format representation results in a conditional trans-
formation program. To create such a program, we first partition

the example instances into groups with source strings that follow

the same format representation and synthesize a transformation

for each partition
3
. Before transforming a new input string, we

match its format representation against the ones for which we

have synthesized transformations and apply the transformation

of the matching format. If such a format representation does not

exist the input string is left unchanged.

Complexity: There are two dominant tasks in SynthEdit in
terms of complexity. Firstly, EditSynthesis runs in O(m×n) time

[9], wherem is the length of the source string and n is the length

of the target string. Secondly, the generation of inverted index I
implies the identification of the longest common sub-string be-

tween two token string values which is a dynamic programming

problem that runs in O(k × l × u ×v), where k is the number of

source tokens, l is the number of target tokens, u is the source

token value length, and v is the target token value length.

Synthesizing string expressions using Expression Synthesis
only for the simplest token-based transformation, previously

obtained using EditSynthesis, gives SynthEdit a computational

3
If more than one transformation is possible per partition, we pick the one consistent

with the majority of the example instances of that partition
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(a) Average precision (b) Average recall (c) Average synthesis time

Figure 3: Experimental Results

advantage over algorithms such as FlashFill which considers all

possible transformations that are consistent with the examples

before ranking them and choosing the best one.

5 EVALUATION
In this section we perform a comparative evaluation

4
involving

SynthEdit and an implementation of FlashFill from PROSE SDK
5
,

using 33 real world datasets
6
, used in a related work [12]. Each

dataset consists of up to 200 example instances from several

domains such as person names, websites, songs, etc.

We report the average precision, recall and synthesis time over

all datasets computed using k-fold cross-validation (k = 10) and

various number of examples. At each iteration (fold), we synthe-

size a transformation program from n randomly picked example

instances and test on the remaining instances. For the purposes

of computing precision and recall, we count as a true positive
any input string that is correctly transformed, i.e., the result of

the transformation is similar to the expected output; as a false
positive any input string that is incorrectly transformed; and as a

false negative any input string that is left unchanged, i.e., there is

no transformation synthesized for its format representation.

Comparative effectiveness: Avg. precision and recall as the
number of examples varies. The precision results are shown

in Figure 3a. SynthEdit achieves lower precision compared with

FlashFill for the different numbers of examples. The difference

can be explained by the ability of FlashFill to better generalize

transformations as more examples are added by using a clas-

sifier trained on example instances. This allows it to correctly

transform strings with format representations not covered by the

examples. Conversely, SynthEdit performs a strict mapping be-

tween format representations and transformations and, therefore,

requires at least one example instance for each format representa-

tion it transforms. For the last two cases, i.e., 64 and 128 examples,

FlashFill required more RAM memory than was available.

The classifier employed by FlashFill to pick the right transfor-

mation given a new input string can become confused when some

examples are too similar to each other in terms of the features

used during learning. This means that for some input strings

FlashFill fails to identify an appropriate transformation or the

transformation picked is not consistent with the input, e.g., the

transformation expects a type of token that is not present in

the input. The consequence is a drop in recall visible in Figure

3b as the number of examples increases. By contrast, SynthEdit

4
Experiments were run on a 2.60 GHz Intel Core i7-4720HQ CPU with 8 GB RAM.

5
https://microsoft.github.io/prose/

6
www.microsoft.com/en-us/research/wp-content/uploads/2016/12/

WebTableBenchmark.zip

achieves better recall because more examples enables it to better

differentiate between transformation cases.

Comparative efficiency: Avg. synthesis time as the num-
ber of examples varies. Figure 3c confirms the high complexity

of FlashFill when the number of examples increases. Conversely,

SynthEdit proves more than two orders of magnitude faster in

synthesizing transformations. As opposed to FlashFill, SynthEdit
does not aim to exhaust the search space of transformations for

each example instance. Our algorithm uses edit distance com-

putations to find the shortest path between the token-type rep-

resentations of the source and target strings. Consequently, the

transformation language is simpler but more efficient to learn.

6 CONCLUSIONS
We have contributed an effective and efficient solution to the

problem of automating format transformation given input-output

examples. We have used an edit distance based approach that

identifies the shortest path from a source string to a target string

and uses fuzzy matching of source and target tokens to generalize

transformations applicable on new input strings, similar in format

representation with the examples. Results from a comparative

evaluation provide evidence that SynthEdit performs substan-

tially more efficiently than the state-of-the-art while achieving

better recall at the cost of slightly reduced precision.
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