
Modeling and Building IoT Data Platforms with
Actor-Oriented Databases

Yiwen Wang
University of Copenhagen
Copenhagen, Denmark

y.wang@di.ku.dk

Julio Cesar Dos Reis
University of Campinas
Campinas, SP, Brazil
jreis@ic.unicamp.br

Kasper Myrtue Borggren
SenMoS

Copenhagen, Denmark
kmyrtue@gmail.com

Marcos Antonio Vaz Salles
University of Copenhagen
Copenhagen, Denmark
vmarcos@di.ku.dk

Claudia Bauzer Medeiros
University of Campinas
Campinas, SP, Brazil
cmbm@ic.unicamp.br

Yongluan Zhou
University of Copenhagen
Copenhagen, Denmark

zhou@di.ku.dk

ABSTRACT
Vast amounts of data are being generated daily with the adop-
tion of Internet-of-Things (IoT) solutions in an ever-increasing
number of application domains. There are problems associated
with all stages of the lifecycle of these data (e.g., capture, cura-
tion and preservation). Moreover, the volume, variety, dynam-
icity and ubiquity of IoT data present additional challenges to
their usability, prompting the need for constructing scalable data-
intensive IoT data management and processing platforms. This
paper presents a novel approach to model and build IoT data plat-
forms based on the characteristics of an Actor-Oriented Database
(AODB). We take advantage of two complementary case studies –
in structural health monitoring and beef cattle tracking and trac-
ing – to describe novel software requirements introduced by IoT
data processing. Our investigation illustrates the challenges and
benefits provided by AODB to meet these requirements in terms
of modeling and IoT-based systems implementation. Obtained
results reveal the advantages of using AODB in IoT scenarios
and lead to principles on how to effectively use an actor model
to design and implement IoT data platforms.

1 INTRODUCTION
Internet-of-Things (IoT) systems enable data interactions through
machine-to-machine communication stemming from supporting
devices connected to the Internet [13]. IoT systems generate a
potentially huge amount of data from devices that dynamically
enter and leave the IoT environment, with very high-speed data
flow and processing. Data, in turn, are generated by awide variety
of devices, thus giving rise to highly heterogeneous data streams.
In this paper, we distinguish between IoT systems (i.e., the entire
software ecosystem involved in an IoT scenario) and IoT data
platforms (i.e., the data and data management software modules
that are part of an IoT system). Our work focuses on the latter.

Enormous challenges need to be addressed in order to realize
the full potential of IoT. First, there is a tension between effective
data management and fulfillment of performance requirements
in IoT data platforms. Indeed, many IoT systems are processor-
intensive and require processing a massive amount of highly
concurrently generated data. The management of these interac-
tions among data with low latency remains an open research
problem. Second, being able to deal with dynamic scaling while
guaranteeing protection of data from different entities is another

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

significant challenge. Therefore, we focus our investigation on
how to manage the data from large volumes of devices and, at
the same time, ensure the dynamic and flexible development of
applications. This dual aim must be achieved while respecting ap-
plication constraints for low latency in interactive functionality
as well as data protection and access control.

Given these characteristics, we propose that actor-oriented
databases (AODBs) are ideally suited to manage the data of real-
world IoT systems. Actors comprise a model of computation
specifically aimed at high concurrency and distribution [1]. To
that effect, actors keep their private states and can modify states
by communicating with each other via immutable asynchro-
nous messages [19]. As such, actors are natively applicable to
support the management of an arbitrary number of indepen-
dent and heterogeneous streaming data sources. AODBs, in turn,
enrich actors with classic RDBMS functionality by integrating
data management features, such as indexing, transactions, and
query interfaces, into actor runtimes [17]. These features make
AODBs attractive for building an IoT data platform. Inmore detail,
AODBs stand out for several reasons. First, IoT systems comprise
many different devices with distinct functionality. This require-
ment is directly met by the actor model, through the principle
of assigning different logic and tasks to actors. Second, in IoT,
data changes frequently; actors provide a natural alternative to
conventional concurrency models that rely on synchronization
of shared mutable state using locks. Third, the characteristics
of non-blocking interactions via immutable messages between
actors match well with the demands of IoT systems. Fourth, the
number of actors can scale out quickly without consuming ex-
cessive resources. Dynamic scaling is a common situation in IoT
in which all kinds of sensing devices (including humans!) can
quickly enter – but also leave – a system.

There are several examples of the use of actors in IoT scenar-
ios [4, 38, 41, 43]. However, these previous studies concentrate
on implementation aspects, neither providing guidance on how
to model IoT data platforms with actors nor analyzing the fit
of AODB to the requirements and challenges brought about by
IoT. By contrast, to the best of our knowledge, this paper is the
first that builds an end-to-end case for the suitability of AODBs
to manage IoT data, going from requirements and modeling to
implementation and performance evaluation. Our work covers
a wide gamut of issues to justify and showcase the adoption of
AODBs as an appropriate solution to meet the main challenges
of data management in IoT systems. Our main contributions are
therefore:

(1) We discuss core requirements of IoT data platforms, and
challenges to be met in their implementation. We illustrate

Industry and Applications Paper

Series ISSN: 2367-2005 512 10.5441/002/edbt.2019.47

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.47

this discussion through the analysis of two real world IoT
case studies.

(2) We present a methodology and guidelines to model an
AODB for such platforms.

(3) We develop a prototype of one of the case studies and
present its evaluation to show the effectiveness of adopting
AODBs for IoT data platforms.

The remaining of this paper is organized as follows. Section
2 presents two case studies of IoT systems, which we use to ex-
tract functional and non-functional requirements, and to present
some of the major challenges to be faced. Section 3 justifies our
choice of AODBs as an appropriate technology to meet such
requirements and challenges. In Section 4, we provide a detailed
discussion of the challenges of modeling such platforms, and
show how these challenges can be overcome for the running
cases. Sections 5 and 6 respectively present our prototype for
one of these cases and its evaluation. Section 7 revisits the paper
by contrasting it with related work. Finally, Section 8 presents
conclusions and ongoing work.

2 IOT DATA PLATFORM CASE STUDIES
In this section, we discuss the requirements for an IoT data plat-
form and analyze two specific case studies. There are several
scenarios in IoT data platforms, such as healthcare, personal se-
curity, traffic control, environmental monitoring, and disaster
response. The two IoT data platform cases that we focus on are
drawn from our experience with a structural health monitoring
system (cf. Subsection 2.1) and a beef cattle tracking and trac-
ing system (cf. Subsection 2.2). We have worked directly with
these case studies, helping us validate common non-functional
requirements for IoT data platforms as well as collect illustrative
functional requirements for these applications.

For the first study, we have cooperated with SenMoS [45] in
the area of structural health monitoring for large constructions,
e.g., bridges. SenMoS is a Danish company that provides users
with entire monitoring solutions, including requirement elicita-
tion and cloud data management. The developers at SenMoS have
participated in the design and implementation of the IoT data
platform for the Great Belt Bridge [50]. The second case focuses
on the management of cattle produce (and in particular the beef
supply chain) from the perspective of traceability. This study is
based on previous work with domain experts from the Brazil-
ian agricultural research corporation Embrapa [28] that studied
traceability in food for supply chains [35], and on interactions
within the Danish Future Cropping partnership [30], particularly
with experts from the agriculture solution provider SEGES [44].
Both of these organizations have substantial experience in the
agricultural sector and are key players in agricultural extension
systems of the respective countries. Both case studies concern
the development of a scalable data platform that collects and
stores data from IoT devices, processes operations, and provides
information services to different users. Although these two IoT
platforms target different scenarios, they present several com-
mon aspects and non-functional requirements. In particular, the
systems should operate as Software-as-a-Service (SaaS) solutions
and thus manage the data from several different tenants. More-
over, it is desired that scalability to large data volumes or users be
achieved without a high burden on the data platform developers.
Non-Functional Requirements for IoT Data Platforms.We
elicited the following common non-functional requirements shared
by different IoT data platforms:

(1) Data ingestion from endpoints. The IoT data platform
must have the capability to receive and store data from
IoT devices, e.g., GPS collars on cows.

(2) Multi-tenancy. The IoT data platform must provide var-
ied information services to different users.

(3) Support for heterogeneous data. The IoT data platform
must be modular in its support for data ingested from IoT
devices and allow for communication employing different
data formats.

