
KSQL: Streaming SQL Engine for Apache Kafka
Hojjat Jafarpour

Confluent Inc.
Palo Alto, CA

hojjat@confluent.io

Rohan Desai
Confluent Inc.
Palo Alto, CA

rohan@confluent.io

Damian Guy
Confluent Inc.
London, UK

damian@confluent.io

ABSTRACT
Demand for real-time stream processing has been increasing and
Apache Kafka has become the de-facto streaming data platform in
many organizations. Kafka Streams API along with several other
open source stream processing systems can be used to process
the streaming data in Kafka, however, these systems have very
high barrier of entry and require programming in languages such
as Java or Scala.

In this paper, we present KSQL, a streaming SQL engine for
Apache Kafka. KSQL provides a simple and completely interactive
SQL interface for stream processing on Apache Kafka; no need
to write code in a programming language such as Java or Python.
KSQL is open-source, distributed, scalable, reliable, and real-time.
It supports a wide range of powerful stream processing opera-
tions including aggregations, joins, windowing, sessionization,
and much more. It is extensible using User Defined Functions
(UDFs) and User Defined Aggregate Functions (UDAFs). KSQL
is implemented on Kafka Streams API which means it provides
exactly once delivery guarantee, linear scalability, fault tolerance
and can run as a library without requiring a separate cluster.

1 INTRODUCTION
In recent years, the volume of data that is generated in organi-
zations has been growing rapidly. From transaction log data in
e-commerce platforms to sensor generated events in IoT systems
to network monitoring events in IT infrastructures, capturing
large volumes of data reliably and processing them in a timely
fashion has become an essential part of every organization. This
has resulted in an emerging paradigm where organizations have
been moving from batch oriented data processing platforms to-
wards realtime stream processing platforms.

Initially developed at LinkedIn, Apache Kafka is a battle hard-
ened streaming platform that has been used to capture trillions
of events per day [2] [16]. Apache Kafka has become the de-facto
streaming platform in many organizations where it provides a
scalable and reliable platform to capture and store all the pro-
duced data from different systems. It also efficiently provides the
captured data to all the systems that want to consume it. While
capturing and storing streams of generated data is essential, pro-
cessing and extracting insight from this data in timely fashion
has become even more valuable. Kafka Streams API along with
other open source stream processing systems have been used to
perform such real time stream processing. Such real time stream
processing systems have been used to develop applications such
as Streaming ETL, anomaly detection, real time monitoring and
many more. Many of these stream processing systems require
users to write code in complex languages such as Java or Scala
and can only be used by users who are fluent in such languages.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

This is a high barrier of entry that limits the usability of such
systems.

Motivated by this challenge, in this paper we present KSQL, a
streaming SQL engine for Apache Kafka that offers an easy way
to express stream processing transformations[8]. While the exist-
ing open source stream processing systems require expression of
stream processing in programming languages such as Java, Scala
or Python or offer limited SQL support where SQL statements
should be embedded in the Java or Scala code, KSQL offers an
interactive environment where SQL is the only language that is
needed. KSQL also provides powerful stream processing capa-
bilities such as joins, aggregations, event-time windowing, and
many more.

KSQL is implemented on top of the Kafka Streams API which
means you can run continuous queries with no additional cluster;
streams and tables are first-class constructs; and you have access
to the rich Kafka ecosystem. Similar to addition of SQL to other
systems such as Apache Hive[17] and Apache Phoenix[4], we
believe that introduction of SQL for stream processing in Kafka
will significantly broaden the users base for stream processing
and bring the stream processing to the masses.

The rest of the paper is organized as the following. In the
next section we provide a brief overview on Apache Kafka and
the Kafka Streams API. Section 3 presents our contribution in
design and development of KSQL. We describe data model, basic
concepts, query language and the internals of our SQL engine.
In Section 4, we present how KSQL can be extended using UDFs
and UDAFs. We describe different execution modes for KSQL
in Section 5. We present our experimental evaluation results
for KSQL in Section 6. Section 7 describes the related work. We
present the future work directions and conclude the paper in
Section 8.

2 BACKGROUND
KSQL is implemented on top of the Kafka Streams API. In this
section we will provide a brief overview on Apache Kafka and
the Kafka Streams API.

2.1 Apache Kafka
Apache Kafka is a large-scale distributed publish/subscribe mes-
saging system where data is produced to and consumed from
topics [2] [15] [16]. Messages in Kafka include a key and a value.
Figure 1 depicts the anatomy of a topic in Kafka. Each topic con-
sists of several partitions where messages are assigned to based
on their key. Each partition is an ordered, immutable sequence
of records that is continually appended to a structured commit
log. To achieve fault tolerance, partitions are replicated across a
configurable number of servers, called brokers, in a Kafka cluster.
One broker for each partition acts as the leader and zero or more
brokers act as followers.

Producers publish data to their desired topics by assigning
the messages to the specific partition in the topic based on the
message key. To consume the published data to a topic, consumers

Industry and Applications Paper

Series ISSN: 2367-2005 524 10.5441/002/edbt.2019.48

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.48

Figure 1: Anatomy of a Kafka topic

form consumer groups where each published message will be
delivered to one instance in the consumer group. Figure 2 shows
two consumer groups that consume messages from a topic with
four partitions in a Kafka cluster with two brokers.

