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ABSTRACT
How can one quickly answer the most and top popular objects at

any time, given a large log stream in a system of billions of users?

It is equivalent to find the mode and top-frequent elements in a

dynamic array corresponding to the log stream. However, most

existing work either restrain the dynamic array within a sliding

window, or do not take advantages of only one element can be

added or removed in a log stream. Therefore, we propose a profil-

ing algorithm, named S-Profile, which is ofO(1) time complexity

for every updating of the dynamic array, and optimal in terms of

computational complexity. With the profiling results, answering

the queries on the statistics of dynamic array becomes trivial and

fast. With the experiments of various settings of dynamic arrays,

our accurate S-Profile algorithm outperforms the existing meth-

ods, showing at least 2X speedup to the heap based approach and

13X speedup to the balanced tree based approach.

1 INTRODUCTION
Many online systems, especially with billions of users, are gener-

ating a large stream of logs [6], recording users’ dynamics in the

systems, e.g. users (un)follow other users, “(dis)like” objects, en-

ter (exit) live video channels, and click objects. Then, a question

is raised:

How can we efficiently know the most popular objects (including
users), i.e. mode, top-K popular ones, and even the distribution of
frequency in a fast and large log stream at any time?

Mathematically, the questions converge to calculating and

updating the statistics of a dynamic array of finite values. Thus,

the existing fast algorithms on the statistics are as follows:

Mode of an array. The mode of an array and its corresponding

frequency can be calculated by sorting the array (if it’s of numeric

value) and scanning the sorted array inO(n logn) time, wheren is
the length of array [7]. Notice that through judging the frequency

of mode we can solve the element distinctness problem, which

was proven to have to be solved with Ω(n logn) time complexity

[12, 15]. Therefore, calculating the mode of an array has the

lower bound of Ω(n logn) as well. If the elements of array can

only take finite values, the complexity of calculating the mode

can be reduced. Suppose they can only takem values. One can

usem buckets to store the frequency of each distinct element.

Then, the mode can be calculated in O(n +m) time by scanning

them buckets.

The problem of range mode query, which calculates the mode

of a sub-array A[i . . . j] for a given array A and a pair of indices

(i, j), has also been investigated [4, 10, 13]. The array with finite
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values was considered. With a static data structure, the range

mode query can be answered in O(
√
n/logn) time [4].

Majority and frequency approximation. The majority is the ele-

ment whose frequency is more than half of n. An algorithm was

proposed to find majority in O(n) time and O(1) space [3]. Many

work on the statistics like frequency count and quantiles, are un-

der a setting of sliding window [1, 2, 5, 8, 11]. They consider the

most recently observed data elements (within the window) and

calculate the statistics. Space-efficient algorithms were proposed

to maintain the statistics over the sliding window on a stream.

However, those existing work slow down their algorithms

without considering that the increase and decrease of object

frequency are always 1 at a time in log streams. Therefore, we

propose an algorithm S-Profile to keep profiling the dynamic

array. With such a profile, we can answer the queries of the

statistics: mode, top-K and frequency distributions.

In summary, S-Profile has the following advantages:

- Optimal efficiency: S-Profile needs O(1) time complex-

ity and O(m) space complexity to profile dynamic arrays,

wherem is the maximum number of objects.

- Querying Statistics:With the profiling, we have sorted

frequency-object pairs, and can simply answer the queries

on mode, top-K, majority and other statistics in O(1).
- Applicable: Our S-Profile can be plugged into most of log

streams in many systems, and profiling objects of interest.

In experiments, S-Profile compares with the existing methods

in various settings of dynamic arrays, and shows its performance

and robustness.

2 AN O(1)-COMPLEXITY ALGORITHM FOR
UPDATING THE MODE AND STATISTICS

We define tuples (xi , ci ) as a log stream, where xi and ci is the
object id and action in the i-th tuple. Action ci can be either “add”

or “remove”, which, for example, can indicate object xi is “liked”
or “disliked”, or user xi is followed or unfollowed. Conceptually,

we could imagine a dynamic array A of objects associated with

a log stream, by appending object xi into A if ci is “add”, and
deleting object xi fromA if ci is “remove”. Dynamic arrayA is not

necessarily generated and stored, which is defined for convenient

description of our algorithm.

Therefore, our problem can be described as follows:

Informal Problem 1 (Profiling dynamic array). Given: a
log stream of tuples (xi , ci ) adding and removing an object each
time,

- To build: a data structure profiling the dynamic array A of
objects associated with the log stream,

- Such that: at any time answering the queries on mode,
top-K and other statistics of objects is trivial and fast.