(4) Cloud-based deployment. The IoT data platform can be
distributed in the cloud for ease of operation, management,
and maintenance.

(5) Scalable data platform. The IoT data platform must not
degrade in functionality or performance while expand-
ing. This must occur without modifying existing software
components.

(6) High efficiency. The IoT data platformmust process mas-
sive amounts of concurrently generated data effectively.

(7) Access control and data protection. The IoT data plat-
form should support data protection, enforcing authenti-
cation and access control over different users and profiles.

In addition to the requirements above, it is often the case
that IoT data platforms must serve queries over historical data
accumulated from devices over long time periods. In this paper,
we focus, however, on online data ingestion and querying in
SaaS scenarios. We note that at present, there is only limited
support for declarative multi-actor querying in AODBs [17], and
thus complex historical analyses could still be served by a data
warehouse.

2.1 Case 1: Structural Health Monitoring
Structural Health Monitoring (SHM) systems aim to identify dam-
aged sections on parts of large constructions that can cause safety
concerns. SHM systems can help organizations save time on in-
spections by gathering and processing data so that the system can
generate alerts when problems arise or suggest actions that can
prevent faults. SHM systems are equipped with a set of sensors,
e.g., to measure a bridge’s extension, inclination, temperature,
wind speed, and wind direction. Each sensor is connected to a
data logger that converts the sensors analog signal into a digital
one. The platform must collect, process and store data from the
sensors. Figure 1 presents a context diagram of the Structural
Health Monitoring Data Platform. This design is based on a real
case study. Sensors provide data to different stakeholders, e.g., en-
gineering experts monitoring the structure, data analysts, or the

Structural Health Monitoring Data Platform

sensor1

Get sensor
data

Manage sensor
configurations

sensor2

Get bridge
information

Maintenance personnel

Provide
information

Engineering expertsData analysts

Provide
sensor data

Adjust warning
thresholds

Get
warnings

Figure 1: Context Diagram for Structural Health Monitor-
ing Case Study.

513

maintenance personnel who manages the monitoring projects.
The SHM system must meet the following functional require-
ments:

(1) The system must control several construction structures
(e.g., bridges) using the same data platform.

(2) The system must be structured to support data storage,
i.e., data must be saved in a way that allows for further
data manipulation and analysis.

(3) The data platform must be able to maintain data from
multiple sensors, users, projects, and organizations.

(4) The data platform must calculate the accumulated change
for each data stream from a sensor, e.g., to gauge how far
elements have moved when using extension sensors.

(5) The data platform must send customized alerts to users
when thresholds are met, depending on individual sensors
or sensor types. Thresholds can be used for determining
the need for maintenance, or to call attention to ongoing
events.

(6) The data platform must support plots providing statistical
aggregates to help users spot meaningful events in time
series. Besides, online plotting of recent raw sensor data
is required to let personnel explore events interactively.

(7) The data platform must allow for browsing of live data
from sensors, along with continuously derived equations,
to provide a view of the current state of the structure.

2.2 Case Study 2: Beef Cattle Tracking and
Tracing

Agricultural supply chains involve a complex network of pro-
ducers, retailers, distributors, transporters, storage facilities, and
consumers in the sale, delivery, and production of a particular
product. Trackability and traceability are essential requirements
in food marketing [24]. Tracking refers to following the path
of an entity from the source to destination. Tracing refers to
identifying original information regarding an entity and tracing
it back in the system [37]. Systems for tracking and tracing agri-
cultural products increase consumer confidence on provenance
and quality of the food they buy, while at the same time helping
retailers and certification authorities to monitor products.

The ability of IoT to collect data from sensors as well as trace
entities is a crucial enabler for monitoring such chains. Systems
that automate tracking and tracing in an agricultural supply chain
should not only collect data, but also connect users and objects
at any place and time. Data integration, processing, analysis and
service support present many challenges in this context. For the
sake of feasibility, we assume for this case study, similarly to
other food tracing systems [33], that a global standard for supply
chain messages, GS1 [32], is adopted by participants that connect
with the IoT data platform. As such, we do not discuss the data
integration problem in this paper.

Our case study refers to a part of the beef cattle supply chain,
concentrating on cow tracking and meat product tracing, pro-
viding tracking information and helping consumers trace meat
products. Figure 2 presents the entities interacting within the
data platform. The system must provide multi-tenancy services
to host the data of different participants and supply chains. From
a high-level point of view, there are five kinds of tenants in our
system: farmers, slaughterhouses, distributors, retailers, and con-
sumers. Each involved part is the source of different types of data
in the system to enable the tracing of the whole life-cycle of a
given meat product.

Beef Cattle Tracing and Tracking Data Platform

Farmer Cow Slaughterhouse

Distributor Retailer Meat Product

Get cow
information

Get cow
information

Get meat cut
information

Get meat cut/
product information

Get meat cut/
retailer information

Provide cow
information

Provide meat cut
 information

Provide distributor
information

Provide retailer
information

Meat Cut

Get slaughterhouse/
distributor/retailer
information

Provide meat
cut information

Provide meat product
information

Figure 2: Context Diagram for Beef Cattle Tracking and
Tracing Case Study.

Full-fledged cattle sensor-based systems involve the deploy-
ment of very many kinds of sensors – both in individual ani-
mals and in their environment. For instance, each animal has
external sensors (e.g., collars, earrings) to measure movement,
speed, location. Cattle often also have sensors inside their diges-
tive tract (usually swallowed, sometimes implanted), to measure
factors such as temperature, metabolic variables, or digestive
characteristics. Environmental sensors may monitor factors such
as cattle weight, or soil humidity. Additional sensors along the
supply chain include devices that provide trackability (e.g., in
transportation), but also traceability and quality (e.g., monitor-
ing temperature inside warehouses). Without loss of generality,
we have simplified this scenario to consider only a few of these
sensing sources, keeping only enough distinct sensors to illus-
trate actual data and sampling rate heterogeneity. This simplified
scenario must fulfill the following functional requirements:

(1) The data platform must store the data from animal and
environment sensors, such as collars bound to each indi-
vidual cow, to enable retrieval of location, motion, and
other facts regarding traceable entities.

(2) Farmers need to track each cow’s trajectory and behavior,
and thus the data platform must record the locations of
each cow over time. Geo-fencing can help identify whether
a cow is in an appropriate area (e.g., when rotating pasture
grounds) [20].

(3) Slaughterhouses wish to access services that provide infor-
mation about cows that will be slaughtered. For instance,
it must be possible to access tracing information such
as the provenance of the cows and tracking information
about where the meat cuts produced after slaughter are
transferred to.

(4) Distributors wish to get tracing information of a meat cut
and tracking information of where those cuts are to be
sent to.

(5) Retailers aim to know the source of the meat cuts and
manage their transformation into meat products for con-
sumers.

(6) Consumers wish to get tracing information about meat
products over the whole supply chain.

2.3 Challenges for IoT Data Platforms
The functional and non-functional requirements discussed in this
section render the modeling and building of IoT data platforms
a non-trivial undertaking. The construction of such a platform
involves technical issues related to capturing, identifying and
storing relevant events, managing associated constraints, process-
ing varied types of queries, etc. Further complexity arises from

514

taking into account the necessities of different stakeholders, and
issues related to data precision, synchronization and availability.

Choosing the right database architecture is therefore a key
decision for the success of an IoT data platform project. Vir-
tualized deployment for efficiency and ease of scaling to large
request volumes are significant obstacles [46]. Moreover, sup-
port for multi-tenancy needs to be carefully designed. While
physical sharing of tenant data lowers overhead and increases
efficiency [7], this strategy opens up security risks, which are
related to the lack of modularity at the database level [47].

Thus, several questions need to be addressed when building
IoT data platforms. First, a vast amount of data is concurrently
generated from IoT devices. How can this data be managed and
processed in the data platform? Second, how can data protection
and access control across different entities be enforced while
sharing data effectively? Third, our case studies suggest that a
variety of queries, including analyses of time series from bridge
sensors, spatial queries for cow locations, or graph navigation for
tracing, need to be efficiently supported over IoT data. How can
applications be modeled and built to support different types of
queries? Fourth, it is necessary that the system be easily scaled
without affecting functionality and performance. How can the
platform be architected to easily scale out when it becomes nec-
essary to manage more users and data? In this investigation,
we observe that the issues regarding modularity and scalability
pointed out in this section can be simultaneously addressed by
AODBs [17]. We design cloud-centric actor-oriented database
backends for the two IoT case studies introduced in this section.
As a first step, we explain the motivation of taking an approach
based on AODBs in the next section.

