
Repairing of Record Linkage: Turning Errors into Insight∗

Quyen Bui-Nguyen, Qing Wang, Jingyu Shao, Dinusha Vatsalan

Australian National University, Canberra, Australia

quyen.m.bui.nguyen@gmail.com,{qing.wang,jingyu.shao,dinusha.vatsalan}@anu.edu.au

ABSTRACT
Linking records from different data sources, referred to as record

linkage, is a longstanding but not yet satisfactorily resolved ques-

tion in many fields of science. For practitioners, it is difficult

to ensure the quality of linkage at the time of applying linkage

techniques in real world applications. Instead, linkage errors are

often detected later on, mostly by users of the applications. This

not only requires us to repair errors, but also provides us with

opportunities to observe the linkage quality and uncover why

such errors occur. In viewing that record linkage is a complex and

evolving process, we study how to acquire insights from linkage

errors for achieving high-quality linkage. We propose a generic

repairing framework which allows us to start with imperfect link-

age models, and dynamically repair linkage models and errors

for improved linkage quality. We have evaluated our repairing

framework over three real-world datasets and the experimental

results show that the performance of the proposed tree-structured

classifier SVM-tree outperforms the baseline methods.

1 INTRODUCTION
Determining which records from one or more datasets corre-

spond to the same real-world entities, referred to as record link-
age, is a fundamental problem arising in many fields of computer

science, e-commerce, health and social sciences [4]. Current re-

search on record linkage mainly focuses on developing accurate

and efficient linkage techniques, which are constrained by a num-

ber of factors (e.g., concerns about quality of data, ambiguity of

domain knowledge and unavailability of training labels) and fails

to capture the full variety of record linkage [8, 11]. Therefore,

it is generally difficult to guarantee linkage quality at the time

when record linkage techniques are applied.

One question that often arises is how to handle linkage er-

rors which cannot be detected at the time of applying linkage

techniques, but are reported later on, particularly by users of the

record linkage based applications. Since data may be enriched

with additional information over time, we can find linkage errors

that are hidden in the linkage process. Essentially, record linkage

is not a static and one-off task, but rather a complex, continuous

and evolving process. Based on the insight acquired from linkage

errors we may build a repairing framework to improve linkage

quality through repairing errors.

Nevertheless, building such a repairing framework is chal-

lenging. Can we generalise errors into insight and leverage such

insight into improving linkage models? Not all errors are equally

useful for finding insight. Some errors may be outliers and gen-

eralising such errors may even deteriorate the performance of

linkage models. Thus, we need a means for assessing the gener-

icity of linkage errors - to what extent a linkage error can act as

∗
Produces the permission block, and copyright information

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

??

?
?

?

?
?

?

?

?

?

?

?

?

?

?

?

?
?

?
?

?

?
?

?

?

?

?

?

?

?

??

?

?

_ ?
?

?

?

?

?

?

?

?

_

?
?

?

?
?

?

?

?

?

?

+

_

_

+

_

?

? ?

Error Analysor

Normality
check

? ? ?

Tree-structured Classifier Weight Vector Space
 (before classification)

Weight Vector Space
 (after classification)

Errors to be repaired

Clusters

User Datasets

Figure 1: Proposed repairing framework, where each cir-
cled questionmark represents an unlabeled weight vector,
and each weight vector labeled as matches is shown with
a blue ⊕, and non-matches with a yellow ⊖.

being a representative example of similar linkage errors. In this

paper, we propose a dynamic repairing framework, which aims to

turn errors into insight for improved linkage models and results.

The central idea is to leverage detected errors to derive simi-

lar and relevant errors for maximally repairing an “imperfect"

linkage model. Figure 1 presents a high-level overview of our

repairing framework which incorporates a tree-structured classi-

fier and an error analyser for supporting an iterative repairing

process. More specifically, linkage errors such as false matches or

non-matches may be detected by a user or governed by integrity

rules and sent to an error analyser. The error analyser uses an

error normality measure to determine whether an error can be

generalised for improving the linkage model. Then qualified link-

age errors are sent to the tree-structured classifier, and through

refining the tree structure of the classifier, the linkage quality

can be improved.

Our contributions are as follows: (1) We develop a generic

repairing framework which allows us to start with imperfect

linkage models and actively repair linkage models and errors for

improved linkage quality. (2) We design a novel measure to assess

the genericity of an linkage error, which indicates the probability

of generalising errors into insight. (3) We have experimentally

validated the effectiveness of the proposed repairing framework

using several real-world datasets.