Figure 2: Two consumer groups reading from a topic with
four partitions.

A consumer groups can expand by adding more members to
it. It can also shrink when group members fail or are removed
explicitly. Whenever, a consumer group changes, Kafka cluster
will go through a rebalancing process for the consumer group to
guarantee every partition in the topic will be consumed by one
instance in the consumer group. This is done by Kafka group
management protocol which is one of the fundamental building
blocks of the Kafka streams API as we describe below.

2.2 Kafka Streams API
Kafka Streams API is a Java library that enables users to write
highly scalable, elastic, distributed and fault-tolerant stream pro-
cessing applications on top of Apache Kafka [2]. Unlike other
stream processing frameworks that need a separate compute
cluster to run stream processing jobs, Kafka streams runs as an
application. You can write your stream processing application
and package it in your desired way, such as an executable jar file,
and run instances of it independently. If you need to scale out
your application, you just need to bring up more instances of the
app and Kafka streams along with Kafka cluster will take care
of distributing the load among the instances. The distribution of
load in Kafka streams is done with the help of Kafka group man-
agement protocol. Figure 3 depicts the architecture of a Kafka
streams app.

Figure 3: Two consumer groups reading from a topic with
four partitions.

A typical Kafka streams application will read from one or more
Kafka topic and process the data and writes the results into one or
more Kafka topics. Kafka streams app uses the same data model
as Kafka where messages include a key and a value along with a
timestamp and offset of the message in its corresponding parti-
tion. The processing logic in a Kafka streams app is defined as a
processing topology that include source, stream processor and
sink nodes. The processing model is one record at a time where
an input record from the source is processed by passing through
the whole topology before the next recored is processed. Kafka
streams provides powerful stream processing capabilities such
as joins, aggregations, event-time windowing, sessionization and
more. Operations such as join and aggregation are done based on
the message key. Kafka streams uses intermediate Kafka topics
to perform shuffle for operations such as aggregation and join
that need to colocate data based on a key. For instance, if two
streams are being joined and the join key is not the same as the
message key for both streams, Kafka streams repartitions both
stream topics based on the join key and produces new intermedi-
ate topics where message key is the same as the join. This will
ensure the colocation of the records with the same key that can
be joined at the same node.

Kafka streams provides stateful stream processing through
the so-called state stores. The state stores exist in every instance
of the streaming application and are used to store the state in
operations such as join and aggregation in a distributed fashion.
By default Kafka streams uses RocksDB[9] to store application
state, however, any in-memory hash map or other data structures
can be plugged in.

3 KSQL
In this section we present KSQL, streaming SQL engine for Kafka.
As mentioned KSQL uses Kafka streams to run the user queries,
therefore, it inherits many properties of Kafka streams.

3.1 Data Model
As mentioned a message in a Kafka topic consists of a key and
a value. To keep the messages generic, Kafka does not assume
any specific format for the messages and both key and value
are treated as array of bytes. In addition to the key and value, a
message also includes a timestamp, a partition number that it
belongs to and the offset value in the corresponding partition. In

525

order to use SQL on top of Kafka topics we need to impose the
relational data model, schema, on the value part of messages in
Kafka topics. All of the message values in a topic should conform
to the associated schema to the topic. The schema defines a
message value as a set of columns where each column conforms
to the defined data type. Currently, we support the primitive
types of BOOLEAN, INTEGER, BIGINT, DOUBLE and VARCHAR
along with the complex types of ARRAY, MAP and STRUCT. We
plan to add DECIMAL, DATE and TIME types in future. KSQL
supports nested column type using the STRUCT type. The fields
in a ARRAY, MAP and STRUCT types themselves can be any of
the supported types including complex types. As you can see,
there is no limit in the level of nesting and users can have as
many levels of nesting as they desire. The schema of message
values for Kafka topic is used for serialization and deserialization
of message values.

3.2 Basic Concepts
KSQL provides streaming SQL for Kafka topics meaning that
you can write continuous queries that run indefinitely querying
future data. There are two basic concepts in KSQL that users can
use in their queries, stream and table. Depending on how we
interpret the messages in a Kafka topic we can define streams or
tables over Kafka topics in KSQL.

If we consider the messages arriving into a topic as indepen-
dent and unbounded sequence of structured values, we interpret
the topic as a stream. Messages in a stream do not have any
relation with each other and will be processed independently.

On the other hand, if we consider the messages arriving into a
topic as an evolving set of messages where a new message either
updates the previous message in the set with the same key, or
adds a new message when there is no message with the same
key, then we interpret the topic as a table. Note that a table is an
state-full entity since we need to keep track of the latest values
for each key. In other words, if we interpret the messages in a
topic as a change log with a state store that represent the latest
state, then we interpret the topic as a table.

As an example consider we store the page view events for a
website in a Kafka topic. In this case, we should interpret the
topic as a stream since each view is an independent message. On
the other hand, consider we are storing user information is a
Kafka topic where each message either adds a new user if it is
not stored already or updates the user information if we already
have stored the user. In this case, we should interpret the topic
as a table. Note that at any moment, the table should have the
most up to date information for every user.