3 WHY ACTOR-ORIENTED DATABASES?
We argue that an actor-oriented database is the ideal organiza-
tion for an IoT data platform, enabling fulfillment of all common
non-functional requirements identified in Section 2. Moreover,
AODBs ease the achievement of functional requirements by pro-
viding amodular, stateful, and scalable substrate for the modeling,
design and implementation of an IoT data platform. The follow-
ing characteristics of an AODB illustrate its suitability to address
the challenges of IoT data platforms.
AODBs facilitate the management of distribution and the
encapsulation of data. Actors are logically distributed, and can
thus naturallymap to dispersed entities such as sensors. The latter
promotes the expression of parallelism in the application logic
responsible for data ingestion into the platform. Moreover, an
AODB-centric design functionally decomposes the data platform
into different actors. State is encapsulated within each actor, and
can only be communicated by asynchronous messages. As such,
actors provide a mechanism for isolation of different functions
and data, enabling efficient support for multi-tenancy.
Actor modularity in AODBs supports representation and
sharing of heterogeneous data. Actors are the unit of modu-
larity in an AODB. By encapsulating state and supporting speci-
fication of user-defined APIs, actors abstract heterogeneous data
representations. Moreover, arbitrary data transformations can
be coded in actor methods, enabling asynchronous exchange
of data across heterogeneous actors. As such, actors offer an
attractive model to capture heterogeneity of data formats and
representations originating at multiple IoT devices.
AODBs employ multiple actor types and concurrent exe-
cution among actors to achieve scalability. The support for

multiple actor types enables the representation of different kinds
of entities in the IoT data platform. When a new entity type is
added to the system, it is represented by a new actor type added
to the data platform. AODBs thus support a gradual extension of
the platform through new actors and actor types with minimal
impact on existing components. The use of actors makes scaling
out easier, since new actors can be deployed over additional hard-
ware components to avoid violation of performance constraints.
The resulting concurrent and distributed execution facilitates
efficient use of computational resources to bolster scalability.
Parallelism across actors in AODBs allows for processing
of massive amounts of concurrently generated data. By
identifying tasks and associated logic among entities, we can
model entities as independent actors, so that they can perform
tasks concurrently. When independent tasks are then run in par-
allel across actors deployed on separate hardware components,
data platform performance can be improved. Since sensors are
naturally modeled as different actors, parallel execution can be
leveraged in processing data from a large number of data streams.
Encapsulation andmodularity inAODBs support data pro-
tection and access control. As data in one actor are invisible
to others, access permissions can be checked when data are ex-
changed by asynchronous messaging [40]. In other words, data
are protected inside an actor, and mechanisms for access control
can ensure data are only shared with authorized users.

4 MODELING THE CASE STUDIES WITH
ACTOR-ORIENTED DATABASES

AODBs provide scalable data processing, management, and stor-
age over a set of application-defined actors [17]. However, to
the best of our knowledge, there is scant guidance on how to
model applications to reap the benefits of AODBs. In this sec-
tion, we fill this gap by an in-depth modeling discussion of the
two IoT case studies described in Section 2. We contribute to the
construction of IoT data platforms in two ways: (1) we provide
guidelines for modeling IoT data platforms with AODBs; and (2)
we explain how an actor model affects the system both in design
and implementation.

It is believed that application modeling helps to preserve and
reuse information in other projects, as well as facilitates the
automated generation of a system from models [51]. To support
the latter aim, we leverage UML notation [53] to create models of
actors, their encapsulated state and their operations. These data-
centricmodels harken back to conceptual modeling approaches in
databases, enabling both specifications of data requirements and,
in the future, code generation for AODB platforms. To support the
former aim, we focus on documenting database actors and their
asynchronous interactions. In addition to database actors, the
classic architecture of an IoT data platform contains a stateless
tier that mediates the interaction with users or devices. The
analysis of this tier is outside the scope of our work; we abstract
its functionality as stateless actors operating as proxies and omit
this tier from our models.

In the presented models, we represent the minimal necessary
information to emphasize techniques for actor-oriented database
design. Application details that would make the presentation
unnecessarily complex are thus omitted, and simplifications are
made where appropriate. In the sections that follow, we identify
each core modeling question encountered in the two IoT data
platform case studies and discuss lessons learned.

515

4.1 How can Actors be Identified?
A variety of entities exist in any system, and these entities either
perform or collaborate to achieve different tasks. Moreover, these
entities have different life cycles, distinct types, and varied needs
regarding heavy computation or communication [14]. To take
advantage of the actor programming model as well as achieve
high availability and performance, it is an essential question to
decide which entities or entity sets should be modeled as actors.

To appreciate a concrete example of this challenge, consider
the beef cattle system introduced in Section 2, where many en-
tities perform different tasks to satisfy multiple requirements.
For instance, a collar sensor that is bound to a cow continuously
collects real-time geo-data for this cow and sends it to the data
platform. A historical trajectory for each individual cow is thus
updated based on this sensor data. Besides, additional informa-
tion may be needed, such as the cow’s identifier or health-related
data. In this sense, we can observe both collar and cow as sep-
arate entities engaged in cooperation to provide real-time and
historical geo-information to farmers and slaughterhouses. The
question is whether these two entities, the collar sensor, and the
cow, should be one or two independent actors.

Actors comprise a model of computation for concurrency and
distribution [1]. So not only should actors encapsulate state, as it
is the case with non-actor objects, but they should also abstract
concurrent tasks that need to be processed by the system. In our
experience, we found it useful to answer the following questions
when attempting to identify actors: (a)What services are provided
by the system being modeled? (b) Who should provide these
services and who are their users? (c) What is the output and
input of every single task performed and can these tasks be
executed concurrently?

Take our beef cattle tracking and tracing system as an ex-
ample. Typically one actor is designed to carry out one specific
real-world task with associated logic, such as slaughter or dis-
tribute. Different actors then capture simultaneous tasks. For
instance, farmers would like to obtain information on cows and
manage the herds that they own. Slaughterhouses would like
to obtain information about cows that will be slaughtered and
record how these cows get transformed into meat cuts. Farmers
and slaughterhouses can thus be conceptualized as users of cow
information services, which a cow ought to provide. Moreover,
the interactions between farmers, slaughterhouses, and cows are
concurrently executed by independent entities in the real world.
In particular, farmers manage cows and their respective infor-
mation, and slaughterhouses slaughter cows and record their
transformation into meat cuts. Cows are associated with their
sensor data, which are continuously updated by their collars.
As such, we model farmers, slaughterhouses, and cows as in-
dependent actor types. Since each collar is bound to a cow, we
encapsulate this sensor information inside cow actors.

Figure 3 shows the data platform model for the beef cattle
system. Every actor encapsulates its state and communicates
with other actors via asynchronous messages. Therefore, simple
accesses to data in the state of an actor are rendered as asynchro-
nous communication events across actors. As we can see from
the figure, we model one cow as a Cow actor. A Cow actor has an
aggregation relationship with many collar sensor readings indi-
cating the GPS locations of the cow, and each such sensor reading
is bound to exactly one cow. In other words, we use aggregation
relationships to indicate that the objects of a non-actor class are
encapsulated in the referred actors. Since cows are modeled as

Figure 3: Actor Model of Beef Cattle Tracking and Tracing
Data Platform.

actors, real-time locations are reported to Cow actors, which
serve this information to all interested readers along with other
associated cow state data such as the cow identifier.

We model one farmer or several farmers who work together
(e.g., a cooperative) as one single Farmer actor because the state
of this farmer or these farmers is organized as a unit.1 One cow is
owned by one farm unit, but one farm unit can own many cows.
The Farmer actor can read the properties of any Cow actor that
is associated with it through message passing. If such messages
are exchanged under a security model with authentication, then
we can enforce that cow information is only visible to its owner
farmer tenant or properly authorized slaughterhouse.

A physical slaughterhouse ismodeled as a Slaughterhouse actor.
A cow can only be slaughtered once in exactly one slaughter-
house, but a slaughterhouse is responsible for slaughtering many
cows. This constraint is reflected in the association between Cow
and Slaughterhouse actors, and as above a Slaughterhouse actor
can read data from any Cow actor via asynchronous messaging.
The Slaughterhouse actor processes such data to deriveMeat Cut
actors, which represent units of beef to be distributed as a whole.

