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Record linkage aims at identifying duplicate records across datasets. 1 % >/ :
Most existing record linkage techniques have been designed : Lir?l;;:i\ﬁgt:;rds 1
for monolingual datasets. In this paper, we propose a novel ap- 1 e -

proach, CLRL, that links the records in a cross-language set-
ting, where each input dataset is in a different language. CLRL
combines monolingual similarity measures with multilingual
cross-language word embedding similarities to identify the corre-
spondence of records across datasets. As our experiments show,
CLRL outperforms baseline approaches in cross-language data Figure 1: The workflow of CLRL.
integration settings.
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Table 1: Two movie datasets in English and German.

D Name Year ID Name Jahr
1 INTRODUCTION ‘ | Hame

1 Heat 1995 1 Alarm im Weltall 1956
Record linkage is one of the most relevant tasks in a data inte- 2 | ForbiddenPlanet 1956 2 | DerPate 1972

gration process. The goal of record linkage is to identify records
from two different datasets that represent the same real-world
entity. One of the major challenges in record linkage is to identify
similarity heuristics that are effective at approximating the equal-
ity of two heterogeneously represented entities [8]. Numerous
similarity measures have been proposed so far to capture vari-
ous similarity levels such as character-based and phonetic-based
similarities [3]. These measures are effective in the monolingual
setting, where similar words have a high lexical similarity. How-

However, our approach is able to identify the correspondence
by using the latent similarity of these two multilingual short
movie titles based on cross-language word embedding mod-
els [14]. In particular, our maximum vector similarity feature
(see Section 3.2) captures the similarity of the words "Planet”
and "Weltall" (means "universe" in German) as these semantically
similar words have similar word embedding vectors. O

ever, they are often ineffective in a cross-language settings, where Contributions. In this paper, we propose a novel approach to
each dataset adheres to a different language. link the records across multilingual datasets. To this end, we
A naive solution to overcome this problem is to first translate make the following contributions:
one dataset into the other corresponding language and then apply o We design a term expansion scheme (Section 3.1) to expand
an off-the-shelf record linkage approach. However, this approach each out-of-vocabulary term into a set of in-vocabulary
suffers from two major problems. terms. In fact, CLRL leverages a three-step policy to expand
(1) Ambiguity in translation. Short texts in structured datasets different types of out-of-vocabulary terms differently.
do not usually provide enough context for machine trans- e We propose an effective set of similarity features (Sec-
lation models to translate accurately. tion 3.2) for cross-language record linkage problem. In
(2) Out-of-vocabulary terms. The machine translation model addition to state-of-the-art monolingual similarity mea-
cannot translate out-of-vocabulary terms, such as the con- sures, we include four multilingual similarity measures,
catenation "firstsight”, which is not among the standard adopted from cross-language word embedding models.
language vocabulary. e We empirically evaluate our approach on six real-world

datasets (Section 4). In particular, we show that CLRL
outperforms three existing record linkage approaches in
cross-language setting.

Motivation example. Table 1 illustrates two movie datasets
in English (dataset A) and German (dataset B). Among all the
4 possible pairs of records in A X B, only the second record of
the English dataset should be linked to the first record of the 2 CLRL OVERVIEW

German dataset. Traditional record linkage approaches would ) ] ) )
fail to identify their correspondence as there is no lexical simi- Figure 1 illustrates the record linkage procedure with CLRL. The

larity between the title "Forbidden Planet" and the title "Alarm multlll{lgual datasets find the user feedback are the input and the
set of linked records is the output of the approach.

CLRL adheres to the well-known pipeline of existing record
linkage approaches, i.e., preprocessing, blocking, and matching.
In addition to standard preprocessing operations, such as value
normalization and identifying corresponded attributes, our ap-
© 2019 Copyright held by the owner/author(s). Published in Proceedings of the proach can apply a novel preprocessing step to expand out-of-
22nd International Conference on Extending Database Technology (EDBT), March Vocabulary terms into in—vocabulary terms (Step 1). We will detail
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this step in Section 3.1. In the blocking step, a state-of-the-art

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0. blocker is used to generate a set of candidate links between record

im Weltall". Translating one of the datasets and then applying a
traditional record linkage approach also fails because the trans-
lation of "Alarm im Weltall" is "Alarm in the Universe"; it is still
not lexically similar to "Forbidden Planet".
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pairs of the input datasets (Step 2). Then, CLRL generates fea-
tures for each candidate pair (Step 3). We will detail this step
in Section 3.2. Depending on the sampling strategy and user-
interaction model, a sample set of candidates are chosen to be
labeled by the user as matches or non-matches (Step 4). Finally,
a state-of-the-art classifier takes the features and labeled record
pairs to classify all record pairs in the candidate set (Step 5).

3 FEATURE ENGINEERING

We first explain how out-of-vocabulary terms are expanded into
in-vocabulary terms. Then, we describe our extensive feature set.

