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ABSTRACT

Transactional database systems and data stream management
systems have been thoroughly investigated over the past decades.
While both systems follow completely different data processing
models, the combined concept of transactional stream processing
promises to be the future data processing model. So far, however,
it has not been investigated how well-known concepts found
in DBMS or DSMS regarding multi-user support can be trans-
ferred to this model or how they need to be redesigned. In this
paper, we propose a transaction model combining streaming and
stored data as well as continuous and ad-hoc queries. Based on
this, we present appropriate protocols for concurrency control
of such queries guaranteeing snapshot isolation as well as for
consistency of transactions comprising several shared states. In
our evaluation, we show that our protocols represent a resilient
and scalable solution meeting all requirements for such a model.

1 INTRODUCTION

Emerging application domains such as cyber-physical systems,
IoT, and healthcare have fostered the convergence of stream and
batch processing in data management. This can be observed not
only by market trends such as real-time warehousing but also
by architectural patterns like the lambda architecture aiming at
combining batch and online processing on Big Data platforms.
This convergence means that the input to the system is treated
as a continuous stream of data elements whose processing is im-
plemented as a stream processing pipeline (query) with one or
more persistent states/tables as sinks. Updates on these tables
trigger further processing implemented again as stream process-
ing pipeline. In addition, tables can be also queried in an ad-hoc
fashion, e. g., for snapshot reports. Hence, the query part of an
application is a mix of stream and ad-hoc queries while the data
objects are streams and tables. However, concurrency and the
need for providing fault tolerance require transaction support: at
least stream queries writing to or reading from a table should run
within a transaction context with ACID guarantees. This is nec-
essary for recovery in case of failures and to provide a consistent
view on (persistent) subsets of the stream (such as a window).
Here, we refer to this processing style as transactional stream pro-
cessing [2, 13] meaning that (a) a stream query writing to tables
represents a sequence of transactions and (b) stream or batch
queries on such tables require transaction isolation. Supporting
such queryable states raises several requirements:
(@ state representations (tables) have to be queryable at all,
(2 the isolation property for concurrently running stream
queries updating the state and ad-hoc queries on these
states has to be guaranteed, and
(3 consistency among multiple states of the same stream
query is required even in the case of transaction aborts.
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Figure 1 sketches a possible smart metering scenario which
could benefit from transactional stream processing. Here, it is
getting data from private households and the global infrastructure
which is checked against respective specifications. It consists of
three continuous and one ad-hoc query accessing various (shared)
states whose semantic we explain in more detail in Section 3.
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Figure 1: Possible smart metering use case.

In this paper, we present techniques to address the require-
ments above. Based on the work introduced in [2, 13], we propose
a data-centric transaction model for data streams, discuss why
and how to realize snapshot isolation on queryable states together
with a consistency protocol. With the help of a micro benchmark,
we show the suitability and scalability of our approach.

2 RELATED WORK

The first major investigation of a possible combination of rela-
tional and stream processing took place in the STREAM project
[14]. However, when designing the system the team focused only
on continuous queries instead of a hybrid query set of continuous
and single point in time queries. To model the transformations of
streams and relations, STREAM provides operations based on the
whole relation (RStream), inserts (IStream), or deletes (DStream).

A more recent development of a system supporting transac-
tions and data streaming is S-Store [13] which is built upon the
main memory OLTP system H-Store [9]. S-Store inherits the
ACID properties of H-Store by implementing data streaming con-
cepts like windows and streams as time-varying H-Store tables
with a timestamp as ordering property. Continuously running
stream queries are implemented as stored procedures. Together
with an input batch, which is the unit of a stream with the same
timestamp, the execution of the stored procedure over such a
batch forms a transaction over stream data.

Transactional Stream Processing [2] is a different notion to
combine streaming and pure transaction processing. Their ap-
proach defines a unified transaction model which assigns a times-
tamp to each transaction and transforms continuous queries into
a series of one-time queries, where each one-time query reads all
required data before writing the result set. Transactional Stream
Processing is based on a storage manager which transfers data
processing into a producer-store-consumer scenario and iden-
tifies different properties to provide the proper storage for a
producer-consumer combination.

In the context of scalable data stream processing platforms,
Apache Flink Streaming is one of the most advanced approaches
to consistent states and fault tolerance [3]. Their mechanism is

10.5441/002/edbt.2019.78


https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.78

based on distributed snapshots where stream barriers are moving
along with the data through the dataflow. At operator level, the
flow is aligned until all barriers with the same ID arrive and sub-
sequently the current state is persisted in the state backend (e. g.,
HDEFS). Whenever a failure occurs, the last complete snapshot is
used for restoring a consistent state per streaming pipeline.

In [15] the authors present a platform combining OLTP, OLAP,
and stream processing in a single system. For that, they merge
Apache Spark with an in-memory transactional store and en-
hance it by additional features such as approximate processing.