A Meat Cut actor processes updates to its itinerary property
generated by Delivery actors as meat cuts are transported. In
our model, a Distributor actor manages multiple Delivery actors,
which themselves manage a transportation process with differ-
ent source and destination locations. For example, a logistics
company is modeled as a Distributor actor, and transportation
processes in this company are modeled as various Delivery actors
managed by the Distributor actor. A Delivery actor tracks a meat
cut delivery from a source to a destination location using a given
vehicle at a well-defined time. A meat cut can be delivered many
times by one or several distributors during the whole itinerary,
and a distributor is responsible for delivering many meat cuts.

We model the final destination of a meat cut to be a retailer,
e.g., a supermarket chain, whose information is managed by
a Retailer actor. Retailer actors can create Meat Product actors
by disaggregating or combining meat cuts. Thus, Meat Product
actors have a many-to-many association with Meat Cut actors.

Based on the above modeling process, we can summarize a
general principle of how to identify actors:

Typically, one actor is designed to carry out one specific
real-world task with associated logic. Different actors
capture different simultaneous tasks.

1Notice that this unit can be broken down into smaller units at will, depending on
the focus of an application – e.g., individual farmers unite to provide beef, but a
cooperative handles each farmer individually.

516

Figure 4: Actor Model of Structural Health Monitoring Data Platform.

4.2 What should the Granularity of Actor
State be?

In an AODB, we allocate different tasks into separate actors, as
this organization can help increase concurrency. However, if
a single actor concentrates too much state or too much of the
application logic, i.e., if an actor is coarse-grained, then it be-
comes increasingly difficult to reap the benefits of concurrency
stemming from the application of the actor model. At the other
extreme, since actors do not share state and communicate only
through asynchronous messaging, an excessively fine-grained
actor design can introduce unnecessary overheads in state manip-
ulation as well as increased communication overhead. Moreover,
a fine-grained design may cause the actors in the system to ex-
plode in number, e.g., one actor per data item or record in the
system, which can challenge efficiency in an AODB platform. So
deciding the granularity of actors is an essential problem when
modeling any application with actor-oriented databases.

Previously, we have formulated a principle to identify actors
out of the entities in an application scenario. However, we should
balance this principle against the potential effect of actor gran-
ularity on application performance. In particular, we wish to
keep concurrency high, but at the same time avoid unnecessary
overheads and reduce the complexity of application modeling.
To balance these goals, our experience has been that it is natural
to make actors more fine-grained when they represent active
entities for which detailed tracking is required by the application.

Figure 4 presents the data platform model for the structural
health monitoring system. We observed during modeling that
organization entities own project entities representing different
constructions and that each such construction project is associ-
ated with some installed sensors. Note that only organizations
are active, as they initiate and manage construction activities,
while projects are passive structural schemes used by organiza-
tions. As such, we create Organization actors that encapsulate
project information, as displayed by an aggregation relationship
with a non-actor Project class, instead of utilizing separate actors.
This modeling decision minimizes message exchange when there
is no clear advantage in having the two entities run concurrently.

This notwithstanding, sensors are themselves active entities
in that they may be relocated, leading to change of position, and

also may generate multiple data streams originating from dif-
ferent physical sensor channels (e.g., if we consider a regular
smartphone as a sensor, then the accelerometer and microphone
would be sensor channels). Moreover, messaging is minimal be-
tween sensors and sensor channels, as data streams arriving at
the platform can be disaggregated by proxies directly by sen-
sor channel instead of being relayed through sensor entities. As
such, we model separate Sensor and Sensor Channel actors. Sensor
Channel actors hold a window of data points originating in the
respective data stream. The data points are captured as non-actor
objects since these entities are not active.

To help structure information about data points, additional
actors are included. First, Sensor Channel is specialized into
Physical Sensor Channel and Virtual Sensor Channel actor classes.
Whereas the former represents a channel in a physical sensor, the
latter represents a computation over potentially multiple physical
channels (e.g., in our smartphone example, an equation merging
the data from accelerometer and microphone sensor channels).
While a virtual sensor channel provides data at the finest level of
detail, it is necessary to provide statistical aggregates for online
queries posed by data analysts at various levels of detail (e.g., per
hour, day, or month). Since there can be parallelism in computing
these aggregations across levels of detail (e.g., hourly aggregates
serving as input to daily aggregates), it is useful to conceptualize
them as active entities. We thus introduce Aggregator actors in
the model.

Based on the above modeling process in the context of our case
studies, we summarize a general principle of how to decide
on actor granularity:

An actor should represent the functionality of one active
entity for which detailed tracking is required.

4.3 What is the Trade-Off between
Employing Actors or Non-actor Objects
for Frequently Accessed Entities?

We discussed the issue of actor granularity, which may result in
decisions where entities from the domain are modeled as actors

517

or alternatively as non-actor objects. The modeling principle for
actor granularity calls our attention to active entities. By contrast,
there are a number of entities that store data but do not proac-
tively perform tasks. We call them inanimate entities, and they
are exemplified in the beef cattle tracking and tracing case study
by meat cuts and meat products. In Figure 3, we model these inan-
imate entities as actors. However, these actors only encapsulate
state and manage corresponding queries and updates originating
from active entities such as slaughterhouse, distributor or retailer,
e.g., when meat cuts and products are created or transported. As
such, a natural question is whether these inanimate entities could
have been modeled as non-actor objects instead of actors.

For example, suppose a distributor wishes to obtain infor-
mation about a meat cut that it transports. The corresponding
Distributor actor would have to send a message to the respective
Meat Cut actor to fetch this information. Furthermore, when a
meat cut is transported, the Meat Cut actor has to communicate
with a number of other source or destination actors, such as
Slaughterhouse, Distributor, or Retailer actors. As such, a Meat
Cut actor frequently interacts with other actors in the system.
Since all information on meat cuts needs to be exchanged across
actors through asynchronous messaging, casting meat cuts as
actors can generate a considerable communication overhead.

To explore this question, we have created an alternative model
for the beef cattle tracking and tracing case study (cf. Figure 5). In
this alternative model, we capture inanimate, but frequently up-
dated entities, such as meat cuts and meat products, as non-actor
objects instead of actors. Actors are marked in red in Figures 3, 4
and 5, while the non-actor objects are marked in black. The non-
actor objects represent a state and thus cannot exist in an AODB
independently of some actor. To capture state mutation as meat
cuts and products move across the supply chain, we create ob-
ject versions that are always associated with a responsible actor
at every stage. Consider how a meat cut is transferred from a
slaughterhouse to a distributor. The meat cut is the same real-
world entity, but the slaughterhouse and distributor may identify
the meat cut differently. Upon transfer, the object representing
the meat cut will be copied from the Slaughterhouse actor to the
Distributor actor, where this new object version can be updated.
Since each actor keeps a separate object version of the meat cut
throughout the supply chain, communication to obtain meat cut
information is obviated. All the actor logic that reads this infor-
mation can now access the encapsulated entities in the respective
actor state. For frequently accessed entities, this reduction in com-
munication may pay off with respect to the overhead of copying
non-actor objects. Furthermore, potentially more concurrency
can be exploited in reading local object versions across several
actors independently. However, some degree of data redundancy
may be introduced in the model.

Based on the above modeling process, we can summarize a
general principle of when tomodel frequently accessed en-
tities as non-actor objects instead of actors:

Frequently accessed entities can be modeled as actors or
non-actor objects, and the latter representation should
be preferred when reductions in communication over-
heads and gains from concurrency offset the disadvan-
tages of copying overhead and data redundancy.

Figure 5: Alternative Actor Model of Beef Cattle Tracking
and Tracing Data Platform.

4.4 How can Relationship Constraints be
Enforced across Actors?

Because actors encapsulate state and only communicate through
asynchronous messaging, relationships between actors are con-
ceptually distributed. For instance, in the model of Figure 3, a
farmer may own many cows, but a cow belongs to at most one
farmer. In a typical implementation, each direction of this rela-
tionship would be represented as properties in Cow and Farmer
actors. When performing updates to this relationship, we need to
update both sides and make sure these two properties in different
actors remain consistent. In particular, when a farmer sells a cow,
the Cow actor should have its ownership relationship changed
to the next owner, and the properties in the two affected Farmer
actors ought to reflect that only one farmer retains the ownership
of that cow. Since communication between actors is asynchro-
nous, it is a challenge to keep consistency across actors in the
presence of updates.