2 RELATEDWORK
Record Linkage (RL) has long been central to the study of data

integration and data cleaning [2, 5, 13]. Previous research has

studied various aspects of the RL process such as: blocking, simi-

larity comparison, classification, evaluation, active learning, and

training data selection [6, 7, 9, 10, 12]. Nonetheless, these works

primarily focused on preventing rather than repairing errors in

linkage results.

In this paper, instead of only repairing detected errors, we

also study the problem of repairing linkage models through de-

tected linkage errors, i.e., linkage errors are leveraged to improve

the performance of linkage models. It is worthy to note that,

Short Paper

Series ISSN: 2367-2005 638 10.5441/002/edbt.2019.75

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.75

different from database repair [1, 3], we do not stipulate a mini-

mal change requirement on our repairs. Existing approaches of

database repair mostly deal with data errors either by obtaining

consistent answers to queries [1] or by developing automated

methods to find a repair that satisfies required constraints and

also “minimally” differs from the original database [3]. These ap-

proaches are often computationally expensive and not applicable

to repairing linkage models in real-world applications.

3 PROBLEM STATEMENT
Let R be a finite, non-empty set of records from one or more data

sets. We assume that a set F = { f1, . . . , fn } of features is selected
for performing record linkage tasks and each record r ∈ R has a

number of feature values (v1, . . . ,vn) over F . Accordingly, each
pair of records (ri , r j) over R is associated with a n-dimensional

weight vector xij = (x1, . . . ,xn) ∈ [0, 1]n where each xk repre-

sents the similarity between the feature values of fk in ri and r j .
For example, a pair of records (r1, r2) may have three features

{fname, sname, age} with r1.fname = Rob, r1.sname = Smith,
r1.age = 30, r2.fname = Robert , r2.sname = Smith and r2.age =
31, and correspond to a 3-dimensional weight vector (0.5, 1, 0.5).

LetX consist of the weight vectors to which all pairs of records

in R. Some blocking technique may also be applied for efficiency

[9, 11]. In viewing that weight vectors are a set of data points

in X , a weight vector space (X ,δ) can be defined for X together

with a similarity metric δ : X × X 7→ [0, 1] that satisfies the non-
negativity, identity, symmetry and triangle inequality properties

as defined in [14]. Thus, the higher two data points x1 and x2 are
similar, the larger the value δ (x1, x2) is. A partition of X is a set

{X1, . . . ,Xq } of pairwise disjoint subsets with
⋃

1≤i≤m Xi = X .
We call each (Xi ,δ) (i ∈ [1,q]) a weight vector subspace of (X ,δ).

The label of a weight vector x ∈ X is denoted as y(x) and
y(x) ∈ {1,−1}, where 1 refers to a true match and −1 refers to
a true non-match. In this paper, we consider a linkage model as

a binary classifier c : X → {−1, 1}, which can classify a weight

vector x either as 1 or as -1. Thus, two kinds of errors may occur

in record linkage: (1) false positives (i.e. false matches) and (2)

false negatives (i.e. false non-matches):

• f p(c) = {x ∈ X |c(x) = −1 ∧ y(x) = 1};
• f n(c) = {x ∈ X |c(x) = 1 ∧ y(x) = −1}.

Definition 3.1. (RL repair problem) Let c be a linkage model

and E be a set of detected errors. Then the RL repair problem is to

find a linkage model c∗ such that the following objective function
is minimised:

argmin

c

f p(c∗) + f n(c∗)
f p(c) + f n(c) (1)

The focus of the RL repair problem is on maximally repair-

ing linkage models through detected errors, i.e., gain maximum

insights from errors, rather than repairing only detected errors.

4 REPAIRING FRAMEWORK
We propose a novel framework for solving the RL repair problem.

4.1 Error Analyser
Generally, linkage errors may be caused by various reasons, e.g.,

poor data quality, biased classifiers and insufficient training data.

Although it is desirable to repair all errors, linkage errors are not

equally informative for improving a linkage model. For instance,

repairing a linkage model based on errors that are indeed out-

liers often leads to the overfitting problem. On the other hand,

?

?
?

?

?
?

?
?

?

?

+

+
+

+

+ + +

_ _
_

_
_

_ _

?

?
?

?

