Demonstration

O

proceedings

devUDF: Increasing UDF development efficiency through IDE
Integration. It works like a PyCharm!

Mark Raasveldt Pedro Holanda Stefan Manegold
CWI CWI CWI
Amsterdam Amsterdam Amsterdam

m.raasveldt@cwi.nl holanda@cwi.nl manegold@cwi.nl
ABSTRACT Name Market Share Type
User-defined functions (UDFs) facilitate the execution of analyt- . Eclipse . 25.2% IDE
. Visual Studio 19.5% IDE
ics pipelines inside the database. They provide many advantages ; .

", . Android Studio 9.5% IDE
over traditional methods, such as close-to-data execution and Vi Text Edi
automatic parallelization. However, the standard workflow for XCIZ Zz% exiDEltor
developing and debugging UDFs does not allow developers to use ° e. 2%

.) . IntelliJ 4.8% IDE
their regular toolchains and Integrated Development Environ- NetB 40 IDE
ments (IDEs). As a result, writing functional UDFs is challenging. Xe ea_ns 3.8% IDE
In this demo, we present the devUDF, a plugin to the PyCharm Kama rdln 3’4% IDE
IDE that allows developers to develop and debug their MonetD- s blc?mo ? A% Text Bdi
B/Python UDFs directly from within the IDE. . ublime .ext 3.3% ext ¥t0r

Visual Studio Code 3.3% Text Editor
PyCharm 2.3% IDE

1 INTRODUCTION

To perform data analysis, data scientists frequently use script-
ing languages, such as R and Python. These languages have a
huge ecosystem of existing machine-learning and classification
libraries (e.g., TensorFlow [1] or Sci-Kit Learn [6]). Using these
languages in conjunction with a relational database management
system (RDBMS) has many advantages, as the RDBMS can offer
robust storage of data and handle common data wrangling op-
erations. The traditional method of combining a RDBMS with
these scripting languages is to connect to a RDBMS using a client
protocol. The data is then transferred from the database to the
analytical tool. However, this is not efficient when a large amount
of data needs to be retrieved [8].

This issue can be solved by in-database analytics. By perform-
ing the analytics inside the database, the data transfer overhead
is mitigated [7]. The primary way of performing in-database
analytics is through the use of UDFs. To facilitate this, most
RDBMS vendors support UDFs in at least one scripting language
frequently used for analysis [3].

The development workflow for UDFs differs depending on the
DBMS that is used. Certain databases provide their own custom
tools for developing UDFs, such as pgAdmin [9] for Postgres
and ODS [4] for DB2 and Oracle. However, these tools have a
number of limitations. They are not database agnostic, only work
for developing UDFs written in PL/SQL and require developers
to learn how to use complex tools designed for DBAs.

The generic workflow for developing a UDF is to write a func-
tion using a simplistic text editor. The function can then be cre-
ated inside the RDBMS through a SQL command, and used by
calling it within a SQL query. If there are bugs or problems within
the UDF, the function has to be recreated and the SQL query has
to be rerun. This process has to be repeated until the problem is
fixed.

This workflow is problematic when developing complex UDFs,
as advanced IDE features and modern debugging techniques

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

558

Table 1: Most Popular Development Environments.

cannot be used. Using these IDE features is not easily doable
because the developer has to manually perform code transforma-
tions to convert the Python code to a SQL command that creates
the UDF. As seen in Table 1 [2], IDEs are heavily preferred for
development over simplistic text editors due to their develop-
ment features. Therefore, we argue that offering support for the
usage of these features in the development workflow of UDFs
will make developing UDFs more attractive, faster and easier for
many developers.

IDEs are also attractive because they facilitate the usage of
sophisticated interactive debugging techniques, such as stepping
through the code line by line and pausing code execution. How-
ever, these techniques cannot be used in conjunction with UDFs
because the RDBMS must be in control of the code flow while
the UDF is being executed. Instead, developers have to resort to
inefficient debugging strategies (e.g., print debugging) to make
their code work [3].

Another issue with the standard UDF workflow is that UDFs
are stored within the database server. As a result, version con-
trol systems (VCSs) such as Git [5] cannot be easily integrated
to keep track of changes to UDFs. Without a VCS, cooperative
development is challenging and the development history is not
stored.

In this demo we showcase devUDF, a plugin for the popular
IDE PyCharm that facilitates developing and debugging Mon-
etDB/Python UDFs [7] directly from within the IDE. Using our
plugin, advanced debugging features can be used while refining
and refactoring UDFs.