The consistency problem can be addressed by a transaction fa-
cility in the AODB, when available, or alternatively by a workflow
that ensures that all actors in a relationship change are eventu-
ally updated to a consistent state. These options are similar in
spirit to the proposal for indexing support in AODBs [17]. Since
some actor systems, such as Akka, no longer support transactions
[52], and update workflows operate under relaxed consistency,
a final alternative is to keep all data related to a relationship, or
more generally constraint, encapsulated in a single actor. This
discussion leads us to our final principle of how to enforce
constraints when using actors:

Employ transactions to update data across actors con-
sistently; however, in the absence of transactions, keep
data related to a constraint in a single actor or design a
multi-actor workflow for updates.

5 IMPLEMENTATION
In this section, we discuss the implementation of the IoT data
platform for the first case study of Section 2 with an AODB. We
choose the Structural Health Monitoring Data Platform (SHMDP)
since the resulting implementation has been transitioned to the
company SenMoS. However, the lessons learned and discussion
extend more broadly to the applicability of AODBs to IoT data
platforms in other domains, e.g., in beef cattle supply chains,
among others.
Choice of AODB. Our implementation of the structural health
monitoring data platformwas based on the model of Figure 4 [18].

518

The first implementation challenge to be overcome was to find an
appropriate platform supporting actor and non-actor object con-
structs, as well as the AODB approach. The vision for AODBs [17]
was proposed in the context of the Orleans project [16], and we
thus elect this actor runtime for the SHMDP. Orleans has also
been used successfully in the context of other scalable applica-
tions [38], and can thus support real-world deployments. Unlike
many other actor programming languages or frameworks such as
Erlang [29] or Akka [3], Orleans employs the concept of virtual
actors, i.e., named actors that are logically in perpetual existence.
The Orleans actor runtime automatically creates activations of
these virtual actors for processing whenever functions are asyn-
chronously invoked on them, and eliminates activations when
there is pressure on resources. As such, virtual actors simplify
actor lifecycle management for an application built on Orleans.

In addition to virtual actors, Orleans provides an explicit stor-
age model for actor state. In particular, actors run in a stateful
middle-tier that can be conceptualized as an in-memory cache
of actor state enriched with application code expressed as ac-
tor functions. Whenever persistence of actor state is required,
a cloud storage system is employed by Orleans. The concrete
storage system is specified through annotations in actor code.
To meet the vision for AODBs, additional features are currently
being implemented in Orleans to close the gap between actor
runtime and DBMS functionality, e.g., indexing [17] and ACID
transactions across actors [27].
Data Platform Architecture. A second implementation chal-
lenge was to architect an IoT data platform based on AODBs that
fulfills all of the non-functional requirements of Section 2. Ideally,
an AODB should handle online data ingestion and querying as
well as analyses of historical data. However, as pointed out in
Section 2, declarative querying functionality is still incomplete in
AODBs currently [17]. Thus, we identify three core components
for the SHMDP: actor runtime, cloud storage system, and ana-
lytical database system. The actor runtime was implemented by
Orleans and provides the virtual actor abstraction. It also keeps
any necessary in-memory data structures for online data pro-
cessing and analysis as expressed in the model of Figure 4. The
storage system provides durability of actor state, and allows large
amounts of historical data to be archived. A key-value database
system with efficient data ingestion [36] is useful for this purpose.
Finally, data recorded in the storage system can be exported into
a classic star schema implemented in the analytical database [34].
The latter component is targeted at analytical queries over his-
torical data, and its description is outside the scope of this paper.
The former two components comprised the online data ingestion,
processing, and analysis functions of the SHMDP.
Support for Non-Functional Requirements. The AODB ar-
chitecture supports the non-functional requirements listed in
Section 2 as follows:

(1) Data ingestion from endpoints. Data from different
endpoints was managed by distinct actors in Orleans, and
recorded in the cloud storage system for durability.

(2) Multi-tenancy. Modularity, data encapsulation, and asyn-
chronous communication were provided by virtual actors
in Orleans, allowing isolation of functions and data sensi-
tive to different users.

(3) Support for heterogeneous data. Orleans virtual actors
support a number of data types and structures, e.g., repre-
senting simple alerts or real-time derived data for virtual
sensors. In addition, Orleanswas used to query time ranges

of raw data, and to build aggregates for low latency re-
quests over time periods. The problem of using Orleans for
these functionalities was that declarative queries cannot
access data across actors, and thus needed to be decom-
posed by the developer.

(4) Cloud-based deployment. Orleans was built to scale
out on servers, and extend over multiple geographical
locations. It is, moreover, open-source and designed with
cloud deployment as a primary target.

(5) Scalable data platform. Modularization allows scalabil-
ity in the number of actors, thus easily enabling the addi-
tion of more endpoints or users to the data platform.

(6) High efficiency. All processing in virtual actors occurs
in-memory. Orleans employs multi-core and multi-server
architectures to execute application logic in different ac-
tors in parallel.

(7) Access control and data protection. Authentication and
access control were implemented at the application level
by building on actor modularity features.

Virtual actor durability and deployment. Further implemen-
tation challenges arise from ensuring that the IoT data platform
can effectively ingest and process the large number of concurrent
update streams originating from devices. Two issues may impact
performance substantially: enforcing durability and deploying
actors over multiple machines in a cloud infrastructure.

Orleans virtual actors are called grains, and managed auto-
matically by the Orleans runtime. When a grain has work to do,
the grain is activated; when the grain has been standing idle for
too long, the grain’s resources are reclaimed by the system, re-
moving it from memory. To provide durability, grains in Orleans
may have a state storage class. This class defines all variables the
developer wishes to store persistently. The developer can force
the current state to persistent storage by invoking the WriteS-
tateAsync grain method or configure the grain class to store state
persistently when Orleans deactivates a grain. Whenever the
Orleans runtime re-activates a grain, the runtime retrieves by
default the latest grain state from cloud storage, if available. As
such, Orleans lets the developer decide when state is written to
persistent state storage.

In the SHMDP, durability requirements may vary depending
on the task being implemented. Certain tasks require that the
state of actors be immediately made durable, e.g., for creating
structural entities such as organizations, sensors, projects, and
sensor channels. Other tasks, such as gathering sensor data, can
collect a window of updates before forcing them to storage. For
example, in the Great Belt Bridge [50], the structural health mon-
itoring project consisted of more than 200 sensor channels, with
a typical requirement for live data being a reporting rate of one
packet of readings per sensor per second. So if we wrote state to
persistent storage after each request, we would need 200 write
requests every second to the cloud storage system.

Activated grains in Orleans get distributed across a set of silos,
where each silo is typically deployed in a server in a cluster
of machines. The distribution of grain activations to silos is by
default random, which is adequate for most use cases since it will
spread load. However, this actor deployment can increase the
cost of communication when certain actors interact frequently.
Orleans suggests using prefer-local activation in these cases.
For our data platform, we have had to change the activation
placement strategy away from random placement for our sensor
channels and aggregators. The prefer-local placement in these

519

instances minimizes the need to perform remote procedure calls
when processing incoming requests.

6 EXPERIMENTAL EVALUATION
Our goal in the experiments is to assess if the AODB-based imple-
mentation of our model from Figure 4 yields an IoT data platform
that can scale in the number of sensors simulated and at the
same time support low-latency online query functionality. In the
following, we present our setup and the obtained results.

6.1 Setup
Benchmarking Tool. To stress-test the SHMDP, we created a
command line tool in .NET that uses the Orleans framework
client directly. This tool simulates data requests from sensors
and users in order to generate variable load for the data platform.
Sensors are simulated by tasks that each call a sensor grain and
insert 10 data points. This procedure is repeated each second if all
sensors have finished their calls, so as to adhere to the behavior
expected in the real scenario based on our experience.

Even though we simulate sensors for experimentation with
the benchmarking tool above, we envision that ingestion of sen-
sor data points will be based on a REST interface in a produc-
tion deployment. This way, sensors can send HTTP calls to the
data platform. As part of data ingestion, message queues can be
employed to accommodate for bursty behavior in sensor mea-
surements [6]. To limit the scope of our evaluation, however, we
focus on stressing only the virtual actor implementation of the
IoT data platform, and not other layers related to communication
with sensor devices.

