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ABSTRACT
In different research domains conducted experiments aim for the
detection of (hyper)linear correlations among multiple features
within a given data set. For this purpose methods exist where
one among them is highly robust against noise and detects linear
correlated clusters regardless of any locality assumption. This
method is based on parameter space transformation. The cur-
rently available parameter transform based algorithms detect the
clusters scanning explicitly for intersections of functions in pa-
rameter space. This approach comes with drawbacks. It is difficult
to analyze aspects going beyond the sole intersection of func-
tions, such as e.g. the area around the intersections and further it
is computationally expensive. The work in progress method we
provide here overcomes the mentioned drawbacks by sampling
d-dimensional tuples in data space, generating a (hyper)plane
and representing this plane as a single point in parameter space.
By this approach we no longer scan for intersection points of
functions in parameter space but for dense regions of such pa-
rameter vectors. By this approach in future work well established
clustering algorithms can be applied in parameter space to detect
e.g. dense regions, modes or hierarchies of linear correlations in
parameter space.

1 INTRODUCTION
Typing into Google Scholar 1 the query "linear correlation
between" yields around 343.000 scientific works from various
domains such as medical science, chemistry, biology, pharmacol-
ogy, electric engineering, economics, physics. Further limiting
the search by adding "multivariate" to the previous query reduces
the results down to around 20 scientific works. The insights are
here twofold: first, there is a demand for detecting linear cor-
relations in various domains and second, as for now only few
scientific works have investigated linear correlations between
multiple variables. One real-world example for linear correlations
among multiple features is in the wages data set2. It contains
the statistics of potentially influencing factors of wages from
1985 Current Population Survey. Visualizing the data reveals that
there are linearly correlated clusters among the features "years of
education", "years of work" and age. As a second example in the
scientific domain of water research in a work by [4] the authors

1scholar.google.com
2http://lib.stat.cmu.edu/datasets/CPS_85_Wages
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revealed a linear correlation between the hydroxyl-radical con-
centration and the inactivation time of E.coli in a photocatalytic
disinfection substance.

Figure 1: Triple of 3D data points sampled in data space
yield this spherical galaxy of correlations in a Hessian
Normal Form parameter space. Highly dense regions rep-
resent areas with high correlations between data points.

Among the various methods for detecting linear correlated
clusters in high dimensional data there is one particular method
which relies on parameter space transform: CASH [1]. This
method comes, compared to its competitors, with advantages
that it is highly robust against noise and detects global linear
correlated clusters, being independent of any kind of locality
assumption. As we shall elaborate more in detail in section 3
this method works by projecting data points from data space to
parameter space becoming a data point functions. The param-
eter space is then scanned for intersections of such data point
functions which represent data points being linearly correlated.
However the scan for intersections in parameter space is compu-
tationally expensive and the capabilities to further analyze the
area around the intersection areas are not given by this approach.
We provide the following two major contributions in this work:

• Providing a novel approach for detecting regions of inter-
section by generating d-dimensional samples from which
a linear function is derived. This linear function is then
represented in parameter space as a vector eliminating
the need to scan for intersections resulting in galaxy-like
shapes as seen in Figure 1 and

• An opportunity to analyze further aspects on the detected
clusters such as e.g. different densities and thus variances
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Table 1: Selected Parameter Transform Methods

Method Strategy Strengths Weaknesses
Hough
Transform

grid-based
(accumula-
tors)

Simple strat-
egy

No pruning

CASH iterative pa-
rameter axis
splitting

efficiency
from DFS

Slow on
high-noise
data

D-MASC De-noising
with Mean-
Shift, Ras-
terization of
functions

Effective
against high
levels of
noise

slow on low-
jitter and
low-noise
data

of linear correlated clusters as well as density connected
clusters and their semantics.

2 RELATEDWORK
The parameter transform, which is also known as Hough trans-
form, has been first introduced in a patent by Paul V.C. Hough in
[6] in context of edge detection on images. The first application
of parameter transform in context of detecting (hyper)linear cor-
related clusters was in the work by [1]. This approach despite its
high level of sophistication suffered regarding its runtime if the
data has a high amount of noise and jitter. To approach this issue
in a recent work [7] the authors provide a method in which the
data is pre-aggregated using Mean Shift [3] in data space which
yields modes. These modes are transformed into mode-functions
in parameter space, which then are rasterized into cells. Those
cells frommode functions which are overlapping most with other
mode-function cells are considered as candidates for linear corre-
lated clusters. All the mentioned related works aim primarily at
finding intersections in parameter space at a specific resolution.
The intuition behind this resolution is that the smaller the de-
tected cells in parameter space, the more are the points located
on a specific line, plane or hyperplane. An overview on the men-
tioned linear parameter transform methods are provided in Table
1. It would be of interest to detect e.g. chains of dense regions by
applying DBSCAN [5], or centroids by applying centroid or mode
based methods such as e.g. MeanShift, or determining hierarchies
of linear correlated clusters by applying e.g. single-link to the
parameter space. Since we are dealing with functions and not
with points in parameter space, we can not apply the mentioned
methods.