KSQL also provides windowed stream processing where you
can group records with the same key to perform stateful process-
ing operations such as aggregations and joins. Currently, KSQL
supports three types of windows:

• Tumbling window which are time-based, fixed-sized,
non-overlapping and gap-less windows

• Hopping window which are time-based, fixed-sized and
overlapping windows

• Session window which are session-based, dynamically-
sized, non-overlapping and data-driven windows

Note that the results of windowed aggregations are tables in
KSQL where we need to keep the state for each window and
aggregation group and update them upon receiving new values.

KSQL also support join operation between two streams, a
stream and a table or two tables. The stream-stream join always

requires a sliding window since we should prevent the size of the
state store growing indefinitely. Every time a newmessage arrives
to either of the streams, the join operation will be triggered and
the new message for each matching message from the other
stream within the join window will be produced. KSQL supports
INNER, LEFT OUTER and FULL OUTER join operations for two
streams. The RIGHT OUTER join can be implemented via the
LEFT OUTER join by simply change the left and right sides of the
join. Joining a stream with a table is a stateless operation where
each new message in the stream will be matches with the table
resulting in emission of zero or one message. Finally, joining
two tables in KSQL is consistent with joining them in relational
databases if we materialize both of them. KSQL supports INNER,
LEFT OUTER and FULL OUTER joins for two tables.

3.3 Query Language
KSQL query language is a SQL-like language with extensions to
support stream processing concepts. Similar to the standard SQL
language, we have DDL and DML statements. DDL statements
are used to create or drop streams or tables on top of existing
Kafka topic. The followings are two DDL statements to create a
pageviews stream and a users table:
CREATE STREAM pageviews (viewtime BIGINT,
userid VARCHAR, pageid VARCHAR) WITH
(KAFKA_TOPIC='pageviews_topic',
VALUE_FORMAT='JSON');

CREATE TABLE users (registertime BIGINT,
gender VARCHAR,
regionid VARCHAR,
userid VARCHAR,

address STRUCT<
street VARCHAR, zip INTEGER

>
) WITH (
KAFKA_TOPIC='user_topic',
VALUE_FORMAT='JSON',

KEY='userid'
);

Note that in addition to defining the schema for the stream
or table we need to provide information on the Kafka topic and
the data format in the WITH clause. After declaring streams and
tables, we can write continuous queries on them.

Unlike standard SQL statements where the queries return fi-
nite set of records as the result, in streaming systems we have
continuous queries and therefore the results also will be con-
tinuous while the query runs. To address this, KSQL provides
two types of query statements. If the results of the query are
stored as a new stream or table into a new Kafka topic we use
CSAS(CREATE STREAMAS SELECT) ,CTAS(CREATE TA-
BLE AS SELECT) or INSERT INTO statements depending on
the type of the query results. For instance, the following state-
ment enriches the pageviews stream with extra user information
by joining it with the users table and only passes the records
with regionid = ’region 10’. The result is a new stream that we
call enrichedpageviews:
CREATE STREAM enrichedpageviews AS
SELECT * FROM pageviews LEFT JOIN
users ON pageviews.userid = users.userid
WHERE regionid = 'region 10';

526

On the other hand, the following CTAS statement creates a
table that contains the pageviews for each user in every 1 hour.
Here we use an aggregate query with tumbling window with size
of 1 hour.

CREATE TABLE userviewcount AS
SELECT userid, count(*)
FROM pageviews
WINDOW TUMBLING (SIZE 1 HOUR)
GROUP BY useid;

Note that the results of the above query will be continuous
count values for each user and window that will be stored in
a Kafka topic. Every time we receive a new record the current
count value for the corresponding userid and window will be
updated and the new updated value will be written to the topic.
As it can be seen the result will be a change log topic.

Depending on the execution model that we will discuss in the
later section, KSQL also provides query manipulation statements
where user can submit continuous queries, list the currently
running continuous queries and terminate the desired ones.

3.4 KSLQ Engine
As mentioned, KSQL uses Kafka streams to run the streaming
queries. The main responsibility of the KSQL engine is to compile
the KSQL statements into Kafka streams apps that can continu-
ously run and process data streams in Kafka topics. To achieve
this KSQL has a metastore component that acts as a system cata-
log storing information about all the available streams and tables
in the system. Currently metastore is an internal component in
the KSQL engine. Depending on the execution mode the metas-
tore can be backed by a Kafka topic to provide fault tolerance.

Figure 4 depicts the steps that are taken in the engine to com-
pile KSQL statements into Kafka streams applications to run. As
it can be seen, the first step is to parse the statements where the
KSQL parser generates an Abstract Syntax Tree (AST). Using
the metastore, the generated AST will be analyzed and the unre-
solved columns references will be resolved. This include detecting
the column types along with resolving expression types in the
queries along with extracting different components of a query
including source, output, projection, filters, join and aggregation.
After analyzing each query, we will build a logical plan for it.
Logical plan is a tree structure where the nodes are instances
of PlanNode class. Currently, we can have the following node
types in KSQL logical plan: SourceNode, JoinNode, FilterNode,
ProjectNode, AggregateNode and OutputNode. The leaf node(s)
are of SourceNode type and the root node is OutputNode type. As
it is indicated in Figure 4. rule-based optimization techniques can
be applied to the generated logical plan, however, at the moment
we do not apply any rule to the logical plan other than pushing
down the filters.

