
Rock – Let the points roam to their clusters themselves
Anna Beer
LMU Munich

Munich, Germany
beer@dbs.ifi.lmu.de

Daniyal Kazempour
LMU Munich

Munich, Germany
kazempour@dbs.ifi.lmu.de

Thomas Seidl
LMU Munich

Munich, Germany
seidl@dbs.ifi.lmu.de

ABSTRACT
In this workwe present Rock, amethodwhere the pointsRoam to
their clusters using k-NN. Rock is a draft for an algorithm which
is capable of detecting non-convex clusters of arbitrary dimension
while delivering representatives for each cluster similar to, e.g.,
Mean Shift or k-Means. Applying Rock, points roam to the mean
of their k-NN while k increments in every step. Like that, rather
outlying points and noise move to their nearest cluster while the
clusters themselves contract first to their skeletons and further
to a representative point each. Our empirical results on synthetic
and real data demonstrate that Rock is able to detect clusters on
datasets where either mode seeking or density-based approaches
do not succeed.

1 INTRODUCTION
Mode seeking clustering algorithms aim for detecting the modes
of a probability density function (pdf) from a finite set of sample
points. This type of clustering algorithm serves the purpose of de-
tecting local maxima of density of a given distribution in the data
set. In contrast density-based methods have the capability of de-
tecting density-connected clusters of arbitrary shape. Rock posi-
tions itself between mode-seeking methods and density-based ap-
proaches. It is capable of detecting clusters of non-convex shapes
and arbitrary densities at the same time. Plus it provides repre-
sentatives for the detected clusters. Such an approach contributes
additional expressiveness to the density-connected clusters. Fur-
ther Rock provides the possibility to observe the directions of the
data points roaming to the representatives. As an example, Figure
1 shows the path every point travels to its cluster representatives
over time when Rock is applied. As Rock is not relying on any
predefined density kernel it is able to detect non-convex clusters,
which is a major advantage regarding other clustering methods.

The remainder of this paper is organized as follows: We pro-
vide a brief overview on the mode seeking method Mean Shift
and other k-NN-based mode seeking algorithms. We then pro-
ceed explaining the Rock algorithm. Following to the elaboration
on the algorithm we evaluate the performance of Rock against
k-Means, Mean Shift and DBSCAN. Here the linking-role of Rock
becomes clear, as our algorithm detects non-convex shaped ar-
eas where e.g., k-Means and Mean Shift fail and yet provides a
representative of each detected cluster similar to the centroids
in k-Means or modes in Mean Shift. We conclude this paper by
providing an overview of the core features of our method and
further elaborating on potential future work.

The main contributions of Rock are as follows:
• It finds non-convex shaped clusters of any density, which
neither density based clustering methods nor mode or
centroid based clustering methods are capable of

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: All points of a dataset with two clusters: overlap-
ping final positions and the trajectories of all points on
the left, initial positions and clustering on the right

• The number of clusters does not have to be given by the
user

• It provides a representative for every cluster

2 RELATEDWORK
The most popular related work is Mean Shift, which has been
initially proposed in [5]. Its core idea is to regard the points in an
area around each point and iteratively shift the center of this area
to the mean of the points lying in the previously regarded area.
The Mean Shift method became popular in the field of clustering
by the work of [2]. The core concept of Mean Shift is to determine
the maxima (referred to as modes) of a given density function.
In contrast to Rock, Mean Shift requires a kernel function K by
which the weights of the nearby points are determined in order
to re-estimate the mean. Further the used kernel requires a size
of the area to be regarded around each point, which is also re-
ferred to as bandwidth. The choice of the bandwidth is not trivial,
additionally there can be the need of an adaptive bandwidth size.

