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ABSTRACT

In recent years the demand for having algorithms which provide
not only their results, but also add explainability up to a certain
extent increased. In this paper we envision a class of clustering
algorithms where the users can interact not only with the input
or output but also intercept within the very clustering process
itself, which we coin with the term process-aware clustering.
Further we aspire to sketch the challenges emerging with such
type of algorithms, such as the need of adequate measures which
evaluate the progression through the computation process of a
clustering method. Beyond the explainability on how the results
are generated, we propose methods tailored at systematically
analyzing the hyperparameter space of an algorithm, determining
in a more ordered fashion suitable hyperparameters rather then
applying a trial-and-error schema.

1 INTRODUCTION

Performing a query to the computer science bibliography search
engine dblp with the keyword "explainable"! delivers an interest-
ing insight looking at the "refine by year" area of the search result
as it can be seen in Figure 1. As for now (November 2018) the
number of publications dealing with the aspect of explainability
increased from 33 in 2017 up to 101 in 2018. However the scientific
works are tailored towards deep learning systems. Since it can
be agreed on that deep learning systems have some kind of black
box character as stated in e.g. [8], classical clustering methods are
fairly transparent regarding the way they generate the clustering
results. In the majority of publications dealing with clustering,
the whole system can be represented as in Figure 2. Data is given
to a clustering algorithm additionally with hyperparameters. The
algorithm of choice is executed on that data and yields a clus-
tering result. If clustering methods are already transparent and
so easy to comprehend, why should we bother then with the
aspect of explainability? Despite the fact that we know how a
clustering algorithm works, questions arise like e.g. "what is a
good hyperparameter setting?", or "how do my clusters change
(or not change) with different hyperparameter settings?", "why
did the clusters change that particular way choosing different
settings?". Only because we know how the clustering algorithms
work, we do not yet fully utilize the potential of this knowledge.
Having algorithms like e.g. MeanShift [3] domain experts may
want to know what happens with the emerging clusters during
the clustering process to understand the resulting clusters. In
this vision paper we elaborate in the upcoming sections more in

!https://dblp.uni-trier.de/search?q=explainable
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Figure 1: Number of publications indexed at dblp for the
keyword explainable from 1985 to 2018.
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Figure 2: A classic clustering pipeline.

detail on different aspects which are ultimately connected to the
idea of including insights from the clustering process itself. For
this we address in our vision targets such as points of interaction,
hyperparameter analysis, methods and measures as well as po-
tential impacts of our vision on areas such as explainability and
didactics. During our tour through these targets we will mention
the current related work, and highlight potential difficulties and
needs motivating the need for process-aware clustering.

2 INTERACTION TARGETS

In context of interactiveness a rich body of literature is present.
Exemplarily we mention iPCA as an interactive tool for PCA-
based visual analytics [5]. Despite its high level of sophistication
regarding the used visualization techniques, it enables the user
to interact with the system after a PCA has been performed. The
users can not browse through some imtermediate computation
steps of PCA and intercept. Also advanced interactive clustering
tools like VISA [2] enable human interaction for inspecting the
detected clusters and subspaces but do not facilitate to intercept
within the clustering process itself. Even in a more recent work
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Figure 3: Clustering pipeline in an interactive setting
where the users can intercept within each of the steps of
the clustering.

[9], the users can decide on modifying the results in context of
hierarchical clustering, yet they do not offer a history of steps
which the utilized hierarchical clustering has performed so far.

In a more recent work, a simple but also limited tool PAR-
ADISO [6] provides the users the opportunity to explore and
intercept within the clustering process itself. In PARADISO our
classic clustering pipeline from Figure 2 is re-defined to a pipeline
as seen in Figure 3. Here the users can intercept at each of the
iterations of a MeanShift algorithm. In this algorithm data points
roam within a specific bandwidth (also known as Parzen win-
dow) to their mean with regards to the position of other data
points located within the bandwidth. The data points thus roam
themselves towards their respective mode. In PARADISO the
bandwidth hyperparameter can be modified, stats regarding the
current clusters are provided, and visualizations for intermediate
results at each iteration step are given.

2.1 Multi-instance hyperparameter settings

One aspect from PARADISO which we’d like to emphasize on, is
the capability to assign at any iteration step of the algorithm a
different bandwidth value, which we coin with the term multi-
instance hyperparameter setting, where multi-instance refers to
either the iteration step or in general the steps of a clustering
algorithm. Going beyond the classical setting where the users
provide in the beginning one fixed (set of) hyperparameter(s)
which remain(s) valid until the end of an algorithms run, leads us
to the case of intercepting within the clustering process and de-
liberately changing the hyperparameter values at different times.
This method becomes even more significant in streaming context.
By the simple fact that in a stream setting the data changes over
time, a hyperparameter which has been selected in the beginning
may no longer be suitable. Thus we may need different hyperpa-
rameter values at different times while a clustering algorithm is
computing at each iteration on different snapshots of the data.
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Further in context of multi-instance hyperparameter settings
it is vital to keep track of which changes the users have made.
Similar to a version control system, the users shall be given a tool
at hand to keep track of the history of changes they have made.
By knowing which changes have been made at which iteration,
the users can move arbitrarily through the iteration timeline
and create alternative branches of changes. Despite giving new
targets of interaction, like changing at arbitrary iterations the hy-
perparameters, the concepts of interactivenes as described so far
do bare their own problems which need to be addressed: While
on small amounts of data the intermediate computations can be
stored, it is in-feasible to store each of the iteration steps at larger
data sets. Here potential research targets are e.g. compression
strategies and significance measures to determine which of the
iteration steps are relevant (enough) to be kept in memory. Such
measures could indicate e.g. at which iterations the most changes
are taking place.