The benchmarking tool stores data from each request sent to
the data platform in a log. Each log entry includes the latency
for the request, which request was sent (data insertion, live user
data, or user data request), the sampling rate, and a timestamp.
With this information, we can derive detailed throughput and
latency statistics for the experiments.
Summary of Software. We needed the execution of several
components for the experiments. The first one was the Orleans
silo, typically with one instance deployed per server, where vir-
tual actors are activated and run all application logic. We also
employed Amazon RDS [12] for Orleans system storage, which
keeps track of silo instances, reminders, and general system state.
Amazon DynamoDB [9] was used for Orleans grain state storage.
Besides, the C# benchmarking tool described above is invoked to
generate load to silos.
Cloud Service andDeployment. To characterize the SHMDP’s
data ingestion and processing capabilities, we set up our bench-
marking environment on Amazon AWS [8], employing the Ama-
zon DynamoDB and RDS services [9, 12] as stated above and
EC2 on-demand instances [10] for all remaining components.
Given our budget, two types of instances were employed: T2 for
low cost and burst performance features as well as M5 for more
stable performance. All instances were running Windows Server
2012 R2 and Orleans 1.5.0. The configuration, unless otherwise
mentioned, was designed to simulate a possible future production
deployment of the data platform based on our previous experi-
ence with the project for the Great Belt Bridge [50]: m5.xlarge
instances were employed for the Orleans silos, RDS db.t2.small
for Orleans system storage, DynamoDB with 200 writes and 200
reads per second for Orleans grain storage, and an m5.2xlarge
instance for the benchmarking tool.

Environment Configuration. For the experiments, we simu-
late sensors with two sensor channels each; every tenth sensor
has a virtual sensor channel that is a summation of the two other
sensor channels on the corresponding sensor. The latter choice
reflects that only a subset of sensor data require additional pro-
cessing to create a derived virtual sensor stream, which is close
to the real life scenario from the Great Belt Bridge. We populated
our actor-oriented database with synthetic data for users, orga-
nizations, projects, sensors, and sensor channels simulating a
realistic scenario. For every 100 sensors, a new organization was
constructed with a single user and a single project. Following
the sensor configuration, these 100 sensors represent 210 sensor
channels in total, out of which 200 are physical sensor channels
and 10 are virtual sensor channels. This structure was used for
all experiments, so that we can calculate exactly how many orga-
nizations, projects, users, and sensor channels are created given
a number of sensors. Employing 100 sensors with 210 sensor
channels in total is a configuration similar in size to the one in
our previous experience with the Great Belt Bridge.

To achieve our experimental goal related to low latency queries,
the upload of data points to the grain state storage has been con-
figured to only happen when the Orleans silo service is shut
down. This configuration ensures that we are not benchmarking
DynamoDB storage, but rather the execution of in-memory ac-
tors. When using the system in production, the grains have to be
configured to store data points to grain storage at an acceptable
rate as explained in the considerations for durability in Section 5.

Load was offered to the SHMDP by sending requests with 20
data points for each sensor currently being simulated (i.e., 10
data points were generated for each physical sensor channel in
each sensor). The requests were sent at a rate of 1 request per
second. This frequency simulates sensors sampling data at 10 Hz,
as specified in the Great Belt Bridge project for most sensors. As
an example, consider that we wish to simulate 500 sensors: this
number of sensors would correspond to 1,000 physical sensor
channels and 50 virtual sensor channels. Thus, the resulting
load would be of 500 requests per second being used to transmit
10,000 data points per second, and leading to the calculation of
500 virtual data points each second.

For each experiment, Figures 6, 7, 8 and 9 present the results.
A single point on the figures aggregates 10 minutes of the whole
service configuration running. The data was split into windows
of 1 minute, and the first minute was removed to make sure
the platform had started up correctly before measurement. In
addition, the last minute was removed to ensure that only whole
minutes were used. The average latency or throughput was then
calculated as a measurement, and depicted along with standard
deviation as error bars where appropriate.

6.2 Experimental Results
How many sensor readings can the SHMDP ingest using
a single cloud server? In our first experiment, we aimed at
establishing a relationship between the number of simulated
sensors and the hardware utilization at the data platform, so
that we can create a baseline load for the other experiments. In
particular for these measurements, we employed the smallest VM
size in the M5 series, the m5.large instance, and observed when
the instance cannot process any more data insertion requests.
We have chosen the smallest server size so that the experiment
can be used for both scale up and scale out baselines.

520

0 500 1000 1500 2000 2500 3000
Simulated sensors

0

250

500

750

1000

1250

1500

1750

2000

Th
ro

ug
hp

ut
 [r

eq
/s

ec
]

Figure 6: Single-server throughput experiment.

0 1 2 3 4 5 6 7 8 9
Scale factor

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Th
ro

ug
hp

ut
 [r

eq
/s

ec
]

Figure 7: Scale out experiment over multiple servers.

0 500 1000 1500 2000 2500
Simulated sensors

0

500

1000

1500

2000

2500

3000

La
te

nc
y

[m
s]

50 percentile
75 percentile
99 percentile
99.9 percentile

Figure 8: Latency percentiles for raw sensor channel data
point time range requests.

0 500 1000 1500 2000 2500
Simulated sensors

0

500

1000

1500

2000

2500

3000

La
te

nc
y

[m
s]

50 percentile
75 percentile
99 percentile
99.9 percentile

Figure 9: Latency percentile for organization live data re-
quests.

Figure 6 shows the results from this single-server throughput
experiment. Because each simulated sensor in the experiment
was configured to send one request every second, note that the
SHMDP deployment was processing all requests as long as the
throughput is equal to the amount of simulated sensors. We
observe that the ratio between simulated sensors and throughput
is close to one until the number of simulated sensors reaches
2,000. At that point, throughput ceases to increase even if more
load is offered. By monitoring the VM instance when performing
the experiment, we have remarked that CPU Usage in Windows
TaskManager was at 100%when the number of simulated sensors
was above 1,800.
Does the SHMDP scale simultaneously on the number of
sensors and servers?Our second aim was to verify whether the
data platform can scale out in the number of data requests that
it can ingest from simulated sensors by utilizing the computing
power of more servers. To simulate a production environment, we
employed larger m5.xlarge VMs as described in the experimental
setup. From our single-server throughput experiments, we can
estimate a baseline load to be offered per server. Based on this
baseline, we can proportionally scale the load, number of servers,
and organization structure in the experiment.

To estimate baseline load, we note that in a production envi-
ronment, we wish to leave some CPU resources for user interac-
tion. We chose to leave roughly 20% utilization for handling user
online query requests and creating statistical aggregates. From
the single-server throughput experiment of Figure 6, we know
that roughly 1,800 requests per second can be processed by a
m5.large instance. By removing 20% and rounding to the nearest
100 requests per second, we obtain 1,400 requests per second.
Now, we can scale that number by the difference in computing

power between the m5.large and m5.xlarge instances, which is
estimated by their EC2 Compute Unit (ECU) values to be of a
factor 1.5x. So the baseline for a single server corresponds to
the load offered by 2,100 simulated sensors. This configuration is
employed for a scale factor of one. As the scale factor is increased,
we proportionally increase the number of simulated sensors and
the number of servers used for Orleans silos.

Figure 7 shows that the throughput sustained by the data plat-
form scales close to linearly with the scale factor. To illustrate
this observation, consider that at a scale factor of five, we have
five server instances and 10,500 simulated sensors. We observe
as expected a throughput above 10,000 requests per second. Sim-
ilarly, for a scale factor of eight, we have eight server instances
and 16,800 simulated sensors, and a throughput above 16,000
requests per second is observed.

The results indicate that the data platform can potentially scale
out even further than the 8 servers used in this experiment, since
we did not hit any bottlenecks. We expect that the behavior can
be maintained as we add a larger number of servers, since there
are no dependencies across organizations and there is enough
processing slack left to support eventual online user queries and
calculation of statistical aggregates.
Does the SHMDPdeliver low latency on online query func-
tions concurrently with data ingestion?We have simplified
the previous experiments by removing any user interactions, and
made all sensors sample data at 10 Hz sending 1 request each
second to the data platform. This scenario is close enough to
our experience with a real deployment that we can observe how
the data platform scales as we increase the number of sensor
insertion requests. However, we still need to show that the 80%
utilization rate chosen earlier will indeed leave enough room for

521

the processing of online user queries. Furthermore, we aimed
at better characterizing user request latencies under this target
utilization level to make informed decisions when creating a
production environment in the future.