Another algorithm for detecting modes is developed in [3]. In
contrast to theMean Shift approach they rely onk-Nearest Neigh-
bors (k-NN). While Mean Shift relies on a kernel density estimate
(KDE) the k-NN approach relies on a k-NN density estimate. The
algorithm in [3] defines for each input point xi a pointer to the
point within the k-Nearest Neighbors with the highest k-NN
density. The process is repeated until a pointer points to itself,
which represents then the local mode of xi . However, in contrast
to Rock, this method also relies on a density definition, where
the density of a point is defined as inversely proportional to the
distance of the k-th nearest neighbor. In a more recent work, [8]
proposed a k-NN clustering method relying on consensus clus-
tering, in which results of several clustering trials are combined
in order to get a better partition.

Regarding methods which generate a backbone of a cluster, in
a more recent work named ABACUS [1] the authors propose a
method which is specialized in identifying skeletons of clusters
using k-NN. However ABACUS and Rock differ in two major
aspects. First, Rock does not primarily aim for the skeletons of a
cluster but for a representative for each detected cluster (body
to representative). In contrast ABACUS is targeted to find first a

Short Paper

Series ISSN: 2367-2005 630 10.5441/002/edbt.2019.73

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.73

(a) t=1 (b) t=4 (c) t=7 (d) t=14

Figure 2: Actual positions of the points at the given time t. First “skeletons” of the clusters emerge, which then tighten to
divisible clusters.

backbone of a cluster and then expand from the backbone until
a border of a cluster is reached (backbone to body). Secondly,
ABACUS uses a static k for the k-NN approach. In our work
in progress, we provide a method where k changes over each
iteration step.

In this paper we compare Rock with Mean Shift and k-Means
[7]. K-Means is a partitioning clustering algorithmwhere the user
provides the number of clusters k which shall be detected. The
cluster model of k-Means provides as a result the cluster centroids
µ and the assignment of the datapoints to their centroids. Finally
we evaluate the performance of Rock compared to DBSCAN
[4], which is a density based clustering method. We compare to
density based clustering since it is in contrast to other types of
clustering algorithms capable of detecting non-convex shaped
clusters. DBSCAN requires an ε-range and a minimum number
of points (minPts) which shall be located within this ε-range.
Through these two parameters the user can control how dense
the detected clusters have to be.

3 THE ALGORITHM
Rock implements the best of bothworlds, partitioning and density-
based clustering. It is able to detect non-convex clusters and
clusters of highly different densities. Since we use the k-Nearest
Neighbors as main indication for cluster membership the algo-
rithm works for arbitrary numbers of dimensions. Given a query
point p and a number of neighbors k , the k-Nearest Neighbors
at timepoint t (we will explain that later) are defined as a set
kNNt (p,k) ⊆ DB with exactly k objects, such that for all of
these objects {o1,o2, ...,ok } the distance to the query point p is
less or equal to the distance of any other data point o′ to p in our
data base DB:
∀o ∈ kNNt (p,k),∀o

′ ∈ DB \ kNNt (p,k) : dt (p,o) ≤ dt (p,o
′)

t refers to the timepoint at which the data base DB is looked
at, since each point will have a different position at different
timepoints in our algorithm. Similarly we use dt (p,o) to describe
the distance between points p and o for the status of the data
base at timepoint t . For detecting the k-Nearest Neighbors, our
implementation of Rock uses a Balltree [9] as index structure
according to the sklearn reference.

The idea of Rock is, that every point moves gradually to the
representative point ζ of its cluster by “wandering” into the
center of its k-Nearest Neighbors in every step. So Rock does not
need any other information than where the k-NN of each point
are located at time step t , which makes it easily parallelizable.
Equation 1 gives us the position ζ of a pointp at a time t usingk(t)
as the number of regarded neighbors: we get the new position
ζ (p,k, t) of p by calculating the mean position of all objects o ∈

kNNt−1(p,k(t)), i.e. of all k-NN of this point p at the previous
time step.