3 PROJECTING SAMPLED K-TUPLES TO
PARAMETER SPACE

Having given an overview on the related work, we elaborate in
this section on our work in progress in more detail and compare
it to the currently used approach. In the methods described in
the related work section, each data point pi in data space D is
projected to parameter space P as a data point function pi 7→ fpi
where fpi := b = y −m · x , wherem represents the slope of a
line and b the intercept. An intersection of several of such data
point functions at a specific point (ms ,bs )means that their corre-
sponding data points are located on a line with a common slope
and common intercept as it can be seen in Figure 2. Since data
points are rarely located perfectly on a line, in the related work it
is looked for at leastminpoint data point functions intersecting

within a maximum (m,b)-range. Hereminpoint is a hyperparam-
eter set by the domain experts. Further regarding the range, the
intuition is the following: the smaller the range for the slope
and intercept, the more precise are the data points located on an
explicit line, and the higher the linear correlation.

In contrast to the related work, in our method all k-Tuples
(here all pairs) of data points are taken. From these tuples (pi ,pj ),
for each of them a line with a specific slope and intercept is
calculated. From the lines we obtain the slope and intercept for
each tuple which is a point in parameter space. A point or region
in parameter space where these slope-intercept coordinates are
densely located represent a correlation in data space as it can be
seen in Figure 2. In a formalized manner:

∀(pi ,pj ),wherep ∈ D : (pi ,pj ) 7→ fpi ,pj = (mpi ,pj .bpi ,pj ) ∈ P

(1)
,

For detecting the dense regions in parameter space we apply
density based clustering algorithms such as DBSCAN [5] and
OPTICS [2]. In DBSCAN we have two hyperparamters, namely
minpoints which defines the minimum number of data points
which are expected to be located within an ϵ-neighborhood. In
context of the parameter space, the effects of controlling min-
points and ϵ are the following:

minpoints 7→ |S | ∈ Corr(m,b),

where S := {(p0,p1), ..., (pi ,pj )} ⊆ DB

and ϵ 7→ σ (Corr(m,b))

(2)

Here the intuition is as follows: the minpoints in DBSCAN
represent the minimum number of data point tuples which are
expected to have the same parameter values (or value ranges)
and thus belonging to the same linear correlation. The ϵ hyper-
parameter represents the variance σ or resolution we allow for
the data points around a linear correlation.

Figure 2: Comparison of current parameter space trans-
form approaches (top) to our method (bottom).

At this point we have to highlight that a question which may
rise immediately is: how do we choose the two parameters? This
can be partially addressed by using OPTICS which eliminates
mostly the issue of determining a proper ϵ value and enables the
detection of density hierarchies. Having determined the dense
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regions or sampled linear correlations, our method computes the
median of such regions. The median comes with a pleasant effect
that it weeds out the influence of outlier k-tuple correlations in
parameter space. As for now our method can be summarized into
the following steps as it can be seen in Figure 3

Figure 3: Pipeline with its single stages of our method.

The parameter space provided in our example is the slope-
intercept form. There is a variety of linear parameter space rep-
resentations. Since the slope-intercept form comes with various
drawbacks (unbounded dimensions, unable to project y-axis par-
allel linear correlations, non-ambiguous representations in higher
dimensions etc.) we use in this work the Hessian Normal Form
(HNF) since it comes with the advantages of the slope-intercept
and other representations but with none of their disadvantages
as stated in [8]. In the HNF representation a line or (hyper)plane
is represented through:

δ =< p,n >,wherep := (p0,p1, ...,pd ) ∈ Dd ,

and n := (n0,n1, ...,nd ) ∈ Pd
(3)

,
Here n represents the normal vector and δ represents the

distance from origin orthogonal to the hyperplane.
Further we shall see in the complexity section why a full k-

Tuple construction is computationally infeasable, especially in
higher-dimensional settings.