One question which may arise in context of multi-instance
hyperparameter settings is: what are the implications of such an
approach? What would it change if we choose different band-
widths within a MeanShift run vs. re-running MeanShift multiple
times with different bandwidths? Suppose we are given a data set
and apply the MeanShift algorithm with a specific bandwidth (e.g.
0.7) in the beginning. Depending on the data set it may happen
that a subset of points collapses after a few iterations into one
mode. Intercepting a few iterations beforehand by choosing a
much smaller bandwidth (e.g. 0.2) may prevent the collapse to one
singular mode, leading to multiple modes. Depending at which
iteration the interception has taken place, a re-run of MeanShift
with a bandwidth of 0.2 may not lead to the same result as in the
variant where we start with 0.7 and change it after i-iterations to
0.2. However a proof for this claim is required, which is subject
of future works further investigating the multi-instance hyperpa-
rameter settings aspect. Yet, we’d like to provide a brief intuition
for why it can lead to different results using different bandwidths
at different iterations. We envision that MeanShift executed in
two instances with each having a bandwidth by and b; is like
two objects moving among distinct trajectories where time is
represented through the single iteration steps. Intercepting in
the MeanShift with b; is comparable to deflecting the object by
leading to a potentially different trajectory than its original path
by forces from other modes acting on the object. It may lead to
the same destination as MeanShift executed with by but can as
well have its destination at a different positions in data space.

3 MEASURING METHODS

Besides the concept of intercepting into the clustering process
itself and assigning multiple instances of hyperparameters at
different iteration steps, there is a need for measuring meth-
ods which are suitable in context of process-aware clustering.
The requirements to such measures would be e.g. to capture the
dynamics within the clustering process like data points being
assigned to specific clusters or subspaces and the change of such
over the course of a clustering run.

3.1 Entanglement

The first propositions for such a measure were made in [7]. Here
the concept of entanglement has been raised which is intended
to support interactive data clustering with the purpose to supply
additional information to users. In [7], the entanglement between
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Figure 4: Parameter grid, with the parameters of DBSCAN.
Each point represents the entanglement difference com-
puted to its previous entanglement values.

two data points is defined as the dynamic time warp distance
between the trajectories of both points roaming over time to
their modes in a MeanShift clustering algorithm. If those data
point trajectory pairs are sufficiently similar to each other over
the iterations, they are considered as entangled. This definition is
however limited to centroid-based approaches like in MeanShift.
In our vision we aspire to provide such entanglement definitions
for various clustering models (e.g. density-based, hierarchical,
spectral, subspace, correlation etc.) and, if possible, a more gen-
eralized definition of it.

3.2 Resilience

The entanglement of two data points can be highly varying or
remaining stable. This stability depends on the chosen hyperpa-
rameters. In [7] the so called resilience has been defined, which
computes the variation of the entanglement over different hyper-
parameter settings. The lower the variance of the entanglement
at different hyperparameters, the more resilient is the specific
subset of data points. However the work in [7] is highly limited to
the MeanShift setting. In our vision auspicious directions include
the research of resilience in context of other clustering models,
especially also in context of subspaces where the resilience and
entanglement is not only determined among subset of data points
but also among a subset of subspaces. It remains for future work
to investigate in how far the concepts of entanglement and re-
silience can be applied to different clustering models (e.g. density
based, hierarchical, subspace, correlation, spectral etc.) and with
which kind of adaptations.

3.3 Hyperparameter Analysis

The research on entanglement and resilience bares potential
for the aspect of hyperparameter analysis. In many of the pub-
lications on clustering so far, the hyperparameters in e.g. the
conducted experiments were chosen on an experience basis. Dif-
ferent settings are tried out until a good (enough) clustering result
is achieved. We envision that measures like e.g. resilience can
be used together with more systematic approaches in determin-
ing the quality of parameters. For example in context of density
based clustering like in DBSCAN [4], where we have a minpnts
and € parameter, a grid-based approach can prove effective as
seen in Figure 4.