ζ (p,k, t) =
∑

o∈kNNt−1(p,k (t))

ζ (o,k, t − 1)
k(t)

ζ (p,k, 0) = initialPosition(p)
(1)

We increase k linearly over time and stop if the algorithm
converged or a given maximal time tmax is reached. Of course
we do not only store the actual position at a time of each point p
but also its initial position initialPosition(p). With that we are in
the end able to put all points which have almost the same actual
position into one cluster. This is when the distance is smaller
than ε , which is described in equation 2. Therefore we regard
the 1-NN-distances of all points, which is the distance to the first
nearest neighbor each, and use half of the average 1-NN distances
of all points as ε :

ε =

∑
p∈DB

(∑
o∈kNN (p,1) dist(p,o)

)
2 · |DB |

(2)

We choose this ε since it delivers an intuitively good measure for
how close two points have to be to be "mergeable" in regards to
their initial distribution.
In summary the algorithm looks like follows:

Algorithm 1 Rock(pointset, tmax)
changed= true
t=0
while changed and t < tmax do

k=k(t)
changed=false
for p in pointset do

oldPosition= p.getOldPosition()
newPosition= meanOfKNN(pointset, p, k, t)
p.setActualPosition(newPosition)
if distance(oldPosition, newPosition)<ε then

changed=true
t++

Note that tmax is not mandatory a hyperparameter and can
be set beforehand to the same value for various experiments as
we will show in section 4. If we took a static k , most of the points
would only shrink together with their exact k-Nearest Neighbors.
Thus, we increase k over time, to receive stable clusters. The
minimal value with which we will also start should be k = 3,
since observing less nearest neighbors (including the point itself)

631

would not lead to anything. The highest useful value for k is
n
2 for a dataset of n points since if more neighbors would be
regarded, it would lead to only one big cluster. We want to reach
that highest value at the maximal number of iterations tmax ,
thus we obtain for linear increase:

k(t) =
0.5n − 3
tmax

· t + 3

In order that k actually increases in every step the slope of
k(t) should be at least 1. Therefore tmax should be chosen such
that tmax < 0.5n−3. Choosing tmax significantly too low would
mean to early regard a high number k of nearest neighbors,
which potentially belong to other clusters, and therefore merging
several clusters into one. Vice versa, a significantly too high tmax
could result in clusters splitting up.

Figure 2 shows the positions of all points at expressive points
in time t while clustering the two moons dataset, which is fur-
ther described in section 4.1. Regarding that, we already note
an additional advantage: The skeleton which emerges already
in early steps for each cluster could be used for anytime results
or elimination of outliers, which we plan to examine further in
future work.

3.1 Complexity
Having described our algorithm, we now elaborate on the run-
time complexity of Rock and compare it on a theoretical ba-
sis to k-means and MeanShift. Focusing first on the used index
structure, according to [9] the runtime complexity of a Ball tree
is O(d log(N)) where d denotes the dimensionality and N the
number of data points. The runtime complexity of MeanShift is
O(iN 2) where i denotes the number of iterations. k-Means has
a runtime complexity of O(Nkid) where k refers to the number
of clusters which shall be found. For Rock, using the Balltree
structure, we get a runtime complexity of O(kNd log(N)) where
k denotes here the number of k-NN. Conclusively it can be stated
that our method performs with regards to its time complexity
between the performance of k-means and MeanShift. Since this is
a work in progress, it may be viable to consider query-strategies
which rely on different structures, such as e.g., Locality-Sensitive-
Hashing (LSH) as used in [10].

4 EVALUATION
We tested Rock on several datasets and compared our results to
the ones obtained by DBSCAN, k-Means and Mean Shift, since
Rock positions itself between them: it finds non-convex shaped
clusters as DBSCAN, but as well finds clusters of different densi-
ties with according representatives as k-Means and Mean Shift.
As quality measures we use the Normalized Mutual Information
(NMI) and the Adjusted Rand Index (ARI) in regards to the ground
truth. All experiments were executed with tmax = 15, which is
an empirically determined good value for the normalized data
we use (i.e. removing the mean and scaling to unit variance). For
all comparative methods the best parameters have been deter-
mined by iterating over a parameter range 1 and choosing those
parameters which yield the best NMI resp. the best ARI for each
of the methods. This shows again the simplicity of choosing the
one hyperparameter Rock requires in comparison to the several
parameters of our competitors, as Rock is not too sensitive to
tmax , as we will show in future work due to the lack of space.