3.1 Out-of-Vocabulary Term Expansion

Out-of-vocabulary terms are those terms that could not be found
in formal vocabularies and therefore are not translatable. The
goal of out-of-vocabulary term expansion is to transform these
non-translatable terms into in-vocabulary terms. This way, we
can later leverage cross-language word embedding models to
capture the similarity of these terms as well. CLRL applies the
following steps to the out-of-vocabulary terms.

Morphological checking. CLRL first tries to find morpholog-
ical variants of the out-of-vocabulary term. In morphological
check, the out-of-vocabulary term is transformed into its mor-
phemes (i.e., primitive units), if applicable. For example, the out-
of-vocabulary term "firstsight” is transformed into in-vocabulary
terms "first” and "sight". We leverage Polyglot Python module [16],
which supports 100 languages, to conduct morphological trans-
formations. Note that our morphological checking already covers
lighter lemmatization and stemming transformations as well.

Spell checking. Spelling errors could be the emerging cause
of many out-of-vocabulary terms. Therefore, in case of failure
in morphological transformation, CLRL tries to fix spelling er-
rors. To this end, the approach collects all the in-vocabulary
terms whose Damerau-Levenshtein edit distance to the out-of-
vocabulary term is less than equal to 6;;5; = 1. To minimize
the risk of replacing an out-of-vocabulary term with the wrong
in-vocabulary term, we restrict the threshold to the minimum
possible distance, i.e., 04;5; = 1, and replace the term only when
exactly one in-vocabulary candidate has been found.

Ostrich policy. CLRL ignores transforming all the other out-of-
vocabulary terms that could not be transformed by the previous
treatments. These out-of-vocabulary terms are mainly numbers
(e.g., "2001" in "2001: A Space Odyssey") or named entities (e.g.,
"Lebowski" in "The Big Lebowski") that do not need any trans-
formation.

3.2 Feature Vector

Each pair of records in the candidate set is mapped to a feature
vector that contains all the similarity scores of the two records.
Let A = {al,az,...,aw} and B = {bl,bz,...,buﬂ} be two
relational datasets with different languages, where each a € A or
b € Bisarecord. Let S = {s1,s2,... ,S|5|} be the set of mapped
attributes in these datasets. Therefore, the data cell a[s] refers
to the record a € A and the attribute s € S. Let f be a similarity
function that takes two data cells a[s] and b[s] and returns a
similarity score f(a[s], b[s]) € [0, 1]. Therefore, the feature vector
of a candidate record pair (a, b) is

V(a,b) = [f(als],b[s]) | Vf € FAVs €S], (1)
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where F is the set of all the similarity functions. Due to the
cross-language setting, the similarity functions should be able to
capture, not only the monolingual similarity, but also the mul-
tilingual similarity of terms in different languages. That is why,
we leverage monolingual and multilingual similarity functions.

3.2.1 Monolingual Similarity Functions. Monolingual similar-
ity functions are typical lexical similarity measures. The goal of
incorporating these measures is to capture lexical similarity of
named entities, such as "Brad Pitt", which are written similarly in
languages with the same scripting system. In particular, we calcu-
late Jaccard, Levenshtein, Jaro, Jaro-Winkler, Needleman-Wunsch,
Smith-Waterman, and Monge-Elkan similarity measures [5].

3.2.2  Multilingual Similarity Functions. Multilingual similar-
ity functions capture the similarity of data values across different
languages. We leverage cross-language word embedding mod-
els [14] to capture the similarity of short multilingual data values
of datasets. Word embedding models, such as word2vec [12],
learn to map each term into a dense vector in a way that terms
with similar context (i.e., surrounding words) have similar vector
representations as well. Cross-language word embedding models,
such as fastText [7], are a special kind of word embedding models.
These models share the same cross-language space for two dif-
ferent languages so that similar words from different languages
can have similar vector representations. Thus, a cross-language
word embedding model m can take a word w and returns its cor-
respondent vector m(w) in a cross-language shared space. In this
shared space, not only monolingual similar words such as "Dog"
and "Puppy"” would have close vector representations, but also
cross-language similar words such as "Dog" and "Hund" (means
"dog" in German) would have close vector representations, i.e.,
m("Dog”) * m("Hund”).

Now, let m be the cross-language word embedding model and
let P = {p1,p2,... ,p|p|} and Q = {q1,92, - . .,q|Q‘} be the sets
of words in data cells a[s] and b[s], respectively. We define the
following four similarity functions.

