
Resense: Transparent Record and Replay of Sensor Data
in the Internet of Things

Dimitrios Giouroukis Julius Hülsmann Janis von Bleichert Morgan Geldenhuys
Tim Stullich Felipe Oliveira Gutierrez Jonas Traub Kaustubh Beedkar Volker Markl

Technische Universität Berlin & DFKI
firstname.lastname@tu-berlin.de

ABSTRACT
As the scientific interest in the Internet of Things (IoT) continues
to grow, emulating IoT infrastructure involving a large number
of heterogeneous sensors plays a crucial role. Existing research
on emulating sensors is often tailored to specific hardware and/or
software, which makes it difficult to reproduce and extend. In
this paper we show how to emulate different kinds of sensors in
a unified way that makes the downstream application agnostic
as to whether the sensor data is acquired from real sensors or
is read from memory using emulated sensors. We propose the
Resense framework that allows for replaying sensor data using
emulated sensors and provides an easy-to-use software for setting
up and executing IoT experiments involving a large number
of heterogeneous sensors. We demonstrate various aspects of
Resense in the context of a sports analytics application using
real-world sensor data and a set of Raspberry Pis.

1 INTRODUCTION
The growth of the Internet of Things (IoT) has led to many dis-
ruptive technologies and applications such as smart homes, au-
tonomous vehicle fleets, health and well being, personal and
home security, and natural disaster management. In such ap-
plications, the IoT data (i.e., sensor data generated by devices
connected to the Internet) may get very large and may involve
billions of sensors [6]. Therefore, efficient means to automatically
collect, store, and analyze massive amounts of IoT data plays an
important role in our modern information-based society.

IoT research connects two communities: The database commu-
nity deals with sensor data acquisition [3, 12, 14] and distributed
query processing [8, 15]. The infrastructure and networking com-
munity deals with network connections, application and resource
management across sensor nodes, and cloud computing [4, 9, 10].

For database researchers, it is important to develop and test
data management solutions on IoT testbeds which include large
numbers of sensor nodes and provide real networking and data
processing conditions. However, it is hard to conduct repeatable
experiments on such testbeds for two main reasons: (i) One needs
to fine tune and test different versions of algorithms (A/B or split
testing), but sensors data varies over time which leads unequal
test conditions. (ii) Applications need to be tested on rare events
which leads to extremely long test durations. For example, con-
sider a sports analytics application that predicts injuries in real
time. Player injuries are rare and highly important, but one can-
not repeat them in the real world. Being able to replay sensor
data (e.g., data recorded from sensors on players’ body) on real
test beds solves the issues stated above and enables database
researchers to run repeatable experiments.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

In this paper we present Resense, a framework which trans-
parently emulates sensors and provides an efficient way to replay
and record sensor data. Resense emulates sensors at the oper-
ating system level such that it is transparent for applications
whether they acquire values from real sensors or from memory
using emulated sensors. One can install Resense on testbeds with-
out changing any application and gains the flexibility to switch
between live sensor data and replayed sensor data easily.

Resense further provides mechanisms to orchestrate IoT exper-
iments involving a large number of heterogeneous sensors. Our
framework allows users to easily configure many different physi-
cal and/or emulated sensors as well as the data to be replayed.
We provide an intuitive user interface for loading experiment
configurations, for deploying experiment data to a large num-
ber of sensor nodes, and for starting/stopping experiments on
all (or some) sensor nodes. The automatic deployment of the
required data, the centralized configuration of sensor nodes, and
the centralized control and monitoring of experiments reduce
the administrative overhead when running IoT experiments and
developing IoT applications.

Our demonstration highlights how easy it can be to setup
and run experiments on a real testbed. We show various aspects
of Resense using a set of Raspberry Pis as sensor nodes and
some physical sensors. In particular, we demonstrate the record
and replay functionality where attendees can attach physical
sensors to a Raspberry Pi and use the graphical user interface to
inspect the (physical) sensor readings, record them, and replay
the recorded data. We also demonstrate setting up and executing
a full scale IoT experiment based on real-world data from the
DEBS 2013 Grand Challenge dataset [13]. The data consists of
about 15 000 position events per second which were recorded at
a football match in which sensors were embedded on the shoes
of the players as well as the ball. Attendees will be able to use
the Resense UI to deploy, control, and monitor the experiment
and configure the sensor nodes.