?

x6

(a) (b) (c)

x1

x2

x3

x4

x5

xr

Figure 2: A false match, denoted as xr and highlighted as
being red, is detected in a weight vector subspace Xi .

errors that repeatedly occur under certain similar conditions may

suggest a pattern of these errors which is more informative for

repairing a linkage model. To quantify the informativeness of

errors, we thus develop the notion of error normality to measure

the degree errors can be generalised from specific cases to more

structured ones.

Definition 4.1. Let (X ,δ) be a weight vector subspace, x ∈ X ,
and N (x,X) refer to the set of k nearest neighbours of x in (X ,δ).
Then the normality of x in X , denoted as ρ(x), is defined as:

ρ(x) = y(x) ·

∑
x′∈N (x,X)

δ (x, x′) · y(x′)∑
x′∈N (x,X)

δ (x, x′) (2)

The values of normality range from -1 to 1, indicating the

possibility of generalising an error x into improving a linkage

model: (1) ρ(x) = −1 means that all the nearest neighbours in

N (x,X) have the opposite label to x; (2) ρ(x) = 1 means that all

the nearest neighbours in N (x,X) have the same label as x. In
addition to the labels, the distances of x and its nearest neighbours
are also taken into account by the normality. For each neighbour

in N (x,X), the close its distance is to x, the more influence it has

on ρ(x). Intuitively, the normality of an error x is measured by

a weighted majority vote of their nearest neighbours, i.e., the

margin between strength of voting on the same label y(x) and
strength of voting on the opposite label −1 · y(x).

Example 4.2. Suppose that, for the detected error xr in Figure

2, we have N (xr,Xi) = {x1, . . . , x6}, and δ (xr, xi) is 0.9, 0.8, 0.8,
0.8, 0.7 and 0.7 for i = 1, 2, 3, 4, 5, 6, respectively. Then ρ(xr) = 1

in Figure 2.b and ρ(xr) = (0.9+ 0.8+ 0.8+ 0.8+ 0.7− 0.7)/(0.9+
0.8 + 0.8 + 0.8 + 0.7 + 0.7) = 0.7 in Figure 2.c.

4.2 Tree-structured Classifiers
To repair linkage models effectively, the repairing framework

needs to offer great flexibility and expressive power in refining

linkage models. We thus propose to use a tree-based structure for

repairing classifiers. A tree-structured classifier can be formalised

as a tuple (T ,C,α , β), whereT is a binary tree,C is a set of binary

classifiers, α is a labeling function that assigns a classifier ci ∈ C
to each internal vertex vi of T , i.e., α(vi) = ci , and β assigns a

label in {−1, 1} to each edge (vi ,vj) of T , i.e., β(vi ,vj) ∈ {−1, 1}.
Therefore, given a weight vector x ∈ X , a tree-structured clas-

sifier h = (T ,C,α , β) classifies x using the following condition:

h(x) = β(vn−1,vn) if there exists a path ⟨v0,v1, . . . ,vn⟩ in T
starting from the root vertex v0 of T and ending at a leaf vertex

vn such that α(vk) = ck and

∧
k ∈[0,n−1] ck (x) = β(vk ,vk+1).

Example 4.3. Consider two weight vectors x7 and x8 from the

weight vector space depicted in Figure 3.b. The tree-structured

classifier in Figure 3.a has classified this weight vector space into

many smaller weight vector subspaces, each being assigned a

639

??

?

?

Tree-structured Classifier Classified Weight Vector Space

α(v0)=c0

α(v2)=c2 α(v1)=c1

α(v3)=c3 α(v4)=c4

α(v5)=c5

1 -1

1 -1

-1 1

1 -1

-1 1

1 -1

c0

c1

c3

c2

c4

c5

x7

x8

v6 v7

v8 v9

v10 v11

v12

(a) (b)

Figure 3: A schematic layout of a tree-structured classifier
and the corresponding classified weight vector space.

label of either −1 (highlighted by a yellow square) or 1 (high-

lighted by a blue square). We have h(x7) = −1 due to a path

⟨v0,v1,v3,v6⟩with c0(x7) = −1, c1(x7) = 1 and c3(x7) = −1. Sim-

ilarly, we haveh(x8) = 1 because there is a path ⟨v0,v2,v4,v5,v11⟩
with c0(x8) = 1, c2(x8) = 1, c4(x8) = −1, and c5(x8) = 1.