Let m be the maximum number of distinct objects in a log

stream or dynamic arrayA. Without loss of generality, we assume
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id xi ∈ [1,m], i.e. integers between 1 andm. For anym distinct

objects, we can map them into the integers from 1 tom as ids.

We can usem buckets to store the frequency of each distinct

object. Let F be such a frequency array with lengthm. F [i] ∈ F is

the frequency of object with id i . With F , most statistics of A can

be calculated without visiting A itself. For example, the mode of

A refers to locations in F where the element has the maximum

value. Although updating F with each tuple of a log stream trivial

and costs O(1), finding the maximum value in F at each time is

still time consuming.

Therefore, we first introduce a proposed data structure of

a profile, named “block set”, which can answer the statistical

queries in a trivial cost. And we show later that we can maintain

such a profile inO(1) time complexity andO(m) space complexity.

2.1 Proposed data structure for profiling
In order to find the mode of A, we just need to care about the

maximum in F . If only integers are added to A, the maximum ele-

ment of F can be easily updated. However, in Problem 1 removing

integer is also allowed. This complicates the calculation of mode

and other statistics ofA. So, the sorted arrayT must be employed

and maintained. To facilitate the queries, T can be implemented

as a binary tree. The heap and balanced tree are two kinds of

binary tree, and are widely used for efficiently maintaining an

sorted array. Upon a modification onA, they both can be updated

in O(logm) time. The root node of a heap is the array element

with the extreme value. This means the heap is only suitable for

producing the A’s elements with either maximum frequency (the

mode) or the minimum frequency. The balanced tree is good at

answering the query of median of A, and can also output the

mode and top-K elements, etc. It should be pointed out, these

general algorithms do not take the particularity of Problem 1 into

account (the modification on F is restricted to plus 1 or minus

1). By the way, no one can maintain the sorted array under an

arbitrary modification with a time complexity below O(logm),
because it can be regarded as a sorting problem which has been

proven to have Ω(m logm) time complexity.

We use Figure 1 as an example to illustrate the proposed data

structure for maintaining T . Suppose T has frequency values

in ascending order. In order to locate the index of the i-th ele-

ment ofT in F and vice verse, two conversion arrays are defined:

TtoF and FtoT . In other words, we have T [i] = F [TtoFi ] and
F [i] = T [FtoTi ]. Here, we use both the subscript and bracket

notation to specify an element of array. As shown in Figure 1(c),

we can partition T into nonoverlapped segments according to its

elements. Each such segment is called block here and represented
by an integer triple (l, r , f ), where l and r are starting and ending
indices respectively, and f is the element value (frequency). So,

a block b = (l, r , f ) always satisfies:

• 1 ≤ l ≤ r ≤ m
• Ti = f , ∀i ∈ [l, r ]
• Tl > Tl−1

, if l > 1

• Tr < Tr+1, if r < m

There are at mostm blocks, which form a block set. It fully cap-

tures the information in the sorted array T . An array of pointers

called PtrB is also needed to make a link from each element in

T to its relevant block. According to the definition of block, we

always have:

Ti = PtrB[i]. f , and PtrB[i].l ≤ i ≤ PtrB[i].r . (1)

Here we use “.l” to denote the member l of a block, and so on.

0 3 1 3 0 0 0 0freq

0 0 0 0 0 1 3 3sorted
freq

1 3 1 3 0 0 0 0freq

1 0 0 0 0 1 3 3sorted
freq

(a) (b)

(c) (d)

0 3 1 3 0 0 0 0freq

0 0 0 0 0 1 3 3sorted
freq

(1,5,0) (6,6,1) (7,8,3)

1 3 1 3 0 0 0freq

0 0 0 0 1 1 3 3sorted
freq

(5,6,1) (7,8,3)(1,4,0)blockblock

0

Figure 1: Illustration of the proposed block set for main-
taining array T . (a) The initial F and T . (b) When “1”is
added to A, a brute-force approach to maintainT includes
four swaps of “1” rightwards and updates of FtoT andTtoF .
(c) The initial F andT , and the block set. F andT are up to be
modified. (d) With the information of block, the swapping
destination in T can be easily determined.

The block set B represents the sorted frequency arrayT , while
with arrays FtoS , StoF and PtrB we no longer need to store F and

T . These proposed new data structure well profile the dynamic

array A. The remaining thing is to maintain them and answer

the statistical queries on A in an efficient manner.