The final step is to generate a physical execution plan from the
logical plan. The physical plan in KSQL is a Kafka streams topol-
ogy that runs the stream processing logic. We use the higher level
topology structure that is called Kafka streams DSL[2]. Kafka
streams defines two fundamental building blocks, KStream and
KTable which are synonymous to stream and table in KSQL. In-
deed, A KSQL stream represents a KStream along with a schema.
Similarly, a KSQL table represents a KTable along with the as-
sociated schema. Kafka streams DSL also provides operations

such as map, join, filter, aggregate, etc that convert KStreams/K-
Tables into new KStream/KTables. These operations work on key
and value of Kafka messages where there is no assumption on
the schema of message value. KSQL defines similar operations
on streams and tables, however, in KSQL we impose the proper
schema on the message value.

KSQL engine also is responsible for keeping the metastore
and queries in the correct state. This includes rejecting state-
ments when they result in incorrect state in the engine. Dropping
streams or tables while there are queries that are reading from
or writing into them is one of the cases that would result the
system to go into an incorrect state. A stream or table can only
be dropped if there is no query reading from or writing into it.
KSQL engine keeps track of queries that read from or write into a
stream or table in the metastore and if it receives a DROP state-
ment for s stream or table that is still being used, it will reject the
DROP statement. Users should make sure that all of the queries
that use a stream or table are terminated before they can drop
the stream or table.

4 UDFS AND UDAFS
Although standard SQL statements provide a good set of capabil-
ities for data processing, many use cases need to perform more
complex and custom operation on data. By using functions in
queries SQL systems enhance their data processing capabilities.
KSQL also provide an extensive set of built in scalar and aggre-
gate functions that can be use in queries. However, to even make
KSQL more extensible, we have added capability of adding cus-
tom User Defined Functions (UDFs) and User Defined Aggregate
Functions (UDTFs).

4.1 User Defined Functions
UDF functions are scalar functions that take one input row and
return one output value. These functions are stateless, meaning
there is no state is maintained between different function calls.
Currently, KSQL supports UDFs written in Java. Implementing
a new UDF is very straightforward using only two annotations.
A Java class annotated by @UdfDescription annotation will be
considered as a UDF containing class. User provide the name of
the UDF by setting the name parameter of the @UdfDescription
annotation. Any function in this class that is annotated by @Udf
annotation will be considered as a UDF that can be used in any
query similar to any other built in function. The following is an
example UDF that implements multiplication.

@UdfDescription(name = "multiply", description =
"multiplies 2 numbers")

public class Multiply {

@Udf(description = "multiply two non-nullable INTs.")
public long multiply(final int v1, final int v2) {
return v1 * v2;

}
}

After implementing the UDFs, users can package them in a
JAR file and upload it to the designated directory in the KSQL
engine where the functions will be loaded from when the KSQL
engine starts up. The following query shows how the above UDF
can be used in a query:
CREATE STREAM test AS
SELECT multiply(col1, 25)

527

Figure 4: Steps to convert KSQL statements into Kafka streams apps.

FROM inputStream;

4.2 User Defined Aggregate Functions
Aggregate functions are applied to a set of rows and compute
a single value for them. Similar to the UDFs, KSQL UDAFs are
implemented in Java using annotations. To create a new UDAF,
users need to create a class that is annotated with@UdafDescrip-
tion. Methods in the class that are used as a factory for creating an
aggregation must be public and static, be annotated with @Udaf-
Factory, and must return an instance of Udaf class. The instances
of a textitUdaf class should implement initialize, aggregate and
merge methods. The following is an example UDAF that will
perform sum operation over double values:

@UdafDescription(name = "my_sum", description = "sums")
public class SumUdaf {
@UdafFactory(description = "sums double")
public static Udaf<Double, Double> createSumDouble() {
return new Udaf<Double, Double>() {
@Override
public Double initialize() {
return 0.0;

}

@Override
public Double aggregate(final Double aggregate,

final Double val) {
return aggregate + val;

}

@Override
public Double merge(final Double aggOne, final

Double aggTwo) {
return aggOne + aggTwo;

}
};

}
}

Similar to UDFs, UDAFs should be packaged in a JAR file and
uploaded to the designated folder in the KSQL engine so the
functions can be loaded at the engine start up.

We plan to add support for User Defined Table Functions
(UDTFs) in near future.

5 EXECUTION MODES
As discussed above, KSQL engine creates Kafka streams topolo-
gies that execute the desired processing logic for Kafka topics.
Therefore, running KSQL queries is the same as running Kafka
streams topologies. Currently, KSQL provides three different ex-
ecution modes that we describe here.