In summary, this paper makes the following contributions:
(1) We show how to transparently emulate sensors in order

to record and replay sensor data.
(2) We provide an easy to use software for setting up and

executing IoT experiments involving large numbers of
heterogeneous sensors.

(3) We demonstrate our software by recording and replaying
real world sensor data in the context of sports analytics
on a set of Raspberry Pis.

Resense is available as open source project1 and runs on any
GNU/Linux system independent of the underlying hardware (e.g.,
x86-based servers and ARM single-board computers).

The rest of the paper is organized as follows: in Section 2, we
give an overview of our approach for transparently emulating
sensors and orchestrating IoT experiments. Section 3 gives a

1https://github.com/TU-Berlin-DIMA/resense

Demonstration

 

 

Series ISSN: 2367-2005 590 10.5441/002/edbt.2019.63

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.63


Resense Recorder

Resense Replay

Temperature 
Sensor

Emulated 
Sensor i2c­stub

i2c­dev

Storage
/dev/i2c­7

Write to Disk

Edge Node 

Kernel memory Device layer External
Application Reader 

/dev/i2c­3
1

Data

5

2

34

Figure 1: Recording and replaying data with Resense.

description of our demonstration. We discuss related work in
Section 4 and conclusion in Section 5.

2 EMULATING SENSORS
Implementing the emulation of sensors while being capable of
replaying scientific datasets is hard since the number of sensors
that can be involved in a single experiment can vary. On top of
this, the heterogeneity of the sensors makes it hard to include
every possible sensor architecture in a single emulator. In this sec-
tion we discuss the decisions behind the architecture of Resense
and show how we overcome these obstacles.

2.1 Emulation Abstraction & Replaying Data
The first major contribution of this paper is to emulate a sensor
transparently. Transparent emulation allows applications that
request data from sensors to treat the emulated sensor as if it
was a physical one. The applications cannot distinguish between
physical and emulated sensors and expect the same behavior from
them. The GNU/Linux kernel provides modules with a stable
API and implementations suited for such a task. For example,
it provides kernel drivers for commonly used sensor protocols
like I2C, SPI, and UART among others. These kernel modules are
fully featured drivers that emulate physical devices. We employ
their capabilities in Resense in order to provide emulated sensors
that are indistinguishable from physical sensors from the point
of view of an application.

In more detail, the kernel modules allow the addition and
removal of emulated sensors using file descriptors at the device
layer of the host operating system. These file descriptors have a
consistent naming scheme and are allocated in memory by the
kernel module in order to be subsequently perceived as physical
components by other parts of the system. Since different file
descriptors provide the same API to external applications, it
allows Resense to emulate different sensor types regardless of
their underlying protocol (and communication bus) for which
the host operating system includes its respective kernel module.

Figure 1 shows an end-to-end example from the perspective
of a single edge node. A physical temperature sensor is attached
to the edge node through an I2C bus. In addition, there is an em-
ulated sensor provided by Resense. The i2c-dev kernel module2
makes all I2C sensors accessible from userspace using character
device files. Each device gets assigned a number, starting from 0.
The device files follow the pattern of /dev/i2c-{0,1,2,...}.
In our example, i2c-dev has allocated /dev/i2c-3 for the tem-
perature sensor. The i2c-stub kernel module3, which is also
depicted in Figure 1, is responsible for creating character device
files for emulated devices. The emulated device files follow the
same pattern as the ones created from i2c-dev and are indistin-
guishable from the point of view of a userspace application. In
our example, the emulated sensor is allocated to /dev/i2c-7.

2https://www.kernel.org/doc/Documentation/i2c/dev-interface
3https://www.kernel.org/doc/Documentation/i2c/i2c-stub

RESENSE
MASTER NODE

EXTERNAL
APPLICATION 

Configuration files 
+ 

Dataset

EDGE NODE #1

Control Data

Data 
Configuration files 

+ 
Dataset

EDGE NODE #2
Configuration files 

+ 
Dataset

EDGE NODE #N

USER

GRAPHICAL 
USER 

INTERFACE 

Figure 2: Resense architecture.