2 THE DEVUDF PLUGIN

The devUDF plugin is developed for the PyCharm IDE that fa-
cilitates the usage of advanced IDE features for development
of MonetDB/Python UDFs. It allows developers to create, mod-
ify and test UDFs without leaving their IDE environment. All

10.5441/002/edbt .2019.55

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.55

File Edit Refactor

PyCharm View Navigate Code

UDFDevelopment

B —
> UDFDevelopmen
5 Il External Libraries

~[PycharmProjec

Run

Tools

VCS Window | UDF Development Help

Import UDFs
Export UDFs
Settings

Figure 1: PyCharm Main Menu.

features of the IDE can be used to develop UDFs, including the
sophisticated interactive debugger and VCS support.

[JoN] Settings

Database Connection

Host: localhost

Port: 50000

Database: demo

User: monetdb

Password: ssessse

Data Transfer
Compressed
Encrypted

sample 10000000

SQL Query

SELECT id, mean_deviation(value)
, variance(value)

FROM data

WHERE value > 1900

Figure 2: Settings.

2.1 Usage

The devUDF plugin can be accessed through the main menu of
the IDE (See Figure 1). In this menu, a submenu labeled "UDF
Development" contains the three main aspects of the plugin.

Initially, devUDF must be configured so it can connect to an
existing database server. This can be done through the settings
window shown in Figure 2. The parameters required are the usual
database client connection parameters (i.e., host, port, database,
user and password).

After the devUDF plugin has been configured to connect to
a running database server, the development process begins by
importing the existing UDFs within the server into the devel-
opment environment. This is done through the "Import UDFs"
window, shown in Figure 3(a). The developer has the option to
select the functions that he wishes to import, or he can choose
to import all functions stored within the database server.

After the UDFs are imported, the code of the UDFs is exported
from the database and imported into the IDE as a set of files in the
current project. The developer can then modify the code of the
UDFs in these files, use version control to keep track of changes
to the UDFs and export the UDFs back to the database server for
execution through the "Export UDFs" window (see Figure 3(b)).

559

[] (0] Import [] @ Export

mean
mean_deviation

s quare_root
standard_deviation
variance

mean
mean_deviation
square_root
standard_deviation
variance

Import All Import Export All Export

(a) Import (b) Export

Figure 3: Importing and Exporting UDFs from the Data-
base.

The developer can also run any of the imported UDFs with the
IDEs interactive debugger by running the project as they would
run a normal PyCharm project (using the "Debug" command).
Since a UDF is never executed in isolation, but always within
the context of a SQL query, the user must provide a SQL query
which executes the to-be-debugged UDF. This SQL query must
be specified in the Settings menu (see Figure 2).

Running the UDF in the interactive debugger will execute the
function locally on the developers’ machine instead of remotely
inside the database server. As the UDF requires data from the
database (as its input parameters), the data must be transferred
from the database server to the developers machine. For this data
transfer, the developer can configure another set of options. As
the data can be large, we offer a method of compressing the data
during the transfer, leading to faster transfer times. In addition,
the developer can choose to execute the UDF using a uniform
random sample of the input data instead of the full set of input
data. This will alleviate the data transfer overhead.

Since the data contained inside the database server might be
sensitive, and it must be exported for debugging purposes, we
also offer an optional encryption feature that can be used to safely
transfer the sensitive data.

2.2 Implementation

The devUDF plugin works by connecting to the database using
a JDBC connection. It then extracts the source code of the UDF
together with its input parameters from the database by querying
the databases’ meta tables. An example of how MonetDB stores
the source code of a Python function is shown in Listing 1. In
order to be able to execute the UDF locally a set of code trans-
formations has to be applied to this code, as the database only
contains the function body. We need to create the header of the
function using the function name and its parameters. To then
run the created function, we need to obtain the input data from

the database. In the generated code, we load the input data from
a binary blob using the pickle library and pass it as a parameter
to the function. The final transformed code is shown in Listing 2.
When the user wants to export the UDF back to the database,
these transformations are reversed and only the function body is
committed.

When the user wants to debug the UDF locally using the
interactive debugger, the input data of the function has to be
extracted from the database. To obtain the input data, we take the
user-submitted SQL query containing the call to the UDF, and we
replace the call to the UDF with a predefined extract function that
transfers the input data back to the client instead of executing the
UDF inside the server. We then run the transformed SQL query
inside the database server to obtain the input data, store it on the
developers machine and run the code of the transformed UDF.