5.1 Application Mode
The application mode is very similar to running a Kafka streams
app as described earlier. To deploy and run your queries, you
need to put them in a query file and pass it as an input parameter
to the KSQL executable jar. Depending on the required resources,
you determine the number of instances that your application
needs and similar to a Kafka streams execution model you will
instantiate the instances by running the KSQL jar with the query
file as input parameter. The deployment process can be done man-
ually or through third party resource managers such as Mesos[3]
or Kubernetes[10]. Note that you don’t need any extra process-
ing cluster and the only thing you need is to run your KSQL
app by bringing up desired number of instances independently.
Everything else will be handled by KSQL and Kafka streams.

5.2 Interactive Mode
KSQL also provides an interactive execution mode where users
can interact with a distributed service through a REST API. One
way of using the provided REST API is to use KSQL CLI which
includes a REST client that sends user requests to the service
and receives the response. The building block of the interactive
mode is KSQL server that provides a REST end point for users
to interact with the service and also KSQL engine to execute the
user queries. Figure 5 depicts the architecture of the KSQL service
with three servers in the interactive client-server execution mode.

Each KSQL server instance includes two components, the
KSQL engine and the REST server. The KSQL service uses a spe-
cial Kafka topic, KSQL command topic, to coordinate among
the service instances. When a service instance is started, it first
checks the Kafka cluster for the command topic. If the topic does
not exists it creates a new command topic with a single parti-
tion and a configurable number of replications. All of the service
instances then subscribe to the command topic. User interacts
with the service by connecting to REST endpoint on one of the
instances. The KSQL command topic has only one partition
to ensure the order of KSQL statements for all server is exactly
the same. The KSQL command topic can have more than one
replicas to prevent loss of KSQL statements in presence of failure.
The figure shows the KSQL CLI that connects to either of the
instances.

When user submits a new KSQL statement through the REST
endpoint, the instance that receives the request will append it to
the KSQL command topic. The KSQL engine components in all of
the instances will pull the new statement from the command topic
and execute the statement concurrently. For instance, consider
the following statement is submitted to the service through one
of the instances and appended to the command topic.
CREATE TABLE userviewcount AS
SELECT userid, count(*)
FROM pageviews

528

Figure 5: A KSQL interactive service deployment with
three server instances.

WINDOW TUMBLING (SIZE 1 HOUR)
GROUP BY useid;

All of the instances will use the KSQL engine to start the
processing of the query and as mentioned above each instance
will process portion of the input data from the pageviews topic.
The service instances continue running the queries until they are
explicitly terminated using TERMINATE statement.

The KSQL service provides both elasticity and fault tolerance.
Service instances can be added or removed independently, de-
pending on the load and performance requirements. When a new
instance is started it subscribes to the command topic and fetches
all the existing KSQL statements from the command topic and
starts executing them. When the new instance starts executing
an existing query a rebalance process is triggered and the execu-
tion load will be redistributed among the existing instances. Note
that the rebalance protocol is handled by the underlying Kafka
consumers in the Kafka streams and is transparent for the KSQL
service instance. After all of the existing continuous queries start
running on the new instance too, it starts listening to the com-
mand topic for new queries. Similarly when an instance fails or
terminated a rebalance process among the remaining instances
of the service happens and the load of the removed instance will
be distributed among the remaining instances. Even if all the
instances fail and the whole system is restarted, the instances
will pick up all the existing KSQL queries from the command
topic when they come back online and the whole system will
continue processing the queries from the point they were left.

5.3 Embedded Mode
The third execution mode available in KSQL is the embedded
mode where we can embed KSQL statements in a Kafka streams

application. As mentioned Kafka streams apps are Java programs
that use the Kafka streams as library. KSQL provides a KSQL-
Context class with a sql() method where KSQL statements can
be passed to run in the embedded engine. The following code
snippet show a very simple example of using the embedded mode.

KSQLContext ksqlContext = new KSQLContext();
ksqlContext.sql("CREATE STREAM pageviews
(viewtime BIGINT, userid VARCHAR,
pageid VARCHAR) WITH
(KAFKA_TOPIC='pageviews_topic',
VALUE_FORMAT='JSON');");

ksqlContext.sql("CREATE STREAM pageviewfilter
AS SELECT * FROM pageviews
WHERE userid LIKE '\%10';");

Similar to the Kafka streams apps, in order to execute the
queries in the embedded mode, you need to package the ap-
plication and run instances of it. The deployment can be done
through a range of available options such as manually bringing
up instances or using more sophisticated tools such as Mesos or
Kubernetes.

6 EXPERIMENTAL EVALUATION
6.1 Methodology
We want to evaluate KSQL’s ability to handle different types of
workloads. To do this, we ran a series of tests with different query
types and measured the throughput that a single KSQL server
can process. Each test case runs for ten minutes and periodically
measures throughput in messages / second and bytes / second.

In practice, users will likely run multiple queries that feed
into each other to form a streaming pipeline. We’ve included a
multi-query test to measure performance for this scenario.

Finally, we run multiple queries on a pool of KSQL nodes to
see how KSQL scales as servers are added.

6.1.1 Load Generation. To generate load against KSQL we
ran a modified version of the “‘ksql-datagen“‘ tool that has had
some changes made to improve its performance and to allow it
to produce different types of workloads. “‘ksql-datagen“‘ is a tool
for generating data into a kafka cluster. The tool generates Kafka
records conforming to a specified schema. The schema can be
one of a set of pre-defined schemas, or the user can specify their
own avro schema for the tool to use. Records are written to Kafka
using the Java Kafka producer client. For our tests, we extended
“‘ksql-datagen“‘ to support multiple threads, and to support a
rate-limit parameter (specified in messages produced per second)
implemented using a token-bucket algorithm.