Three applications operate on top of physical and emulated
sensors in our example: (i) The Resense Recorder, (ii) Resense Re-
play, and (iii) a reader of an external application. The applications
act as follows: The Resense Recorder reads sensor values 1
and stores them for later use 2 . This allows for capturing events
in order to replay them later on. The Resense Replay module
can read the sensor values stored by the recorder 3 and replay
them through the emulated sensor 4 . We consider this process
a replay of an experiment. The external application reader can
access all sensors (the physical temperature sensor and the emu-
lated sensor) in the same way 5 .

The Resense Recorder and the Resense Replaymodule act
as a bridge between the physical sensors of an edge node and the
emulated sensors. Any application which consumes sensor data
can consume values from both, physical and emulated sensors,
since both types of sensors are exposed through device files. Our
current approach replays data at the same rate at which they
were captured. In future, we plan to support more fine grained
control over the rate of recording and replaying. Moreover, our fu-
ture work also includes time synchronization mechanisms across
edge nodes in order to provide reliable and accurate replaying of
sensor data. As a remark, the maximum number of physical and
emulated sensors per edge node is limited by the host operating
system as well as the node’s hardware.

2.2 Experiment Orchestration
In order to administrate a huge number of edge nodes and sen-
sors, Resense employs a Master/Slave approach. A visualization
of the interaction between master and slave nodes can be seen in
Figure 2. Users can control Resense through the graphical user
interface of the master node. From there, users can deploy sensor
data to sensor nodes, replay and record data, and monitor the
progress of experiments. For external applications it is transpar-
ent whether they read data which originates from physical or
emulated sensors.

Resense stores experiment setups pertaining to applications
in configuration files in order to reload and rerun experiments as
needed. An experiment consists of sensor data, edge nodes, emu-
lated sensors, and physical sensors. Listing 1 shows an example
configuration file. We first define the name of the experiment in
Line 1. Starting from Line 2, we provide the list of edge nodes
associated with the experiment. Each edge node has a unique
id (Line 4), an IP address or domain name (Line 5), and the user
name and password for remote access (Lines 6 and 7). Each edge
node may host many sensors listed starting from Line 8. Each
sensor has a unique id, an output type, and a sensor address. The
sensor id refers to a sensor contained in the data file associated
with the experiment. In our example, we connect two sensors
from the DEBS 2013 grand challenge.

591



1 "experiment": "debs−2013",
2 "nodes": [
3 {
4 "edgeId": "edge−1",
5 "host": "192.168.1.3",
6 "user": "pi",
7 "password": "pi",
8 "sensors": [
9 {"sensorId": "ball", "type": ["GPS"], "address": 3},
10 {"sensorId": "referee_left", "type": ["GPS"], "address": 4}
11 ]
12 },{. . . }
13 ]
14 }

Listing 1: An excerpt of sample configuration file.

In order to run an experiment with Resense, users first create a
configuration file through the graphical user interface or load an
existing experiment configuration. Resense automatically splits
datasets associated with the experiment such that each result
file contains the data of one individual sensor declared in the
configuration file. The master node deploys the sensor data and
the node configuration to each edge node as needed. Each edge
node now creates the file descriptors for the emulated sensors ac-
cording to the configuration provided by the master node. Once
the deployment and setup are complete, the user can start the
experiment from the dashboard. Edge nodes will then replay sen-
sor data as described in Section 2.1 and shown in Figure 1. Users
can also pause, resume, stop, and restart experiments through
the dashboard. During execution, Resense monitors the progress
of the experiment and displays the status of sensors and edge
nodes as well as the currently replayed data.

3 DEMONSTRATION
We demonstrate Resense on a Raspberry Pi testbed as shown
in Figure 3. In our setup, the laptop machine acts as the master
node, five Raspberry Pis as edge nodes, and some of the edge
nodes are equipped to read data from physical sensors (a GPS,
an accelerometer, and couple of ultrasonic sensors).

In our demonstration, attendees can record sensor data, replay
the recorded data, and set up experiments with data from real-
world data sets. Thereby, users can combine physical and emu-
lated sensors installed onto our demonstration platform. Through
the Resense dashboard, users canmonitor edge nodes and sensors.
We further provide an example application which is independent
of Resense, reads data from emulated and physical sensors, and
streams the live-data to a visualization dashboard.