4 COMPLEXITY
The runtime complexity of the related work CASH is in worst
case O(s · c · n · 2d ) where s reflects the number of intersec-
tions and thus the resolution of the grid, c denotes the num-
ber of found clusters, n represents the number of data points
in the data set and d stands for the dimensionality of the data
space. In comparison D-MASC has a runtime complexity of
O(Tn log(n)+( len(boundsd )w )dm2)withT denoting the number of
iterations of the MeanShift algorithm for initially reducing noise
and jitter in data space, len(boundsd ) representing the range of
the parameter space range in which we are looking for intersec-
tions,w standing for the width of the cells being generated in a
rasterization process andm for the number of resulting modes
after applying MeanShift. Our method requires for computing
the parameter coordinates for all data point all k-tuples, where
k corresponds to the dimensionality d of the original data set.
With regards to the dimensionality, we require in a 2D data set
all two-tuples, in a 3D data set all three-tuples etc. This yields
a runtime of O(

(n
d
)
). DBSCAN requires with an indexing struc-

ture that executes the neighborhood query an overall runtime
of O(n log(n)). Thus we get for our method in total a runtime
of O(

(n
d
)
+ n log(n)). From a runtime point of view, our method

has an exponential runtime with regards to the dimensionality
like CASH and D-MASC. However instead of generating all

(n
d
)

tuples, one strategy is to sample over the data points. In some
preliminary experiments we could observe that sampling yielded
in most cases as accurate results as performing a full enumera-
tion of all k-tuples. As for now, our assumption is, that if data
points are correlated in data space, so do their samples reflect the

correlation up to a certain extent. However, since this is a work
in progress, an exhaustive analysis on theoretical as well as on
experimental level is required to prove the assumptions.

5 EXPERIMENTS AND DISCUSSION
Now that we have elaborated on our method and its runtime
complexity we provide here experiments which focus on the
quality of the detected clustering results. As a first experiment
we take one of the data sets which is used in D-MASC. The two-
dimensional data set consists of 100 data points contributing to
three linear correlated clusters with irregular densities. To these
100 data points 90% noise is contributed. According to the pipeline
mentioned in section 3, first all 2-tuples of data points are created,
then projected into the parameter space. In the parameter space
we can already observe dense regions. Applying OPTICS we get
the following plot as seen in Figure 4.

Figure 4: OPTICS plot of the parameter vectors in param-
eter space.

The three valleys indicate three almost equally high-dense re-
gions in parameter space. As a result of DBSCANwithminpoints =
33 and ϵ = 0.015 we obtain the following regions in parameter
space which are marked with an ’x’ in Figure 5

Figure 5: Detected three high-density regions in parame-
ter space.

After having computed the median from each of the dense
regions, our method was capable of detecting all three linear
correlated clusters with all the data points being assigned to their
respective cluster as it can be seen in Figure 6.

As a teaser for its performance on data sets with a dimen-
sionality higher than two, we have a three dimensional data set
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Figure 6: Detected three linear correlated clusters in data
space.

consisting of 66 data points. From which 36 data points belong
to planar correlations and 30 data points are randomly gener-
ated noise. The 36 data points belong to two planar correlated
clusters, with 18 data points per correlation. In parameter space
we generate thus

(66
3
)
= 45760 parameter vectors in parameter

space. Our method detects in parameter space two clusters as
it can be seen in Figure 7 where two very deep valleys can be
seen. The first figure in the introduction of the paper is the actual
parameter space of this data set. The three axes represent each a
dimensional of the normal vector. The color (black) represents
the distance δ . The parameters for the density based clustering
wereminpoints = 250 and ϵ = 0.01.

Figure 7: OPTICS plot of the 3D data set with two highly-
dense clusters.

As an result we get both planes detected correctly and all
points assigned to their corresponding planar correlated clusters
as seen in Figure 8.

6 CONCLUDING REMARKS AND FUTURE
PROSPECTS

In this work in progress, we have provided a first concept for a
different approach in detecting (hyper)linear correlated clusters
in parameter space by sampling k-Tuples in data space, gen-
erating k-dimensional (hyper)planes. The parameters of these
(hyper)planes are projected to parameter space. In the parameter
space we used as an example density based methods for detect-
ing highly dense regions. This approach of dealing with points
in parameter space instead with (hyper)linear functions opens
new possibilities of analysis. Primary targets for future work
are evaluating sampling strategies, applying the experiments to
high-dimensional and also real world data and evaluating differ-
ent clustering models in parameter space (hierarchical, centroid-
based, subspace etc.). We hope to encourage with this paper to

Figure 8: Two planar correlated clusters

not only develop different approaches for clustering using param-
eter transform itself, but also fostering the research of parameter
space transformation based methods making discoveries in the
galaxies of correlations.
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