6.1.2 Measuring Throughput. We measured throughput us-
ing a counter exported by KSQL that provides the number of
messages consumed by a given topic. Throughput for a given
time period is computed by sampling the counter at two points
in time and dividing the difference in consumed messages by the
difference in time. For tests that run multiple queries in a pipeline,
consumption is measured against the topic that is the source for
the final query in the pipeline. This gives us the throughput of
the pipeline as a whole.

6.1.3 Environment. We ran our test in AWS EC2. The test
environment consists of a Kafka cluster, a KSQL cluster, and a
set of nodes that run the load-generator.

529

The Kafka cluster consists of 5 Kafka nodes, and 1 node for run-
ning ZooKeeper. To run Kafka we chose the i3.xlarge instance
type, which has 4 2.3GHz VCPUs, 30.5GB of memory, "up-to-
10Gbit" of network, and a 950GBNVME local disk which we’ll use
to store the Kafka topics. We used fio to benchmark the instance
storage, and observed 380MBps write throughput, 950MBps read
throughput, 2000016K random write IOPS, and 61000 16K ran-
dom read IOPS. Finally, we ran some network benchmarks using
iperf to get an idea of what network performance to expect, and
observed 1.24Gbit of network throughput.

Zookeeper runs on an m3.medium.
The KSQL cluster consists of 1-4 nodes, depending on the test

case. We chose i3.xlarge instance for KSQL as well, and use the
NVME local disk to store the local state stores.

6.2 Test Data
The test data and workload are derived from a use case for ana-
lyzing metrics. Metrics are published by services that comprise
a distributed application. The queries consume, transform, ag-
gregate and enrich this metric data. The source stream for the
metrics has the following schema:
ID VARCHAR,
SOURCE VARCHAR,
INSTANCE LONG,
CLUSTERID VARCHAR,
METRIC STRUCT<

NAME STRING,
VALUE INTEGER,
METADATA1 STRING,
METADATA4 STRING,
METADATA5 STRING,
METADATA6 STRING,
METADATA7 STRING,
METADATA8 STRING,
METADATA9 STRING,
METADATA10 STRING

>

For our tests, we produced test data serialized using AVRO.
The average size for test records was 220 bytes. The source topic
containing the metrics data has 32 partitions.

Figure 6: Throughput for Basic Query Types

6.3 Projection
The first type of query we’ll evaluate is a basic projection. Users
can use similar queries to apply basic stateless transformations
and filters to their data. For the test, we’ll run the following query:

CREATE STREAM SINK
AS SELECT *
FROM METRICS_STREAM;

Figure 6 depicts the measured throughput over the test run.
Throughput starts low, increases as the JVM warms up, and stabi-
lizes just under 90000 messages per second. The main bottleneck
for this query type is CPU utilization, which is nearly 100% on
the KSQL server during the test run. To discover why, we re-ran
the test case while profiling using the YourKit JVM profiler and
found the main hot-spots to be deserialization and serialization of
the records after reading from, and before writing back to Kafka.

6.4 Aggregation
Next lets look at an aggregation. Aggregations allow the user to
group records in a stream or table, and then apply an aggrega-
tion function on the grouped records. For this test, we’ll run an
aggregation to compute the average value of a metric:

CREATE TABLE SINK
AS SELECT
INSTANCE,
SUM(METRIC->VALUE) / COUNT(*)
FROM METRICS_STREAM
GROUP BY INSTANCE

Figure 6 depicts the measured throughput over the test run.
Again, the bottleneck is CPU utilization on the KSQL server. In
this case, profiling revealed additional overhead from reading
from / writing to RocksDB. Each read from RocksDB has to po-
tentially traverse multiple SSTs within the database to find the
latest update for the grouping key. The state for aggregations is
quite small and fits comfortably within the block cache, so there
is no added cost for reading from the kernel cache or decompress-
ing. Writing also adds some cost to write to the memtable and
append to the log. The source data for this aggregation is keyed
on the grouping column, so there is no additional cost for seri-
alizing/deserializing to/from the repartition topic. Aggregations
that require a repartition would incur this cost as well.

Space usage on the local disk is quite small, just a few hundred
MBs. This makes sense since the state required to compute each
aggregation result is small - just the key, sum, and current count,
which are all 32-bit or 64-bit integers. Utilization is also quite
low - around 50 IOPS and 1MBps. Interestingly, a good portion
of the disk usage comes from storing checkpoints for per-task
topic offsets rather than from RocksDB itself.