To simulate user requests to the data platform, we estimated a
relationship between simulated sensor requests and user interac-
tion requests. We know from the requirements for the SHMDP
that requests for live data as well as raw data kept in the sen-
sor channel actors need to be supported. Requests for live data
retrieved the most recent values from all sensor channels of a
given organization, while requests for raw data retrieved the time
series in a given sensor channel actor in an organization. From
actual user interactions observed at the Great Belt Bridge project,
we expect these online queries to be generated by at most one
person looking at live data for each organization requesting data
once every second, and at most one request for raw data a second
for each organization. Since a deployment in that project would
have around 100 sensors, we thus generate roughly 1% of the
requests for live data from all sensor channels in a organization,
1% for raw data, and the remaining 98% as sensor data insertions.

Figures 8 and 9 show that the latency of online query requests
increase, as expected, for higher percentiles of the latency distri-
bution. This growth is especially pronounced for 99.9th percentile
latency; however, even these extreme tail latencies can be ame-
liorated if utilization is reduced in the machine by offering load
from less sensors. For example, for 500 simulated sensors, 99.9th
percentile latency is minimal for raw data requests, and under
1 sec for live data requests. It is expected that latency of user
interactions on the website be kept within a few seconds. This
requirement can be fulfilled by the data platform even with the
targeted 80% utilization load offered by 2,000 simulated sensors
and at extreme latency percentiles. Moreover, the latency of raw
data requests is often substantially below 0.5 sec, while that of
live data requests is often below 1 sec at 2,000 simulated sensors.

7 RELATEDWORK AND DISCUSSION
This section discusses research efforts related to our work. To the
best of our knowledge, the literature lacks contributions explicitly
justifying why and discussing how AODBs meet the challenges
of IoT data platforms. However, earlier approaches have explored
how to support different aspects of IoT data management em-
ploying a variety of data-centric system abstractions.

Approaches based on data stream management systems
(DSMSs), in particular, are a commonly used solution in the con-
text of IoT systems [11, 21, 31, 48]. DSMSs are apt at transforming
multiple input streams, through a topology of data flow opera-
tors, into output streams containing, e.g., alerts and notifications
for further processing. One challenge in these systems has been
flexibility in responding to dynamically changing conditions as
typical in IoT, e.g., through the addition or removal of input
sources [49]. Actor-based streaming implementations have been
proposed to address these concerns [5, 39], as adaptability is a
built-in feature of the actor model [1]. However, a problem with
data streaming approaches has been to additionally provide for
data storage and online queries [22, 26]. In the context of IoT,
AllJoyn Lambda explored a lambda architecture for IoT data stor-
age analytics. Adnan et al. combined streaming and historical
data to perform predictions in IoT systems based on machine
learningmodels [2]. In contrast to AODBs, which abstract storage
management with virtual actors and storage annotations, these
approaches require developers to master complex APIs, often

spanning across data stream and database systems. Moreover,
while these systems provide for low-latency alerts, online queries
are non-trivial to support efficiently. By contrast, an AODB acts
as an in-memory, programmable cache where complex analyses
can be executed in parallel over the encapsulated state of multiple
actors employing user-defined methods.

Another class of solutions explored by previous work is that
of cloud-centric actor-based IoT middleware, such as Ptolemy
Accessor [42] and Calvin [41]. In these systems, every IoT device
is modeled as an actor so that those multiple IoT components can
be easily integrated into a potentially complex edge-cloud system.
However, these middleware platforms lack integration with data
management features that are central to an IoT data platform,
such as efficient data storage with support for multi-tenancy and
data protection. In addition to middleware, specific IoT applica-
tions have also been directly built over actor runtimes [4, 38].
For example, Pegasus is a cloud-based project aimed at gathering
data with high-altitude balloons [23]. The system employs the
Orleans actor runtime so as to simplify the development process
of building a parallel, interactive and dynamic cloud service [15].
In contrast to our work, these previous implementation efforts
do not provide any insights on data modeling decisions, nor do
they analyze case studies to connect requirements for IoT data
platforms with the necessary support from an actor-based solu-
tion. Even though there have been explorations of how to employ
actors as a modeling construct for cyber-physical systems [25],
none of these investigations fully satisfy our data platform re-
quirements, namely storing, managing and processing large-scale
data as well as providing for high scalability, real-time computa-
tion, data protection, and access control.

In line with the vision of Bernstein et al. [17], we argue that
the integration of data management features into actor runtimes
can help meet the increasing demand for scalable, low-latency
data platforms. Recently, a relational actor programming model
has been proposed for in-memory databases and realized in Re-
actDB [46]. Even though ReactDB shows that the actor model can
be used to provide for low latency in databases, we did not con-
sider it as a possible option for our data platform because it is a
research prototype and currently not available for production use.
Furthermore, in previous work combining actors and databases,
there is no systematic review of how to model and structure IoT
data platforms, nor discussion of the implementation of such IoT
platforms employing an AODB approach. Our work matches the
characteristics of an AODB with the requirements and challenges
of IoT data platforms, showing how recent research on AODBs
can be the basis for a new methodology to model and build IoT
data platforms.

8 CONCLUSIONS AND FUTUREWORK
IoT systems require adequate data platforms for handling data
storage, management, query and preservation. The modeling and
deployment of these platforms remain an open research challenge.
In this paper, we presented a generic actor-oriented data platform
modeling approach for IoT data platforms, showing how actor-
oriented databases can address challenges in the management
of IoT data. Our discussion of challenges and their solution was
showcased via two distinct case studies, specifically systems
for structural health monitoring and beef cattle tracking and
tracing. Our contribution covered the detailed modeling of these
two real-world case studies and presented the entities and the
patterns used to represent their dynamic behavior. This was

522

accompanied by a discussion of modeling challenges, together
with our recommendation of technologies and methodologies to
address these challenges. As part of this work, we developed a
prototype of a structural health monitoring system, which was
transitioned to SenMoS. This prototype was validated through
experiments demonstrating scalability as more simulated sensors
are added as well as low latency in interactive query functions.

We believe that adopting AODBs for IoT systems can help
attain the full potential of IoT by extending the reach, scalability,
and maintainability of IoT data platforms. As future work, we
plan to explore data integration issues in IoT data platforms
modeled with the AODB approach, and devise approaches to
enforce constraints in AODBs.

ACKNOWLEDGMENTS
Work partially conducted in the context of the Future Cropping
partnership [30], supported by Innovation Fund Denmark. Ex-
perimental evaluation supported by the AWS Cloud Credits for
Research program. In addition, this work was partly supported
by the International Network Programme project "Modeling and
Developing Actor Database Applications", funded by the Danish
Agency for Science and Higher Education (number 7059-000528)
and by FAPESP CEPID CCES 13/08293- 7. Additional funding
provided by FAPESP project 17/02325-5 and by CNPq-Brazil.

REFERENCES
[1] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distributed

Systems. MIT Press, Cambridge, MA, USA.
[2] Adnan Akbar, Abdullah Khan, Francois Carrez, and Klaus Moessner. 2017.

Predictive analytics for complex IoT data streams. IEEE Internet of Things
Journal 4, 5 (2017), 1571–1582.

[3] Akka 2018. Akka Documentation. https://doc.akka.io/docs/akka/1.3.1/
Akka.pdf.

[4] Akka IoT cases 2018. Akka Documentation, Version 2.5.17, IoT example use
case. https://doc.akka.io/docs/akka/2.5/guide/tutorial.html.

[5] Akka Streams 2018. Akka Streams version 2.5.18. https://doc.akka.io/docs/
akka/2.5/stream/.

[6] AQStreamProvider 2019. Azure Queue (AQ) Stream Provider.
https://dotnet.github.io/orleans/Documentation/streaming/
stream_providers.html?q%3Dqueue%23azure-queue-aq-stream-provider%
0A.

[7] Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, and Jan Rittinger.
2008. Multi-tenant Databases for Software As a Service: Schema-mapping
Techniques. In Proc. ACM International Conference on Management of Data
(SIGMOD). 1195–1206.