Initially, the binary tree T in a tree-structured classifier only

has one internal vertex as the root, which represents the initial

classifier c0, and two leaf vertices that represent two weight

vector subspaces X1 and X2 of the given weight vector space X
classified by the initial classifier c0 such that ∀x1 ∈ X1(c0(x1) =
1) and x2 ∈ X2(c0(x2) = −1). Then when a linkage error x is

detected, c can be repaired by extending T to T ′ such that one

of the leaf vertices of T (say vt) is replaced by an internal vertex

with two leaf vertices. Accordingly, the weight vector subspace

associated with vt is divided into two smaller weight vector

subspaces (one with the label 1 and the other with the label -1).

This process is iteratively conducted when repairing errors.

As a result, an important property of tree-structured classifiers

is to support bounded repairs, i.e., only weight vectors in a speci-

fied subspace are affected by a repair. This property can reduce

the risk of incorrect repairs and lead to convergence on quality

of a linkage model after a finite number of repairing iterations.

4.3 Repairing Algorithm
Our repairing algorithm is provided in Figure 4. Given a weight

vector space X which is partitioned into {X1, . . . ,Xn } by an

initial classifier c0, the algorithm iteratively leverages errors to

repair a tree-structured classifier until the labelling budget is

used up or no more errors are detected (Line 2).

In this algorithm, Eh refers to detected errors of h, q keeps

record of the number of labels requested from the human ora-

cle, select_error(Eh) randomly selects an error e from Eh , and
find_subspace(X, e) searches for a subspace Xcur of X which

contains e (Lines 3-4). If |Xcur | is greater than Smin (Line 5), then

nn_select(e,Xcur ,k) finds k nearest neighbours of e in Xcur ,
and their labels are requested (Lines 6-7). If the normality ρ(e) of
e is greater than the threshold t (Line 9), fn_select(e,Xcur ,k)
finds k farthest neighbours of e and their labels are requested

(Lines 10-11). If the purity of Xcur is lower than the threshold p
(Line 13), the classifier cq+1 is trained and extends cq by classi-

fying Xcur into two subspaces XM
cur (for matches) and XN

cur (for

non-matches) (Lines 14-16). Then accordingly, the tree-structured

classifier h is repaired by adding cq+1 (Line 17). We consider er-

rors whose normality values are lower than the threshold them

as outliers. The algorithm returns a tree-structured classifier h
with improved linkage quality (Line 23).

Input: initial classifier: c0, normality threshold: t ∈ [−1.1],
human oracle for labelling: oracle(), budget limit: b,
number of nearest neighbours: k , purity threshold p,
minimum size of weight vector subspaces: smin

Output: a tree-structured classifier h

1: X← {X1, . . . ,Xn }, q ← 1, h ← c0
2: while q ≤ b and |Eh | > 0 do:
3: e ← select_error(Eh)
4: Xcur ← find_subspace(X, e)
5: if |Xcur | ≥ smin then:
6: Vnn ← nn_select(e,Xcur ,k)
7: V L

nn ← oracle(Vnn)
8: V L ← V L ∪V L

nn
9: if ρ(e) ≥ t then:
10: Vf n ← fn_select(e,Xcur ,k)
11: V L

f n ← oracle(Vf n)
12: V L ← V L ∪V L

f n
13: if purity(Xcur) < p then
14: cq+1 ← train(cq ,Xcur ,V L)
15: XM

cur ,X
N
cur ← cq+1.classify(Xcur)

16: X← X − {Xcur } ∪ {XM
cur ,X

N
cur }

17: h = repair_classifier(h, cq+1)
18: endif:
19: endif:
20: endif:
21: q ← q + 1
22: endwhile:
23: return h

Figure 4: Repairing Algorithm

5 EXPERIMENTS
We have implemented the repairing framework to experimentally

validate its effectiveness on three real-world datasets.

Baselinemethods.Wehave used support vectormachines (SVM)

with three different kernels: linear, polynomial, and Gaussian

(RBF) and a decision tree as the baseline methods. For our tree-

structured classifier, we used SVMs with linear kernel as binary

classifiers for its internal vertices, called SVM-tree. We also used

the following parameters: smin = 25, p = 0.97, and k = 50.

Sampling methods. We use KNN+FNN to refer to the k near-

est and farthest neighbours sampling method described in the

repairing algorithm in Figure 4. To evaluate its effectiveness,

we compared it with three other sampling methods: (1) KNN,

(2) FNN, and (3) random, in which k nearest, k farthest, and k

random neighbours of an error are sampled, respectively.