2.2 S-Profile: the O(1)-Complexity Updating
Algorithm

We first consider the situation where an integer is added to A. As
shown in Figure 1(a) and 1(b), a brute-fore approach to update T
is swapping the updated frequency to its right-hand neighbor one

by one, until T is in the appropriate order again. Now, with the

proposed PtrB and the block it points to, we can easily determine

the index of T which is the destination of swapping the updated

frequency. Then, we can update the relevant two blocks and

pointer arrays (see Figure 1(d)).

Now, based on the situation shown as Figure 1(d), we assume

a “4” is removed fromA. As shown in Figure 2, we first locate the

updated element in T . Then, with the information in its corre-

sponding block we know with which it should be swapped. We

further check if the updated frequency exists in T before. If it

does not we need to create a new block (the case in Figure 2(b)),

otherwise another block is modified.

The whole details of the algorithm for updating the data struc-

ture and returning the mode ofA is described as Algorithm 1. We

assume the data structures (B, FtoS , StoF and PtrB) have been

1 3 1 3 0 0 0 0freq

0 0 0 0 1 1 3 3sorted
freq

(5,6,1) (7,8,3)

1 3 1 2 0 0 0 0freq

0 0 0 0 1 1 2 3sorted
freq

(1,4,0) (5,6,1) (8,8,3)(7,7,2)

(a) (b)

(1,4,0)block block

Figure 2: Illustration of the proposed data structure for a
“remove” action onA. (a) The initial F andT , and the block
set. A “4” is going to be deleted from A. (b) With the infor-
mation of block and the pointer arrays, the block set can
be easily updated to reflect the ordered T .
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initialized, while Algorithm 1 responds to an event in the log

stream and returns the updated mode and frequency.

Algorithm 1 S-Profile for updating the mode of array

Input: A tuple (x, c) in log stream, block set B, pointer arrays
FtoT , TtoF and PtrB, the length of sorted frequency arraym
Output: The modeM , and the frequency v .

1: rank ← FtoT [x]
2: b ← PtrB[rank]
3: l ← b .l ; r ← b .r ;
4: if c is an “add” action then
5: b .r ← b .r − 1

6: if b .r < b .l then
7: Delete b
8: end if
9: if r < m and b . f + 1 = PtrB[r + 1]. f then
10: PtrB[r ] ← PtrB[r + 1]

11: PtrB[r ].l ← PtrB[r ].l − 1

12: else
13: Create a new block in B and assign it to PtrB[r ]
14: PtrB[r ] ← (r , r , b . f + 1)

15: end if
16: else /* It’s a “remove” action */

17: b .l ← b .l + 1

18: if b .r < b .l then
19: Delete b
20: end if
21: if l > 1 and b . f − 1 = PtrB[l − 1]. f then
22: PtrB[l] ← PtrB[l − 1]

23: PtrB[l].r ← PtrB[l].r + 1

24: else
25: Create a new block in B and assign it to PtrB[l]
26: PtrB[l] ← (l, l, b . f − 1)

27: end if
28: end if
29: M ← TtoF [PtrB[m].l . . . PtrB[m].r ]
30: v ← PtrB[m]. f

As the proposed data structure maintains the sorted frequency

array, it can be utilized to calculate the object with the minimum

frequency (maybe a negative number) as well. We just need to

replace Step 29 and 30 in Algorithm 1 with the following steps.

29a:M ← TtoF [PtrB[1].l . . . PtrB[1].r ]
30a: v ← PtrB[1]. f

We can observe that the time complexity of the S-Profile algo-

rithm isO(1), as there is no iteration at all. The space complexity

is O(m), wherem is the maximum number of objects in the log

stream. Precisely, it needs 3m integers to store the pointer arrays

and an additional storage for B. In the worst case B includesm
blocks, but usually this number is much smaller thanm.

Other queries on statistics of objects can also be answered. For

example, the top-K order element is that whose frequency is the

K-th largest. We can just use PtrB[m −K + 1] to locate the block.

Then, the frequency and object id can be obtained with block’s

member and the TtoF array. Especially, the median in frequency

can be located with the K/2-th element of the PtrB array.

2.3 Possible Applications
For somemission-critical tasks (e.g., fraud detection) in big graphs,

the efficiency to make decisions and infer interesting patterns is

crucial. As a result, recent years have witnessed an increasing in-

terest in heuristic “shaving” algorithms with low computational

complexity [9, 14]. A critical step of them is to keep finding low-

degree nodes at every time of shaving nodes from a graph. Thus,

S-Profile can be plugged into such algorithms for further speedup,

by treating a node as an object and its degree as frequency.

Furthermore, S-Profile can also deal with a sliding window

on a log stream, by letting every tuple (xi , ci ) outdated from the

window be a new incoming tuple (xi , c̄i ), where c̄i is the opposite
action of ci .