[8] AWS 2017. Amazon Web Services. https://aws.amazon.com/.
[9] AWS DynamoDB 2018. Amazon DynamoDB. https://aws.amazon.com/

dynamodb/.
[10] AWS EC2 2018. Amazon Web Services EC2 Instances. https://

aws.amazon.com/ec2/instance-types/.
[11] AWS IoT 2018. AWS IoT Core. https://aws.amazon.com/iot-core/.
[12] AWS RDS 2018. Amazon Relational Database Service. https://

aws.amazon.com/rds/.
[13] Debasis Bandyopadhyay and Jaydip Sen. 2011. Internet of things: Applica-

tions and challenges in technology and standardization. Wireless Personal
Communications 58, 1 (2011), 49–69.

[14] Philip A. Bernstein. 2018. Actor-Oriented Database Systems. In Proc. IEEE
International Conference on Data Engineering (ICDE). 13–14.

[15] Philip A Bernstein and Sergey Bykov. 2016. Developing cloud services using
the orleans virtual actor model. IEEE Internet Computing 5 (2016), 71–75.

[16] Philip A Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin.
2014. Orleans: Distributed virtual actors for programmability and scalability.
MSR-TR-2014–41 (2014).

[17] Philip A Bernstein, Mohammad Dashti, Tim Kiefer, and David Maier. 2017.
Indexing in an Actor-Oriented Database.. In Proc. Biennial Conference on
Innovative Data Systems Research (CIDR).

[18] Kasper Myrtue Borggren. 2018. Scalable Structural Health Monitoring Data
Platform using Actors as a Database. Master’s thesis. University of Copenhagen,
Copenhagen Denmark.

[19] Shawn Bowers and Bertram Ludäscher. 2005. Actor-oriented design of scien-
tific workflows. In Proc. International Conference on Conceptual Modeling (ER).
Springer, 369–384.

[20] Thomas B Breen. 2009. System and method for updating geo-fencing infor-
mation on mobile devices. US Patent 7,493,211.

[21] Jean-Paul Calbimonte, Oscar Corcho, and Alasdair JG Gray. 2010. Enabling
ontology-based access to streaming data sources. In Proc. International Seman-
tic Web Conference (ISWC). 96–111.

[22] Sirish Chandrasekaran andMichael J. Franklin. 2004. Remembrance of Streams
Past: Overload-Sensitive Management of Archived Streams. In Proc. Interna-
tional Conference on Very Large Data Bases (VLDB). 348–359.

[23] Athima Chansanchai. 2018. Pegasus II mission sends balloon high
above Earth and invites you along for an Internet of Things ride.
https://news.microsoft.com/features/pegasus-ii-mission-sends-balloon-
high-above-earth-and-invites-you-along-for-an-internet-of-things-ride/.

[24] Mario GCA Cimino, Beatrice Lazzerini, Francesco Marcelloni, and Andrea
Tomasi. 2005. Cerere: an information system supporting traceability in the
food supply chain. In Proc. IEEE International Conference on E-Commerce
Technology Workshops. 90–98.

[25] Patricia Derler, Edward A. Lee, and Alberto L. Sangiovanni-Vincentelli. 2012.
Modeling Cyber-Physical Systems. Proc. IEEE 100, 1 (2012), 13–28.

[26] Nihal Dindar, Peter M. Fischer, Merve Soner, and Nesime Tatbul. 2011. Ef-
ficiently correlating complex events over live and archived data streams. In
Proc. ACM International Conference on Distributed Event-Based Systems (DEBS).
243–254.

[27] Tamer Eldeeb and Phil Bernstein. 2016. Transactions for Distributed Actors
in the Cloud. Technical Report MSR-TR-2016-1001. Microsoft Research.
https://www.microsoft.com/en-us/research/publication/transactions-
distributed-actors-cloud-2/

[28] Embrapa 2018. Brazilian Agricultural Research Corporation - A Embrapa.
https://www.embrapa.br/en/international.

[29] Erlang 2017. Build massively scalable soft real-time systems. https://
www.erlang.org/.

[30] Future Cropping 2017. Future Cropping partnership website. https://
futurecropping.dk/en/.

[31] Google 2018. Google IoT Core. https://cloud.google.com/iot-core/.
[32] GS1 2018. Global Standards One. https://www.gs1.org/.
[33] IBM 2018. IBM Food Trust: trust and transparency in our food. https://

www.ibm.com/blockchain/solutions/food-trust.
[34] Ralph Kimball and Margy Ross. 2013. The Data Warehouse Toolkit: The Defini-

tive Guide to Dimensional Modeling (3rd ed.). Wiley Publishing.
[35] Andréia Akemi Kondo, Claudia Bauzer Medeiros, Evandro Bacarin, and Ed-

mundo Roberto Mauro Madeira. 2007. Traceability in Food for Supply Chains..
In Proc. International Conference on Web Information Systems and Technologies
(WEBIST). 121–127.

[36] Chen Luo and Michael J. Carey. 2018. Efficient Data Ingestion and Query
Processing for LSM-Based Storage Systems. CoRR abs/1808.08896 (2018).
arXiv:1808.08896

[37] A Mousavi, M Sarhadi, A Lenk, and S Fawcett. 2002. Tracking and traceability
in the meat processing industry: a solution. British Food Journal 104, 1 (2002),
7–19.

[38] Orleans 2018. Who Is Using Orleans? http://dotnet.github.io/orleans/
Community/Who-Is-Using-Orleans.html.

[39] Orleans Streams 2018. Orleans Streams. https://dotnet.github.io/orleans/
Documentation/streaming/index.html.

[40] OrleansGrainCallFilters 2018. Grain Call Filters. https://dotnet.github.io/
orleans/Documentation/grains/interceptors.html.

[41] Per Persson andOla Angelsmark. 2015. Calvin–merging cloud and iot. Procedia
Computer Science 52 (2015), 210–217.

[42] Ptolemy 2018. The Ptolemy Project: Accessors. https://ptolemy.berkeley.edu/
accessors/.

[43] Daniel Diaz Sanchez, R Simon Sherratt, Patricia Arias, Florina Almenarez,
and Andres Marin. 2015. Enabling actor model for crowd sensing and IoT. In
Proc.IEEE International Symposium on Consumer Electronics (ISCE). 1–2.

[44] SEGES 2018. SEGES Landbrug & Fødevarer F.m.b.A. website. https://
www.seges.dk/en.

[45] SenMos 2018. SenMoS: your sensor monitoring system. https://senmos.dk/.
[46] Vivek Shah and Marcos Antonio Vaz Salles. 2018. Reactors: A Case for Pre-

dictable, Virtualized Actor Database Systems. In Proc. ACM International Con-
ference on Management of Data (SIGMOD). 259–274.

[47] Vivek Shah and Marcos Vaz Salles. 2018. Actor-Relational Database Systems:
A Manifesto. CoRR abs/1707.06507 (2018).

[48] Zhitao Shen, Vikram Kumaran, Michael J Franklin, Sailesh Krishnamurthy,
Amit Bhat, Madhu Kumar, Robert Lerche, and Kim Macpherson. 2015. CSA:
Streaming Engine for Internet of Things. IEEE Data Eng. Bull. 38, 4 (2015),
39–50.

[49] Ayush Singhal, Rakesh Pant, and Pradeep Sinha. 2018. AlertMix: A Big Data
platform for multi-source streaming data. arXiv preprint arXiv:1806.10037
(2018).

[50] Storebælt 2018. Facts and History. https://www.storebaelt.dk/english/bridge.
[51] Toby J Teorey. 1999. Database modeling & design. Morgan Kaufmann.
[52] Transactors dropped 2018. Akka Migration Guide 2.3.x to 2.4.x. https://

doc.akka.io/docs/akka/2.4/project/migration-guide-2.3.x-2.4.x.html.
[53] UML 2018. OMG Unified Modeling Language (OMG UML) Version 2.5.1.

https://www.omg.org/spec/UML/2.5.1/PDF.

523

	Modeling and Building IoT Data Platforms with Actor-Oriented DatabasesYiwen Wang, Julio Cesar Dos Reis, Kasper Myrtue Borggren, Marcos Antonio Vaz Salles, Claudia Bauzer Medeiros, Yongluan Zhou