MVCC is one of the most widely used concurrency control
protocols and has been implemented in, e. g., Postgres [18], Hy-
Per [10], Hekaton [5], and SAP HANA [12]. No precise standard
exists that describes how MVCC should be implemented. There
are several possibilities and adjustments that strongly depend on
the expected workload. In [20] the authors present an extensive
study of key design decisions when implementing MVCC in an
in-memory DBMS. In particular, these are concurrency control
protocol, version storage, garbage collection, and index manage-
ment. We have used the findings of this study to design our own
MVCC approach (see Section 4).

3 TRANSACTION MODEL

Addressing the scenario and requirements described in Section 1
requires to distinguish two basic concepts: tables for representing
states and streams. Tables represent a finite collection of data
structured in rows and columns, as known from relational DBMS.
Streams define a potentially infinite sequence of tuples of data,
where tuples carry an implicit or explicit ordering. While a table
requires a physical storage representation, streams are volatile.

Linking operators. As already proposed in the query lan-
guage for STREAM [1], two classes of query operators are re-
quired to link these objects: stream-to-table and table-to-stream.
Here, we call them TO_TABLE and TO_STREAM.

o TO_TABLE inserts, deletes, or updates tuples from a stream
in a table, e. g., to update an operator state, and
e TO_STREAM produces a stream of tuples from a table.

Whether a stream tuple is inserted or updated in a table depends
on the presence of a table tuple with the same key. A delete
occurs if the tuple is outdated (e. g., from a window) or explicitly
removed by a delete tuple. TO_STREAM unifies the two cases, where
stream tuples are just incrementally processed and, on the other
hand, table wide operations are executed before new tuples can
be emitted. Whenever a certain condition on a table is fulfilled,
TO_STREAM is executed and emits a new (set of) tuple(s) to a
stream. In addition to these operators, a standard ad-hoc query
operator FROM is required to either attach to a stream, i. e., read
all tuples of the stream starting at the point of attachment, or to
read data of a table. Figure 2 illustrates these operators.

FROM (Stream)
TO_TABLE

>> >

TO_STREAM

—[ 1]

FROM (Table)

Figure 2: Linking operators.

Transaction boundaries. A first question is how to define
transaction boundaries for data streams. Apart from the rather
trivial case where each stream element represents its own trans-
action (aka “auto-commit”), two basic approaches can be distin-
guished. In the data-centric approach, transaction boundaries
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(BOT, COMMIT, ROLLBACK) are marked by dedicated stream ele-
ments, whereas the other stream elements are interpreted as in-
sert or update operations. Punctuations [19] or control tuples are
useful concepts for this purpose. This way each transaction can
be defined over a consecutive number of stream tuples. Thereby,
a transaction span can range from the length of an entire stream
to the length of a sub-stream or each tuple is considered a sin-
gle transaction. An alternative strategy is the traditional query-
centric approach meaning that transaction boundaries are spec-
ified as part of the query or dataflow program. Obviously, this
approach is better suited for ad-hoc and not for stream queries.

Unified tables for queryable states. For our system model,
we rely on a unified table model taken from the DBMS world
to cover all relevant aspects needed for transactional stream
processing. However, stateful stream operators such as windows
or aggregates also require structures for maintaining operator
related data. Such operators exploit tables as internal structures to
publish their state as a table allowing to share their content with
other queries or to query the content. Besides sharing operator
states, this approach also provides the advantage of re-using
persistence and recovery mechanisms.

Transactional semantics. Inserts, deletes, or updates on
states/tables need to run in a transactional context to guarantee
atomicity for writes to a table and isolation for reads. The only
way to modify a table in our model is provided by using the
TO_TABLE operator which has to guarantee atomicity based on
the transaction boundaries. Because a single stream query might
contain multiple operators maintaining a persistent state, consis-
tency among multiple states is a further requirement. This means
that all states updated within the same stream query should be
updated atomically with each commit, i. e., another query reading
these states should see updates from the same (most recent) com-
mitted transaction. For reads of the FROM operator, we have to
consider isolation properties. This also applies if FROM provides
access to a data stream: here different isolation levels should
provide different levels of visibility. For reads in TO_STREAM, we
have to consider the trigger policy in addition to the isolation
property. Trigger policy means the condition when a stream
element is produced (TO_STREAM) or modifications in form of
one or more transactions are generated into a back-to-the-table-
directed stream. Here, possible policies are to consider each tuple
modification or to rely on transaction commits.