6.5 Windowing
Usually, users want to compute aggregations that correspond
to a specific time interval - for example, the average value of a
metric over a day or hour. KSQL provides tumbling and hopping
windows to allow you to window your aggregation computation
using a fixed-size window. A tumbling window computes results
for one time interval without any overlap with the previous in-
terval. A hopping window has two arguments: the time interval,
and the hop size. Results are returned for windows that are as
wide as the interval and advance by the hop size. This lets you

530

approximate a sliding window. In this experiment, we’ll com-
pute tumbling and sliding windows and observe the effect on
performance:
CREATE TABLE SINK
AS SELECT
INSTANCE,
SUM(METRIC->VALUE) / COUNT(*)

FROM METRICS_STREAM
WINDOW TUMBLING (
SIZE 60 SECONDS

)
GROUP BY INSTANCE

CREATE TABLE SINK AS SELECT
INSTANCE,
SUM(METRIC->VALUE) / COUNT(*)
FROM METRICS_STREAM
WINDOW HOPPING(
SIZE 60 SECONDS,
ADVANCE BY ? SECONDS

)
GROUP BY INSTANCE

Figure 7: Throughput for Varying Window Sizes

Figure 7 shows that the realized throughput decreases as the
number of windows that must be maintained increases. This
makes sense - under the hood the aggregation result for each
window that a given record maps to is maintained independently.
If record arriving in the stream must update 4 windows (as in the
ADVANCE BY 15 SECONDS case), then KSQL will do 4 separate
reads and write from/to RocksDB. This adds to the CPU cost to
process each record.

6.6 Stream Enrichment
Another common use case for KSQL is to enrich a stream of
data with a dimension table. In this test, we’ll enrich our metric
stream by adding information from an instance table to each
metric record:
CREATE STREAM SINK
AS SELECT S.*, T.*
FROM

METRIC_STREAM S
LEFT JOIN
INSTANCE_TABLE S
ON S.INSTANCE = T.INSTANCE;

Figure 6 shows the throughput over time. Again, the primary
bottleneck is CPU utilization, which is near 100%. The realized
throughput is around 55000 records per second - greater than
the aggregation but lower than the projection. This is because to
process each record in the stream we must read from RocksDB,
but nothing is written back to the state store. Therefore, the CPU
utilization per record is lower than that for aggregations, and the
realized throughput is higher.

6.7 Multi-Query Application
Usually, KSQL users run multiple queries in a streaming pipeline
to form a KSQL "application". To evaluate KSQL in this scenario,
we’ll build the following test app:
CREATE STREAM METRICS_WITH_INSTANCE_INFO
AS SELECT S.*, T.*
FROM
METRIC_STREAM S
LEFT JOIN
INSTANCE_TABLE S
ON S.INSTANCE = T.INSTANCE;

CREATE TABLE AVERAGE_VALUE_BY_PHYSICAL_INSTANCE
AS SELECT
T_PHYSICAL_INSTANCE,
SUM(METRIC->VALUE) / COUNT(*)
FROM METRICS_WITH_INSTANCE_INFO
GROUP BY PHYSICAL_INSTANCE;

In the app we first enrich the metrics stream with the instance
table (as in the previous section), and then compute average
metrics grouped by the "physical instance" each instance resides
on (which is another field of the instance table schema).

Figure 8: Throughput for Varying Load Rates

To evaluate the possible throughput a KSQL server can process
against the app, we generate load at varying rates and measure
the consumption rate from METRICS_WITH_INSTANCE_INFO.
To understand why its important to rate limit the load generator

531

to determine the maximum possible throughput, lets consider
the behavior if load generation was run at a rate that would
produce records faster than KSQL could consume them. The
"application" presented in Figure 8 consists of 2 queries. The 2
queries have different performance characteristics. Specifically,
the join consumes significantly fewer CPU cycles than the ag-
gregation to process the same set of input records. Currently,
KSQL does not coordinate execution between separate queries.
So, each query would be afforded around half the available CPU
time. Ideally, the aggregation should be afforded more CPU than
the join. Throttling the input rate gives us a knob to do this
indirectly. In practice, a user could accomplish the same thing
by scaling out the capacity of their KSQL cluster, or allocating
varying numbers of threads to different queries. Figure 8 shows
that the maximum throughput a single KSQL server can process
running this application is around 16000 records/second.

6.8 Scale-Out
KSQL is designed to scale record throughput as KSQL servers
are added. In this section, we’ll show that KSQL can process
the application we evaluated in the previous section at higher
volumes as the cluster grows. We’ll evaluate a 2-node and 4-node
KSQL cluster. For each configuration, we’ll run at 2 times and 4
times the ideal load observed in the previous section, andmeasure
the realized throughput.

Figure 9: Throughput For Varying Cluster Sizes

Figure 9 shows the results of this experiment. Each bar repre-
sents the throughput processed by a KSQL cluster of a given size.
Load was generated proportional to the cluster size - 16000 mes-
sages per second for the single node cluster, and 32000 messages
per second and 64000 messages per second for the 2 and 4 node
clusters, respectively. We can see that KSQL is able to process
proportionally higher volumes of data as the cluster is grown.

6.9 Future Experiments
The previous sections detailed some initial results of our eval-
uation of KSQL performance. In the future, we plan to do addi-
tional analysis into performance as well as fix some of the issues
identified. Latency is a very important metric when evaluating
streaming systems that was not measured by our study. After all,
one of the primary advantages of stream processing is to be able

react to events in real-time. Therefore we plan to measure per-
centile latency as we invest in evaluating and improving KSQL
performance. We also plan to evaluate additional query types.
KSQL is a very powerful tool that can perform a wide variety
of computations not covered by the evaluation presented here.
Some candidate query types for the next round of testing include
stream-stream joins and aggregations over session windows.