3 EXPERIMENTAL RESULTS
We have implemented the proposed S-Profile algorithm and its

counterparts in C++, and tested them with randomly generated

log streams. The streams are produced with the following steps.

We first randomly generate an "add" or "remove" action, with

70% and 30% probabilities respectively. Then, for each "add" ac-

tion we randomly choose an object id according to a probability

distribution (called posPDF ). For each "remove" action another

distribution (called negPDF ) is used to randomly choose an object

id. With this procedure, we obtained three test log streams:

• Stream1: both posPDF and negPDF are uniform random

distribution on [1,m].

• Stream2: both posPDF and negPDF are normal distribu-

tions with µ = 2m/3,m/3 and σ =m/6,m/6, respectively.
• Stream3: posPDF is a normal distribution (µ = 4m/5, σ =
m), while negPDF is a lognormal distribution (µ = 3m/5,
σ =m).

In the following subsections, we first compare the proposed

S-Profile with the heap based approach, for updating the mode

and frequency. Then, the comparison with the balanced tree is

presented for calculating the median. All experiments are carried

out on a Linux machine with Intel Xeon E5-2630 CPUs (2.30 GHz).

The CPU time (in second) of different algorithms are reported.

3.1 Comparison with the Heap
Heap is a kind of binary tree where the value in parent node must

be larger or equal to the values in its children. Used to maintain

the sorted frequency array, it is easy to obtain the mode (the

root has the largest frequency). Notice that the balanced tree is

inferior to the heap for calculating the mode.

In the experiment, a log stream is the input and the tested

algorithm calculates themode every time a tuple arrives. In Figure

3, we show the CPU times consumed by the heap based method

and our S-Profile for the three log streams with varied length.

The x-axis means the number of processed tuples (n). From the

Figure 3: CPU times (in second) of the heap based method
and our method for calculating the mode for n times (m =
10

8).
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results we see that our method is at least 2.2X faster than the

heap based method. Another experiment is carried out with fixed

n = 10
8
and variedm. The results shown in Figure 4 also reveal

that our S-Profile is at least 2X faster.

Figure 4: CPU times (in second) of the heap based method
and ourmethod for calculating themode forn = 10

8 times.

For different kinds of log streams, the performance of the heap

based method varies a lot. For the worst case updating the heap

needs O(logm) time, despite this rarely happens in our tested

streams. On the contrary, S-Profile needs O(1) time for updating

the data structure. This advantage is validated by the rather flat

trend shown in Figure 5.

2 4 6 8 10
m 107
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40
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100

tim
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)

Heap (stream1)
Ours (stream1)

Figure 5: The trends of CPU time for variedm (n = 10
8).

It should be emphasized that, in addition to the speedup to

the heap based method, our S-Profile possesses the advantage of

wider applicability. Our method is not restricted to calculating

the mode and corresponding frequency. As it well profiles the

sorted frequency array, with it answering the queries on top-K

and other statistics of objects is trivial and fast.

3.2 Comparison with the Balanced Tree
The proposed S-Profile can also calculate the median of the dy-

namic array. We compare it with the balanced tree based method

implemented in the GNU C++ PBDS [16], which is more efficient

than our implementation of balanced tree. The trends of CPU

time are shown in Figure 6. They show that the runtime of the

proposed S-Profile increases much less than that of the balanced

tree based method whenm increases. We can observe that the

time of S-Profile is linearly depends on n, the number of modi-

fications on array A, and hardly varies with differentm. On the

contrary, the balanced tree based method exhibits superlinear

increase whether with n orm. Overall, the test results show that

S-Profile is from 13X to 452X faster than the balanced tree based

method on updating the median of a dynamic array.

105 106 107 108

n

10-2

10-1

100

101

102

tim
e 

(s
)

Balanced tree
Ours
O(n)

105 106 107 108

m

10-2

10-1

100

101
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tim
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(s
)

Balanced tree
Ours
O(m)

Figure 6: Comparison of the balanced tree based method
and our method for calculating the median. Left: CPU
time vs. n (m = 10

6). Right: CPU time vs.m (n = 10
6).

4 CONCLUSIONS
We propose an accurate algorithm, S-Profile, to fast keep profiling

the dynamic array from online systems. It has the following

advantages:

- Optimal efficiency: S-Profile needsO(1) time complexity

for every updating of a dynamic array, and totally linear

complexity in memory.

- Querying Statistics:With profiling, at any time we can

answer the statistical queries in a trivial and fast way.

- Applicable: S-Profile can be plugged into most of log

streams, and heuristic graph mining algorithms.
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