Mean vector similarity (MeVS). The Mean of word vectors
in a data cell is a representative vector for the whole data cell.
Considering each data cell as a set of word vectors, we calculate
the cosine similarity of mean vectors of data cells. Formally,
1 1
MeVS(P,Q) = cosine(— Z m(p), — Z m(q)). (2)
Pl 2™ ol 24

Maximum vector similarity (MaVS). When the data cell con-
tains noisy (i.e., irrelevant) words, it is desirable to represent the
data cell by the vector of its most important word. For example,
"Forbidden Planet" and "Alarm im Weltall" are the same movie
titles in English and German. Since "Weltall" means "universe"
in German, m("Weltall") is a more accurate representation for
the German movie title rather than mean of all the word vectors
inside the complete German movie title. This similarity function
outputs the maximum cosine similarity between all the pairs of
words P X Q. Formally,

MaVS(P,Q) = max

" q)EPXQcosme(m(p), m(q)) .

®)

Optimal alignment similarity (OAS). If two data cells are
matched, they might have an optimal one-to-one alignment of
words, where each word in the first data cell corresponds directly
to one word in the other data cell. This similarity function looks
for such an optimal alignment between words of P and Q, where



the sum of similarity scores between aligned word pairs is maxi-
mal. Finding the optimal one-to-one alignment of words is the
classical assignment problem. We leverage the Hungarian algo-
rithm [9] to find the optimal one-to-one alignment of words in
two data cells. Since the aligning needs both P and Q to have the
same length of words, the shorter one is padded with arbitrary
out-of-vocabulary words, hence inducing dissimilarity. Let us
assume that P is the shorter one and its padded version is P’.
Formally,

S(p.q)eLp,) cosine (m(p). mig)) x (PI + QD
2x|P|x|Q| |

4)
where L(P’,Q) = {(p,q) | p € P’,q € Q} is the optimal one-to-
one alignment of words in P” and Q. Note that since this similarity
function depends on the word count in P and Q, we normalize its
value by the harmonic mean of these word counts, as suggested
in literature [4].

OAS(P, Q) =

Maximum alignment similarity (MAS). Two matching data
cells might not necessarily have an optimal one-to-one alignment
of words. For example, although the English data value "Purchase
Price" is matched to the German data value "Kaufpreis", there
is no optimal one-to-one alignment for words. Instead, here we
have a two-to-one alignment for the words. Thus, in general, we
also need a similarity function that can capture the similarity of
m-to-n alignments. This similarity function allows each word in
the first data value be aligned to the most similar word in the
second data value, regardless of whether these two words are
already aligned to any other words or not. Formally,

MAS(P,Q) = %(ﬁ Z cosine(m(p), m(q;))+
pEP
1 6
0l Z cosine(m(q), m(pZ))),
qeQ
where, q; € Q is the most similar word to word p € P, ie,

qp = gneaé( cosme(m(q), m(p))

4 EVALUATION

Experimental setup. We evaluate our approach on six real-
world datasets, which are described in Table 2. Universities and
Universités contain information of universities around the world
in English and French, respectively. An example of matched uni-
versities in these datasets is "Technical University of Berlin" and
"Université technique de Berlin". Movies and Peliculas contain in-
formation on movies in English and Spanish, respectively. An ex-
ample of matched movies in these datasets is "The Godfather" and
"El padrino". Wikipedia Titles and Wikipedia-Titel contain wider
domains including titles of Wikipedia pages in English and Ger-
man, respectively. An example of matched titles in these datasets
is "1982 World Snooker Championship" and "Snookerweltmeis-
terschaft 1982". We extracted these datasets from the DBpedia
knowledge base [10]. We leveraged inter-language links inside
DBpedia to obtain the ground truth for these datasets, i.e., the

pairs of records that are actually linked. We evaluate our approach
ith ision P = the number of correctly identified linked records

With precision £ = the number of all outputted linked records re

the number of correctly identified linked records

call R = the number of all actual linked records » and Fi mea-
sure F1 = 2}3{:}2}?. We mainly report only the F; measure, which

combines the precision and recall, due to the space constraints.
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Table 2: Datasets.

Name Language #Rows  #Common  Candidate #Actual
Attributes Set Size Linked
Records
Universities English 8758
Universités ‘ French 3957 16 124559 940
Movies English 1273
Peliculas ‘ Spanish 15334 14 59198 72
Wikipedia Titles English 1976
Wikipedia-Titel German 2159 2 sz 83

We apply cross-validation and report the mean and standard de-
viation of these measures. As the default parameter setting, we
setup our approach with all the introduced features. We also lever-
age fastText [7] as the cross-language word embedding model and
XGBoost [1] as the classifier. Our prototype is available online!.

Effectiveness versus baselines. We compare the effectiveness
of CLRL to the following three baseline approaches:

(1) Magellan (M). Magellan is an end-to-end entity matching
system that uses monolingual lexical similarity features
to learn links between records [8]. In our experiments, we
include the following default set of features: Jaccard, Lev-
enshtein, Jaro, Jaro-Winkler, Needleman-Wunsch, Smith-
Waterman, and Monge-Elkan similarity measures.