Datasets. We have used three datasets: (1) Cora, which con-

tains 1,295 publication records and is publicly available
1
, (2)

DBLP_ACM, which contains 4910 bibliographic records from the

DBLP and ACM websites [8], and (3) NCVR, using two datasets

with 1048576 and 613767 records respectively from the North

Carolina Voter Registration (NCVR) database
2
. We did not apply

any blocking on Cora but used publication year and the 1st char

of title for DBLP_ACM, and last_name and first_name for NCVR.

Performance of classifiers. Figure 5 shows the performance

of SVM-tree in comparison to the baseline methods. SVM-tree

1
Available from: http://secondstring.sourceforge.net

2
Available from: ftp://alt.ncsbe.gov/data/

640

Figure 5: Comparison to the baseline methods, where the sampling method is KNN+FNN and normality threshold is -0.6.

Figure 6: SVM-tree with different normality thresholds, where the sampling method is KNN+FNN.

Figure 7: SVM-tree with different sampling methods, where the normality threshold is -0.6.

generally performs better than the other methods for all datasets.

For Cora, SVM-tree performs increasingly better when more

errors are detected. For DBLP_ACM, it has a significant increase

in performance. For NCVR, it is a clean dataset that produces

high quality results (around 0.988 f-measure) for all methods;

nonetheless, SVM-tree is still marginally better.

Effect of normality. Figure 6 presents the experimental results

for classification using SVM-tree with varying thresholds. The

KNN+FNN sampling method is used in this experiment. A nor-

mality threshold of -0.4 to -1 produces the best performance for

all datasets. The threshold of -0.6 produces consistently stable

good results over all datasets.

Performance of sampling. Figure 7 shows the performance of

SVM-tree using different sampling methods and the normality

threshold is set to -0.6. KNN+FNN generally produces the best and

most stable results among all the sampling methods, particularly

over the datasets Cora and DBLP_ACM. When the budget is

low, the performance of FNN is comparable to KNN+FNN. The

performance of KNN is not stable on Cora. The random sampling

has the worst performance among all the methods.

ACKNOWLEDGEMENT
This work was partially funded by the Australian Research Coun-

cil (ARC) under Discovery Project DP160101934.

REFERENCES
[1] Foto N Afrati and Phokion G Kolaitis. 2009. Repair checking in inconsistent

databases: algorithms and complexity. In ICDT. 31–41.
[2] I. Bhattacharya and L. Getoor. 2007. Collective entity resolution in relational

data. TKDD 1, 1 (2007), 5.

[3] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. 2007. Improving

data quality: Consistency and accuracy. In PVLDB. 315–326.
[4] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007.

Duplicate Record Detection: A Survey. IEEE TKDE 19 (2007), 1–16.

[5] I.P. Fellegi and A.B. Sunter. 1969. A theory for record linkage. J. Amer.
Statistical Assoc. 64, 328 (1969), 1183–1210.

[6] Jeffrey Fisher, Peter Christen, and Qing Wang. 2016. Active learning based

entity resolution using Markov logic. In PAKDD. 338–349.
[7] Jeffrey Fisher, Peter Christen, Qing Wang, and Erhard Rahm. 2015. A

Clustering-Based Framework to Control Block Sizes for Entity Resolution. In

KDD. 279–288.
[8] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity

resolution approaches on real-world match problems. VLDB 3, 1-2 (2010),

484–493.

[9] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. 2016.

Comparative analysis of approximate blocking techniques for entity resolution.

VLDB 9, 9 (2016), 684–695.

[10] Jingyu Shao and Qing Wang. 2018. Active Blocking Scheme Learning for

Entity Resolution. In PAKDD. 350–362.
[11] QingWang, Mingyuan Cui, and Huizhi Liang. 2016. Semantic-Aware Blocking

for Entity Resolution. TKDE 28, 1 (2016), 166–180.

[12] Qing Wang, Dinusha Vatsalan, and Peter Christen. 2015. Efficient Interactive

Training Selection for Large-Scale Entity Resolution. In PAKDD. 562–573.
[13] Steven Euijong Whang and Hector Garcia-Molina. 2010. Entity resolution

with evolving rules. VLDB 3, 1-2 (2010), 1326–1337.

[14] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. 2006.

Similarity search: the metric space approach. Vol. 32. Springer.

641

	Repairing of Record Linkage: Turning Errors into InsightQuyen Bui-Nguyen, Qing Wang, Jingyu Shao, Dinusha Vatsalan