3.1 Real-World Testdata
As an example, we use the datasets of the DEBS 2013 Grand Chal-
lenge [13], which was recorded at a football match and contains
the speed, acceleration, and position of the players, the referees,
and the balls used during the match. We chose this dataset be-
cause it provides sensor values recorded at a high data rate. The
tracking frequency is 200Hz for players and of 2000Hz for the
ball. Players are tracked with two sensors located on their shoes.
Goal keepers are equipped with two additional sensors located at
their hands. Overall the dataset provides values from 37 sensors
with a total data rate of 15000 position events per second.

3.2 Demonstration Platform
The Raspberry Pi single board computer is our platform of choice
for this demo. Its cost effectiveness, its plethora of available con-
nection protocols as well as the fact that it is popular for sensor-
based research were the most important factors that lead to our

Figure 3: Resense demonstration setup.

decision. We use Raspberry Pi 3 Model B for our demonstration
and the latest version of the operating system that is available,
specifically version 2018-10-09 as of January 21, 2019.

For our demo, we choose to focus on the I2C protocol and the
i2c-stub kernel module to emulate sensors from file descrip-
tors. The protocol supports serial, 8-bit oriented, synchronous,
bidirectional data transfer. Synchronization of devices on the
bus uses a Master/Slave architecture. Moreover, I2C supports
multi-master configurations with collision detection. We chose
I2C over the other protocols that are available on a Raspberry Pi
board because of the simplicity of the protocol and the maturity
of the code of the kernel modules associated with it.

It is worthy of note that Resense is not tied to this demonstra-
tion platform. Resense runs on any GNU/Linux based operating
system and is agnostic to the hardware architecture. This allows
for running experiments with Resense on a large variety of hard-
ware architectures and helps to emulate sensors that lack driver
support for multiple architectures.

3.3 Demonstration Scenario
Figure 4 shows a screen shot of Resense’s UI. The dashboard has
three panels: a control panel on the left, a monitoring panel on
the center and a live-view panel on the right.

The control panel allows either for selecting an existing ex-
periment or creating a new one to be run. For each running
experiment, the panel shows the list of sensors involved and
the available controls. The controls depend on whether the sen-
sor is physical or emulated. Readings from physical sensors can
be stopped, resumed, or can be recorded (for replaying later).
For emulated sensors, their readings can either be stopped or
resumed. By default, all sensors are activated upon starting an
experiment. The monitoring panel displays statuses of current
recordings and experiments that are running. In particular, the
box for recordings shows details about sensors and data that is
being recorded. The box for each experiment shows progress,
number and type of sensors, number of edge notes, and details
about the sensors and the data being read. Finally, the live-view
panel shows time series data for sensor readings for currently
running experiments and allows to select specific sensor(s) from
which data should be rendered.

During the demonstration, the attendees will run an experi-
ment by selecting an existing configuration file (e.g., based on
the DEBS 2013 dataset) or by creating a new one. Attendees can
interactively control individual sensors and view readings in the
live-view panel. Attendees will also be able to create an experi-
ment involving available sensors, record sensor data, and replay
recorded data.

592



Figure 4: Resense dashboard

4 RELATEDWORK
In the existing literature, Chernysov et al. [1] give an overview
on the topic of emulating and simulating IoT infrastructure. Ac-
cording to their work, IoT simulators are categorized into three
different sets: (i) perceptual emulation, emulates all of the lay-
ers of an IoT infrastructure, (ii) network emulation, focuses on
network properties and (iii) application level emulators, emu-
late workloads only on the application layer. To the best of our
knowledge, our work cannot be constrained to only these three
types because our implementation is capable of ingesting sensor
data at the kernel level of the host operating system. Thus, it is
fully transparent to external software that can itself be already
in one of these aforementioned categories.

In contrast to the work on IoT simulators [4, 5], our implemen-
tation differentiates between the edge nodes and the sensors and
focuses on emulating the sensors and reading from sensors. This
allows for more granularity while replaying sensor data and can
give a more detailed view of the experiment. While other solu-
tions [7] require a fixed full-stack emulation, our work provides
a mixed approach since it is able to integrate emulated as well as
physical sensors. This makes it easier for testing new physical
sensor architectures with existing ones.