The extract function used changes depending on the data trans-
fer options selected by the user. If encryption is requested, the
data is encrypted by the extract function before being transferred
using the password of the database user as a key. The client then
reverses the encryption to obtain the actual input data. The com-
pression option works in a similar fashion. If the sample option
is enabled, a uniform random sample of a size specified by the
user is taken before extracting the data from the database server.

| train_rnforest |
: : import pickle
: from sklearn.ensemble

import RandomForestClassifier :

: clf = RandomForestClassifier(n)

: clf.fit(data, classes)

: return 'clf’: pickle.dumps(clf),
: 'estimators’':n

Listing 1: MonetDB UDF Example.

2.3 Nested UDFs

Loopback queries inside UDFs are supported by MonetDB/Python.

They allow users to query the database directly from within the
UDF. The results of the query are converted to the host language
of the UDFs. In MonetDB/Python UDFs, loopback queries can be
can issued through the _conn object that is passed to every UDF.
They are useful because they can bypass cardinality restrictions
of the relational querying model.

The loopback queries can also contain UDFs themselves. An
example of a nested UDF is shown in Listing 3. This UDF calls the
function depicted in Listing 2 with a set of different parameters
in order to find the best classifier and its parameters. In order
to provide support for extracting and debugging these nested
UDFs, we must execute the same transformation steps on the
nested UDFs as we did for the main UDF being executed. With an
additional transformation rule on the _conn object to the correct
function call. After being transformed, we can execute the nested
UDFs locally by transferring their input data in conjunction with
the main UDF data, Finally they can be executed from within the
IDE.

560

import pickle

def train_rnforest(data, classes, n_estimators):
import pickle
from sklearn.ensemble
import RandomForestClassifier
clf = RandomForestClassifier(n_estimators)
clf.fit(data, classes)
dict = {'classifier': pickle.dumps(clf),
'estimators':n_estimators }
return dict;

input_parameters =
pickle.load(open('./input.bin','rb"))

train_rnforest(input_parameters['data'],
input_parameters['classes'],
input_parameters['n_estimators'])

Listing 2: Exported UDF Code Example.

CREATE FUNCTION find_best_classifier(esttest INT)

RETURNS DOUBLE LANGUAGE PYTHON

import pickle

(tdata, tlabels) = _conn.execute("""SELECT data,
labels FROM testingset""");

best_classifier = None
best_classifier_answers = -1
best_estimator = -1
for estimator in esttest:
res = _conn.execute
(e
SELECT *

FROM train_rnforest(
(SELECT data, labels
FROM trainingset), %d);
"% estimator)
classifier = pickle.loads(res['clf'])
predictions = classifier.predict(tdata)
correct_pred = predictions tlabels
correct_ans = numpy.sum(correct_predictions)
if correct_ans > best_classifier_answers:
best_classifier = classifier
best_classifier_answers = correct_ans
best_estimator = estimator
return I‘clf': best_classifier,
'n_estimators': best_estimator!
;

Listing 3: Nested UDF Example.

2.4 Extensions

Extending to Other Databases. Our solution is implemented
for MonetDB. However, our plugin can be easily extended to
work with other RDBMSes, as the same implementation strategy
can be used. However, the processing model of the respective
database needs to be taken into consideration. MonetDB uses
the operator-at-a-time processing model, which means the UDFs

are only called once with the entire columns as input. Row-store
databases (e.g., Postgres or MySQL) use the tuple-at-a-time pro-
cessing model, under which the UDFs are called many times with
only individual rows as input. As this changes the way UDFs are
called, the execution of the UDF must be adapted to these dif-
fering processing models. The tuple-at-a-time execution method
can be simulated by issuing a loop over the input tuples.
Extending to Other UDF Languages. Our solution is im-
plemented for Python/PyCharm. However the plugin is fully
developed in Java and compatible with all the other JetBrains
IDEs. In order to extend our plugin for other UDF languages,
the code transformations for the new language must be added
into the plugin. Additional care must be taken when dealing
with compiled languages. Our model assumes that the RDBMS
stores the source code of the UDF. If the database stores only a
compiled blob of the UDF, the code transformations cannot be
applied and an alternate solution must be used. In addition, when
dealing with compiled languages some additional work must be
performed on compiling and linking the code prior to execution.