4 TRANSACTIONAL STATE MANAGEMENT

From the transactional semantics described in Section 3, the fol-
lowing requirements can be derived that correspond to the ACID
principle applied to the transactional stream processing model.
First, there is atomicity, which occurs in several aspects. As men-
tioned before, the scope of a transaction that should be executed
atomically must be marked via certain transaction boundaries.
In addition, the individual operations must also be performed
atomically in order to ensure both fault tolerance and consistency
in case of concurrent access. This leads directly to the next two
requirements: persistence and isolation. The latter property must
ensure that both continuous and ad-hoc queries do not influence
each other in terms of correctness and consistency, Furthermore,
consistency must be ensured even if a query accesses multiple
states, also in the event of transaction aborts. The persistence
requirement means that the results of successfully committed
transactions are still available after a system restart or crash. This
goes hand in hand with recoverability, which must ensure that



the states are brought back or always stay in a consistent form.
Taking these requirements into consideration, we have realized
a snapshot isolation approach comprising three components:

o multi-versioned data structures for queryable states,

e atransaction protocol to access these states, and

e aprotocol guaranteeing consistency among multiple states.
These components are prototypically implemented as part of
our data stream processing framework PipeFabric!. We opted
for an MVCC approach as it has proven to be the most scalable
and widely used concurrency control protocol in the literature
for DBMSs [4, 16, 20]. We expect it to behave similarly in a
transactional stream processing environment. However, this still
has to be revealed, which we will pursue in the following sections.

4.1 Data Structures

As transactional state representation, we have designed a table
wrapper as shown in Figure 3. For the base table, any existing
backend structure with a key-value mapping can be used. There-
fore, every state type can use a suitable underlying structure
making our design extremely versatile. Here, each key is mapped
to an MVCC object. An entry in this object corresponds to the
typical structure for MVCC [17, 20] ( = < [cts, dts], value >). The
commit and deletion timestamp (CTS/DTS) indicate the lifetime
of the value version. With the help of a bit vector (UsedSlots)
the available free version slots are managed.

Transactional Table

Uncommi Write Set

Dirty Arra;
L]

MVCC Object

UsedSlots

\ Headers Values
\ | [cTS,[DTS, | [ Value, |
: ‘ ‘ f

" " Referenceto
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Active i
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\ \
v ) —
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Figure 3: Transaction components.
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Before new versions become visible to readers the changes
are transiently stored as Uncommitted Write Set. This enables
simple and fast aborts and also prevents the mixing of committed
and uncommitted versions. Furthermore, the transactional table
has a reference to the global context which contains all necessary
runtime information. It consists of metadata about the states,
topologies, and active transactions. For the states it contains
general information such as their ID and physical location (e. g.,
file system path). In PipeFabric a query is written by defining
a so-called Topology. It can be seen as graph where each node
is an operator and the edges represent their subscribed streams.
Each state is part of at least one topology for which we track the
states that must be written together atomically. This is neces-
sary for the correct application of the consistency protocol (see
Section 4.3) for which the last committed transaction (LastCTS)
per group is recorded. For recovery purposes, this information
needs to be persistent. At the beginning of each transaction, it is
assigned a unique timestamp (TxnID). All timestamps are logical
and generated by a global atomic counter. For currently running
transactions, we save a list of accessed states containing their ID

!pipeFabric: https://github.com/dbis-ilm/pipefabric

652

and status (Active, Abort, or Commit) as well as the global com-
mit timestamp at the time of reading for each topology. Again,
we use a bit vector? to atomically manage the available slots. For
garbage collection, we clean up old versions on demand (using
OldestActiveVersion),i.e., if a new version has to be created
and no space is available in the version array. The state context of
the transaction management is completely latch-free and solely
uses atomic instructions.

4.2 Concurrency Protocol

Before considering global consistency, we look at the basic op-
erations required, namely read, write, commit, and abort. For a
better separation of the protocols, we first assume that only a sin-
gle state needs to be accessed consistently at a time. We further
assume a beginning punctuation to signal the start of a trans-
action that assigns a timestamp and registers it in the context.
To synchronize the actual access of MVCC blocks a lightweight
locking strategy with read-write locks (latches) can be used.

The read operation starts by checking whether the accessing
transaction has already written a new value (Uncommitted Write
Set) and returns it. Otherwise, the latest visible version will
be looked up using the commit and deletion timestamps. To
achieve snapshot isolation, the first read version timestamp of this
transaction must be transiently stored and used for subsequent
reads (readCTS). The found value is finally returned to the caller.

When a transaction wants to write a new value, it is merely
appended to its write set (Dirty Array). In case of a single
writer, no exclusive locks are required and writes never block. For
multiple writers, it could be checked if write sets overlap and then
prematurely abort/restart the later transaction. Alternatively, this
could be done only at commit time to prevent slower writes.