Here the granularity of the grid is set by the users on how
fine they want to sample the grid. It is advised to start with a
coarse grid first. In an initial step, one computes for each of the
(minpnts, €) combinations the entanglement. Then the resilience
over different parameter settings is computed. Those points on
the grid (which represent (minpnts, €) hyperparameters) which
have the highest difference in resilience can be considered as
interesting, since this specific hyperparameter setting impacts
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Figure 5: Resilience in context of ensemble clustering.

the entanglement of subsets of points. Then in a follow-up step,
the grid is refined around such interesting points on the grid.
The users can thus successively explore the impact of the hy-
perparameters. In this context the users can use clusering with
a different goal in mind: given a subset of points S;, where we
want them to be in the same cluster, and further we are given a
subset of points Spos—in Which we do not want to be in the same
cluster. Under which parameter settings do we get a clustering
fulfilling these constraints? In this setting it is also of interest
for future research to approach the scientific problem: how can
the users be informed on how "unintuitive" it would be for the
clustering algorithm with its underlying model to respect the
given constraints as in S;, and Spor—in?

3.4 Ensemble Settings

The concept of resilience can further be used as a measure for
ensembles of clustering models. Given a dataset, in an ensemble
setting, the most resilient subsets are considered per model. The
intersection of the resulting resilient subsets over all the models
yields a subset which is highly resilient among all (or most) of the
clustering models which can be seen in Figure 5. The intuition of
this intersection subset is, that it is a consensus of different cluster
models at different hyperparameter settings, yielding clusters or
at least subsets of clusters being valid among different cluster
models. On the contrary, removing the consensus subset, leaves
subsets which may be (a) not resilient among their respective
models, or (b) are highly resilient, but only within their models.
The latter case is exciting since this potentially facilitates the
extraction of highly model specific subsets of data points.

4 IMPACTS

Having elaborated on interaction targets, and measuring meth-
ods, we now discuss potential impacts of our vision within the
upcoming subsections providing some outlook on the potential
magnitudes that this vision may trigger.

4.1 Explainability

Since we have mentioned in the beginning of this vision paper
the aspect of explainability we now elaborate on this aspect as
a potential impact. The propositions for methods and measures
so far enable to look at different parts of an clustering algorithm.
The entanglement supports to look into the clustering process
itself detecting data points which have the same trajectories
or are assigned to the same clusters, subspaces etc. Resilience
enables to understand which data points remain (based on entan-
glement) together even over different hyperparameter settings.
The interaction concept of multi-instance hyperparameter setting
permits the users to intercept and explore the effects of choos-
ing different values for hyperparameters during the clustering



process. Each of the mentioned methods and aspects can reveal
information which can, best to our knowledge, not be gained
by simply adding data and some chosen hyperparameter values
for a clustering algorithm that once executed only returns the
clustering results. However, words of caution are also need to
be stated here, since questions that remain open are e.g.: How
are the information from the clustering process itself best being
presented to the users, and in which form? Which other forms
of interaction-tracking may be required, since with increasing
number of interaction targets, also the complexity of what can
be changed and observed increases.

4.2 Didactics

A connection which may not be obvious on first sight, but be-
comes rather evident when thinking more from an educational
perspective is the relation between explainability and didactics.
Besides the theory and exercises in tutorials, demonstrations of
the discussed clustering algorithms significantly contribute to
the understanding. For such purposes tools like e.g. ELKI [1]
exist which can also be used to demonstrate how datasets are
clustered and to explore the effects of different hyperparameters
by re-running the algorithm every time with a different parame-
ter setting. We are convinced that in our vision process-aware
clustering can enable even more insights into the clustering pro-
cess itself, understanding the behavior, the strengths and also
limitations of the process-aware clustering models. It may further
aid graduate students which are writing their bachelor or master
thesis to evaluate the effects of potential enhancements that they
develop and apply to the clustering models they are working
with, providing a different approach to evaluate.

5 CONCLUSIONS

In this vision paper we have elaborated on the idea of process-
aware clustering, and on its concepts which can be seen sum-
marized in Figure 6. Regarding interaction targets, we have the
pillar of multi-instance hyperparameter settings and the pillar
of hyperparameter-change tracking with history. While the first
pillar enables the interception into the clustering process, the
latter provides the capability to track changes and explore dif-
ferent settings. The pillars of entanglement and resilience from
the aspect of measuring methods provide the very basis for (a)
hyperparameter analysis, which itself serves as the foundation
for (b) ensemble settings. All the mentioned fields pose the very
foundation for explainability and didactics in the field of interac-
tive process-aware clustering. Further ideas regarding the vision
would be to connect process-aware clustering with the research
field of process mining. Since various methods are developed
for the analysis of processes, some of them (with or without
adaptations) may be beneficial to the process-aware clustering
concept. Since this vision aims to reveal what happens within
the clustering process itself, we conclude this vision paper with
a quote from Dr. Faust from a tragic play by Johan Wolfang von
Goethe:

That I may understand whatever

Binds the world’s innermost core together,
See all its workings, and its seeds,

Deal no more in words’ empty reeds.
——Faust, lines 382-385.
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Figure 6: Pillars of process-aware clustering,.
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