2.5 Demo Outline

In the general outline for our interactive demo, we will introduce
the typical setup for UDF Development. The general presentation
for all the scenarios is as follows:

(1) We introduce the typical setup for UDF Development: De-
velopers write code in their text editor of choice, insert the
UDF into the database through a SQL command, repeating
this process if the UDF has any bugs.

(2) We show common pitfalls in developing a UDF. Foremost,
we focus on issues related to debugging.

(3) We show how bugs can be located using simplistic debug-
ging strategies like print debugging.

(4) Finally, we repeat the same process but using devUDF
to facilitate the development workflow. Showcasing how
easy, fast and secure it is to use in the UDF development
workflow.

In our demonstration we will ingest several CSV files, located
in one directory, with one column of integers, our final goal is to
create a UDF that calculates the mean deviation of said column,
as a reference we compare the results with a correct version of
the function. As common pitfalls, we will showcase the following
scenarios:

Scenario A. In this scenario we present a UDF that calculates
the median of a column with a bug, depicted in Listing 4. In
line 9, the regular difference is calculated instead of the absolute
difference which produces a semantic error, that is syntactically
correct but logically incorrect.

Scenario B. Now, we use a correct version of the mean_deviation
function. However, we introduce a bug in our data loader. Cre-
ating a data dependent error depicted in listing 5. In line 5 we
introduce the bug that skips one of the CSV files in a given direc-
tory because it considers that range is right side inclusive.

3 SUMMARY

When it comes to assessing the potential impact of devUDF,
we point out two current trends: First, the use of UDFs to per-
form In-Database Analytics is gaining popularity with support
of many languages in major DBMSs. Especially in data science
environments when the data is already stored inside a DBMS.
Second, IDEs like Eclipse, Intelli] and PyCharm have been gain-
ing popularity over more simplistic text editors. Looking at both

561

CREATE FUNCTION mean_deviation(column INTEGER)
RETURNS DOUBLE LANGUAGE PYTHON !
mean = 0
for i in range (@, len(column)):
mean += column[i]
mean = mean / len(column)
distance = 0
for i in range (0, len(column)):
distance += column[i] - mean
deviation = distance/len(column)
return deviation;

Listing 4: Wrong mean deviation.

CREATE FUNCTION loadNumbers(path STRING)
RETURNS TABLE(i INTEGER)
LANGUAGE PYTHON I
files = os.listdir(path)
result = []
for i in range (0,len(files)-1):
file = open(files[i],"r")
for line in file:
result.append(int(line))
return result

s

Listing 5: Wrong data loader.

trends, we see a growing market for tools like devUDF, especially
considering the void it fills in UDF development workflow.

4 ACKNOWLEDGMENTS

This work was funded by the Netherlands Organisation for Sci-
entific Research (NWO), projects “Data mining on high volume
simulation output” (Holanda) and “Process mining for multi-
objective online control” (Raasveldt).

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

Pierre Carbonnelle. 2018. Top IDE index. https://pypl.github.io/IDE.html
Pedro Holanda, Mark Raasveldt, and Martin Kersten. 2017. Don’t Hold My
UDFs Hostage - Exporting UDFs For Debugging Purposes. In SSBD, Brazil.
IBM. 2018. Optim Development Studio. https://www.ibm.com/support/
knowledgecenter/en/SSZ6WM_3.0.0/com.ibm.dbapp.doc/cloud-tools/cods_
overview.html

Jon Loeliger and Matthew McCullough. 2012. Version Control with Git: Powerful
tools and techniques for collaborative software development. " O’Reilly Media,
Inc!.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research 12, Oct (2011), 2825-2830.

Mark Raasveldt and Hannes Miihleisen. 2016. Vectorized UDFs in Column-
Stores. In SSDBM.

Mark Raasveldt and Hannes Mithleisen. 2017. Don’t Hold My Data Hostage-A
Case For Client Protocol Redesign. Proceedings of the VLDB Endowment 10, 10
(2017), 1022-1033.

The pgAdmin Development Team. 2018. pgAdmin 4. https://www.pgadmin.
org/docs/pgadmin4/dev/1

(6

=

(71
(8]

[9

-

	devUDF: Increasing UDF development efficiency through IDE Integration. It works like a PyCharm!Mark Raasveldt, Pedro Holanda, Stefan Manegold