7 RELATEDWORK
Over the past couple of decades stream processing has been one of
the main subjects of interest in the data management community.
Systems like STREAM [12], Aurora [11] and TelegraphCQ [14]
are some of the pioneers in this area.

Increasing demand for scalable streaming engine resulted in
development of many systems including open source systems
such as Storm [7], Spark [6], Flink [1] and Samza [5]. Although
these systems provide a scalable stream processing engine, how-
ever, all of them need deployment and management of a complex
processing cluster in order to process the streaming jobs. On
the other hand, KSQL uses Kafka streams and KSQL queries can
be deployed as an application without requiring another com-
plex processing cluster. This significantly simplifies deployment
and management of long running streaming jobs in KSQL and
provides a wide range of possible deployment options.

SQL language has been the de-facto data management lan-
guage and many systems support SQL or SQL-like interface.
Apache Hive [17] and Apache Spark SQL [13] have shown the
effectiveness of using SQL to express computations in batch
data processing. They are also great examples of how providing
SQL interface can expand the access to scalable data processing
systems by eliminating the need to write code in complex pro-
gramming languages. Some of the open source stream processing
frameworks including Apache Spark [6], Apache Flink [1] take
this idea to scalable stream processing by providing SQL support.
However, the level of SQL support in these system is not at the
same level as in KSQL and in order to use SQL for stream process-
ing in these systems users still need to write code in languages
such as Java or Scala and embed their SQL statements in their
code. On the other hand, in KSQL users describe their processing
in KSQL statements and there is no need to write any code in
Java or Scala or any other language. This approach significantly
simplifies scalable stream processing and makes it available for
greater audience.

8 CONCLUSIONS AND FUTUREWORK
In this paper we introduced KSQL, a streaming SQL engine for
Apache Kafka. KSQL uses Kafka streams API to run continuous
queries and is tightly integrated with Apache Kafka. We showed
how a KSQL query is translated into a Kafka streams app in KSQL
engine and how we can run KSQL queries in different execution
modes. One of the main advantages of KSQL compared to other
open source stream processing systems is the elimination of need
to code in any other language. KSQL users can use the KSQL CLI
and run their streaming queries by expressing them in only KSQL
statements. The other main differentiator of KSQL compared to
other open source streaming platforms is the query execution
model. Unlike other systems that need deployment of a separate
processing cluster to handle streaming queries, KSQL queries
can run as applications independently without requiring deploy-
ment of additional complex cluster. This significantly simplifies
deployment and management of streaming queries in KSQL.

532

We just announced availability of KSQL as an open source
streaming SQL engine and released it under Apache license in
2017 Kafka Summit in San Francisco and since then we have
witnessed significant interest from the community[8]. We plan to
invest heavily in development and expansion of KSQL. Currently
we are looking into expanding supported data formats in KSQL
along with providing custom functionality through UDF and
UDAF in addition to the ones we already have in KSQL. Improv-
ing the performance through optimized query planning along
with even more simplified deployment and maintenance of KSQL
service in the production environment are part of our near future
work on KSQL. We believe KSQL along with Apache Kafka pro-
vide a full stack stream processing environment that can satisfy
the all the real-time stream processing needs in enterprises and
will be working towards this goal.

REFERENCES
[1] 2018. Apache Flink. (2018). http://flink.apache.org
[2] 2018. Apache Kafka. (2018). http://kafka.apache.org
[3] 2018. Apache Mesos. (2018). http://mesos.apache.org
[4] 2018. Apache Phoenix. (2018). http://phoenix.apache.org
[5] 2018. Apache Samza. (2018). http://samza.apache.org
[6] 2018. Apache Spark. (2018). http://spark.apache.org
[7] 2018. Apache Storm. (2018). http://storm.apache.org
[8] 2018. KSQL. (2018). http://github.com/confluentinc/ksql
[9] 2018. RocksDB. (2018). http://rocksdb.org
[10] 2018. RocksDB. (2018). http://kubernetes.io
[11] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian

Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B.
Zdonik. 2003. Aurora: a new model and architecture for data stream manage-
ment. VLDB Journal 12 (2003), 120–139.

[12] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL continuous
query language: semantic foundations and query execution. VLDB Journal 15
(2006), 121–142.

[13] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data.

[14] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden,
Frederick Reiss, and Mehul A. Shah. 2003. TelegraphCQ: Continuous Dataflow
Processing. In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data.

[15] Jay Kreps, Neha Narkhede, and Jun Rao. 2011. Kafka a Distributed Messaging
System for Log Processing. In Proc. NetDB 11.

[16] M.s Sax, G. Wang, M. Weidlich, and J. Freytag. 2018. Streams and Tables: Two
Sides of the Same Coin. In Proc. BRITE 18.

[17] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Ning Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. 2010. Hive
- a petabyte scale data warehouse using Hadoop. In Proceedings of the 26th
International Conference on Data Engineering.

533

	KSQL: Streaming SQL Engine for Apache KafkaHojjat Jafarpour, Rohan Desai