(2) Machine translation plus Magellan (MT+M). This ap-
proach first translates non-English language datasets into
English using the Joshua machine translation toolkit [11]
and then applies Magellan on two English datasets.

(3) Machine translation plus semantic matching (MT+SM).

This approach also leverages machine translation to have
both datasets in English. However, instead of using Mag-
ellan, it applies a monolingual word embedding model to
link records [15].

Figure 2 illustrates the effectiveness of CLRL in comparison to
these baseline approaches. CLRL always outperforms the other
approaches as it leverages a broad set of features to capture
monolingual and multilingual similarities. This superiority is
more obvious on Wikipedia Titles/Wikipedia-Titel datasets, as
they contain more linguistically different content. In fact, in uni-
versity and movie domains there are many named entities such as
"Berlin" and "Brad Pitt" that remain the same in many languages.
Therefore, even a traditional record linkage approach, such as
Magellan, with lexical similarity measures can capture the simi-
larity. However, in Wikipedia title domain there are fewer named
entities, hence cross-language techniques are more promising.

Out-of-vocabulary term expansion analysis. Figure 3 illus-
trates the influence of out-of-vocabulary term expansion on the
effectiveness of CLRL. Leveraging out-of-vocabulary term expan-
sion, CLRL has a higher F; measure as the similarly functions
can capture the similarities with higher recall, i.e., CLRL can iden-
tify more linked records. Again, the improvement is higher on
Wikipedia Titles/Wikipedia-Titel datasets as the out-of-vocabulary
terms in these datasets are mainly morphological and spell errors,
which are transformed into in-vocabulary terms.

Feature analysis. Table 3 illustrates the effectiveness of CLRL
when it leverages different features separately. In general, all the
similarity features are informative for the task as CLRL works
best with all the features. Furthermore, the proposed multilingual
similarity features provide higher F; measure than the traditional
monolingual features.

Uhttps://github.com/BigDaMa/clrl
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Figure 2: Effectiveness of different approaches on different datasets.
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Figure 3: F; measure of CLRL with and without out-of-
vocabulary term expansion.

Table 3: F; measure of CLRL with different feature groups.

Feature Name | Universities/Universités Movies/Peliculas Wikipedia Titles/

Wikipedia-Titel
Monolingual ‘ 0.69 = 0.02 0.75 = 0.04 0.53 = 0.10
MeVS 0.70 £ 0.01 0.76 = 0.08 0.67 + 0.09
MaVs 0.71 £ 0.02 0.79 = 0.09 0.60 = 0.13
OAS 0.72 £ 0.02 0.75 £ 0.03 0.59 = 0.10
MAS 0.75 £ 0.01 0.80 + 0.04 0.70 = 0.14
Full 0.77 + 0.02 0.80 = 0.06 0.77 £ 0.12

5 RELATED WORK

Cross-language record linkage. There are only few pieces of
work on cross-language record linkage because this is relatively
a new topic. Song et al. [15] translated the Japanese datasets into
English and then applied monolingual word embedding models to
identify linked records. As shown in the experiments, CLRL out-
performs this approach because of two reasons. First, CLRL does
not rely on direct translation of datasets, which can be ambiguous
as explained earlier. Second, instead of only one monolingual
word embedding-based similarity feature, CLRL leverages vari-
ous monolingual and multilingual similarity features to capture
the similarities of multilingual records more accurately.

Record linkage. Numerous works have tackled the similar-
ity representation challenge of record linkage task by different
similarity measures [3]. In addition to these common mono-
lingual similarity measures, CLRL leverages multilingual word
embedding-based similarity measures as well-suited similarity
features for cross-language setting. We showed the benefit of the
new similarity features in our experimental comparison.

Cross-language matching. Cross-language matching has been
mainly studied for unstructured text data in tasks such as infor-
mation retrieval [6] and entity matching [13]. While the entity is
usually surrounded with a rich context of words in these tasks,
in structured datasets the texts are mainly short, which make
the cross-language matching task more challenging. That is why,
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CLRL leverages cross-language word embedding models to cap-
ture the semantic similarity of short multilingual texts accurately.

Out-of-vocabulary term expansion. Out-of-vocabulary term
expansion has been addressed for the record linkage problem
using the top-K co-occurring words with the out-of-vocabulary
term [2]. CLRL does not hold any assumption on the term fre-
quency of the out-of-vocabulary terms in the dataset.

6 CONCLUSION

We addressed the problem of cross-language record linkage. In
addition to the monolingual similarity measures, we leverage four
novel cross-language word embedding-based similarity measures.
As our experiments show, CLRL outperforms three record linkage
baseline approaches in cross-language setting. In future, we plan
to extend the blocking step. Since the records are in different
languages, simple blocking heuristics, such as having a word in
common, do not work effectively in cross-language setting.
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