As all uncommitted changes are stored transiently together, it
is enough for the abort operation to simply clear the correspond-
ing write set and release the memory. The commit operation, on
the other hand, is a bit more complex since all changes must be
applied atomically and isolated from other readers. For each mod-
ification the MVCC object is loaded, the position of the new value
is determined, and the position of the current value is looked
up. The changes are then applied in memory. If no free insert
position could be found, the garbage collection is performed at
this point. Subsequently, the changes are populated atomically
and isolated into the base table. As a final step, the global commit
timestamp of the table is changed to the committing transac-
tion’s ID. By atomically setting this timestamp, the protocol can
guarantee that the changes of a transaction are either visible
completely or not at all. In the case of multiple writers, additional
write locks are introduced and the order of the commits must be
checked. If the current version is greater than the timestamp of
the transaction, it must abort (First-Committer-Wins rule).

The way we designed our operations eliminates the need for
undo operations within the actual table. In addition, read oper-
ations are generally not blocked by write operations and vice
versa. Only during the commit time, a short synchronization is
required. Therefore, we expect the performance to remain stable
even for high contention situations.

4.3 Consistency Protocol

If now a continuous query needs to update multiple states, they
must become visible together to maintain consistency. Assume a
simplified case where a data stream query writes two states and

%In fact, it is a 64-bit integer, which is updated by CAS operations.



a second (ad-hoc) query reads from both states. We coordinate
the operators with the help of the state context (see Figure 3).
Whenever a commit arrives the corresponding status flag for this
transaction and state is set to Commit. The modifications are not
persisted until all states registered for this transaction are ready
for commit. The operator that sets the last status flag to Commit
becomes the coordinator and is responsible for the global commit.
In addition, a transaction must be aborted globally as soon as
Abort has been flagged for at least one state. In this respect, this
is a modified version of the 2-Phase-Commit protocol [11] relying
on proven concepts which adds almost no overhead in our case.

Readers can see the last completed transaction using LastCTS
for each topology which is set at the end of a commit (instead
of the transaction ID as described before). They must also check
in the context which states are written together. For these, the
version must be the same, otherwise, a commit has been executed
in the meantime. Therefore, the read version is noted within the
context (ReadCTS) and is only set at the first read per topology.
Thus, every operation reads from the same snapshot and inter-
leaved commits do not pose a problem. If there is an overlap when
reading multiple topologies with different versions (LastCTS),
the older version must be read to guarantee consistency.

5 EVALUATION

In this section, we present a micro benchmark to substantiate the
suitability and scalability of our approach. For this, we evaluate
our MVCC protocol against a simple strict two-phase locking
(S2PL) [6] and a backward-oriented optimistic concurrency con-
trol (BOCC) [8] protocol. We have made every effort to implement
optimized versions of each protocol. All concurrency control
protocols use fundamentally the same consistency protocol for
multiple states as described in Section 4.3.

5.1 Setup and Workloads

The experiments were run on a 2-socket Intel Xeon E5-2630 each
6 cores a 2 threads, 128 GB DDR3, Linux kernel 4.15, and GCC
7.3. As a base table, we use a persistent key-value store, namely
RocksDB?. It has a log-structured merge-tree (LSM) design and
provides many configuration options for a wide range of require-
ments. We kept the default configuration and only set the sync
option to true to guarantee failure atomicity. As a benchmark,
we use a scenario having one stream continuously writing to
two states and multiple ad-hoc queries reading from these states.
Both are initialized with a table size of one million key-value
pairs (4 Byte key, 20 Byte value). During the experiments, we
vary the number of parallel ad-hoc queries and the contention
rate using a Zipfian distribution (6 = 2.9 = 82% the same key) [7].

5.2 Performance Study

In the following, we compare the performance of all concurrency
control protocols for transactions of medium length (10 opera-
tions each). An excerpt of our measurements is shown in Figure 4.
Due to the synchronous writing, the readers (mostly only access-
ing memory) contribute almost exclusively to the total through-
put. While the other two protocols are dropping, the MVCC
protocol provides consistently a good performance. Interestingly,
the BOCC protocol is slightly faster (~5%) than MVCC with little
contention and many concurrent ad-hoc queries. However, this
is logical as it is designed for scenarios with few conflicts. If the
number of threads and the contention increases, it brings the

3RocksDB (version 5.15.10): https://github.com/facebook/rocksdb
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Figure 4: Contention and scalability check with persistent
synchronous writes and medium-sized transactions.

S2PL and BOCC to their knees relatively quickly. It is noticeable
that at least for MVCC caching effects are visible with a higher
contention. Overall, it shows that our MVCC approach combined
with the consistency protocol is highly scalable and resilient,
making it well suited for transactional state management.

6 CONCLUSION

Transactional stream processing systems itself offer a wide range
of research opportunities. In this paper, we presented a data-
centric transaction model and investigated concurrency and con-
sistency aspects within this model. We have found that our snap-
shot isolation approach meets all our initial requirements. We
designed a versatile state representation which is queryable by
both continuous and ad-hoc queries. Even under high parallelism
and contention, the ACID properties could always be maintained
with great performance even when involving multiple states.
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