Emulating sensors for conducting experiments have also been
studied using FPGAs [2, 11]. Usually, FPGAs are first designed
using a hardware description language (like VHDL/Verilog) and
later implemented into the actual hardware. Our solution reduces
the time and the cost involved in prototyping an experiment as
it does not depend on any specialized hardware.

5 CONCLUSIONS
In this paperwe showed how to emulate sensors to replay recorded
sensor data independent of the underlying hardware or software.
We presented the Resense framework that allows transparent
record and replay of sensor data and provides an easy to use soft-
ware for setting up and executing IoT experiments. We demon-
strated various features of Resense using real world sensor data,
a set of Raspberry Pis, and some physical sensors.

Acknowledgments: This work was supported by the German
Ministry for Education and Research as Berlin Big Data Center
(01IS14013A) and the European Union’s Horizon 2020, under the
Marie Skłodowska-Curie grant agreement No 765452.

REFERENCES
[1] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally. 2018. Internet of Things

(IoT): Research, Simulators, and Testbeds. IEEE Internet of Things Journal 5, 3
(2018), 1637–1647.

[2] Antonio De La Piedra, An Braeken, and Abdellah Touhafi. 2012. Sensor
systems based on FPGAs and their applications: A survey. Sensors 12, 9 (2012),
12235–12264.

[3] Amol Deshpande, Carlos Guestrin, Samuel R Madden, Joseph M Hellerstein,
and Wei Hong. 2004. Model-driven data acquisition in sensor networks. In
VLDB. 588–599.

[4] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar Buyya.
2017. iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments.
Software: Practice and Experience 47, 9 (2017), 1275–1296.

[5] Son N Han, Gyu Myoung Lee, Noel Crespi, Nguyen Van Luong, Kyoungwoo
Heo, Mihaela Brut, and Patrick Gatellier. 2015. Dpwsim: A devices profile for
web services (DPWS) simulator. IEEE Internet of Things Journal 2, 3 (2015),
221–229.

[6] Mark Hung. 2017. Leading the IoT, Gartner Insights on How to Lead in a
Connected World. Gartner Research (2017), 1–29.

[7] Vilen Looga, ZhonghongOu, YangDeng, andAntti Yla-Jaaski. 2012. Mammoth:
A massive-scale emulation platform for internet of things. In CCIS. 1235–1239.

[8] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong.
2005. TinyDB: an acquisitional query processing system for sensor networks.
ACM Trans. Database Syst 30, 1 (2005), 122–173.

[9] Alli Mäkinen, Jaime Jiménez, and Roberto Morabito. 2017. ELIoT: Design of
an emulated IoT platform. In PIMRC. 1–7.

[10] Mirjana Maksimović, Vladimir Vujović, Nikola Davidović, Vladimir Miloše-
vić, and Branko Perišić. 2014. Raspberry Pi as Internet of things hardware:
performances and constraints. Design Issues 3 (2014), 8.

[11] Eric Monmasson and Marcian N Cirstea. 2007. FPGA design methodology for
industrial control systems—A review. IEEE Trans. on Industrial Electronics 54,
4 (2007), 1824–1842.

[12] Conor Muldoon, Niki Trigoni, and Greg MP O’Hare. 2011. Combining sensor
selection with routing and scheduling in wireless sensor networks. In VLDB.

[13] Christopher Mutschler, Holger Ziekow, and Zbigniew Jerzak. 2013. The DEBS
2013 grand challenge. In DEBS. 289–294.

[14] Jonas Traub, Sebastian Breß, Tilmann Rabl, Asterios Katsifodimos, and Volker
Markl. 2017. Optimized on-demand data streaming from sensor nodes. In
SoCC. 586–597.

[15] Yong Yao and Johannes Gehrke. 2002. The cougar approach to in-network
query processing in sensor networks. ACM Sigmod Record 31, 3 (2002), 9–18.

593


	Resense: Transparent Record and Replay of Sensor Data in the Internet of ThingsDimitrios Giouroukis, Julius Hülsmann, Janis von Bleichert, Morgan Geldenhuys, Tim Stullich, Felipe Gutierrez, Jonas Traub, Kaustubh Beedkar, Volker Markl