1We tested ε with steps of 0.1 in a range of [0.1, 2.0],minPts with steps of 1 in
a range of [2, 10] and the bandwidth with steps of 0.1 in a range of [0.1, 2.0]

4.1 Two Moons
The dataset as shown in Figure 3 is a classical and well known
dataset consisting of two moon-shaped clusters. For Mean Shift
a bandwidth of 0.6 yielded the best NMI and a bandwidth of
1.2 yielded the best ARI. For DBSCAN ε = 0.3 andminPts = 2
yielded an NMI and ARI of 1 and for k-Means we chose k = 2. We
tested the dataset with 250 datapoints and 5% noise, obtaining
the optimal result with Rock as well as with DBSCAN. The non-
density based methods k-Means and Mean Shift assigned a part
of each moon to the false cluster as shown in Figure 3. As that,
k-Means reaches an NMI of 0.36 and an ARI of 0.46. Mean Shift
performed slightly better with an NMI of 0.53 (bandwidth 0.6)
and an ARI of 0.50 (bandwidth 1.2). It may seem unintuitively first

Figure 3: The clustering of two moons as received by k-
Means, Mean Shift and DBSCAN (in this order)

whyRock finds such shaped clusters even though regarding “only”
the k-NN, but it makes sense considering that we slowly increase
k . Figure 2 shows the development of the points’ positions: First,
the noise gets eliminated and the skeleton of the two clusters
emerges. Then the ends of the clusters shrink up more and more
into the middle of the clusters each. When the algorithm finishes
at tmax = 15, there are only the two representatives of the
clusters left as Figure 2d implies already.

4.2 Mouse

Figure 4: Result Rock
returns for the mouse
dataset

NMI ARI
k-Means 0.58 0.53

Mean Shift 0.67 0.66
DBSCAN 0.71 0.68

Rock 0.81 0.86

Table 1: Performances
of the algorithms on the
mouse dataset

To show how Rock deals with colliding clusters, we chose the
mouse dataset. It consists of three round clusters of different den-
sities which blend into each other at two points, where the “ears”
of the mouse touch the “head”. We conducted the experiment
with Mean Shift using a bandwidth of 0.9, with DBSCAN using
an ε-range of 0.2 andminPts = 4, and k-Means with k = 3. While
Rock is able to distinguish the three clusters without a problem,
the other algorithms cannot, as Figures 4.2 and 5 show: DBSCAN
does not find the correct dividing line between head and right
ear, k-Means puts a lot of the points from the head to the ears,
and Mean Shift performs only slightly better than k-Means. The
exact values of the resulting NMI and ARI can be seen in table 1.

4.3 Iris
Iris [6] may be the most famous dataset and one of the most
challenging ones, since two of the three clusters are very difficult

632

Figure 5: Clustering of the mouse dataset as obtained by
the comparative methods k-Means, Mean Shift and DB-
SCAN (in this order).

Figure 6: The NMIs (top) andARIs (bottom) reached by the
comparative methods and Rock, using different combina-
tions of dimensions of the Iris dataset respectively.

to separate for they are overlapping in virtually every dimension.
Nevertheless, even here Rock delivers good results: depending on
which two of the four given dimensions it regards, we receive an
NMI between 0.6 and 0.8 and an ARI between 0.56 and 0.8. These
results are very good in comparison to the other methods, as
Figure 6 shows: regarding the NMI we achieve at least the second
best value, but most of the times the very best, no matter which
two dimensions of the dataset are regarded. Concerning the ARI
we mostly surpass the other algorithms, partially by far, as for
example by using dimensions 1 and 3 (which is also reflected in
the NMI). Since we claimed in Section 3 that Rock works with
higher number of dimensions, we conducted an experiment on
the full four-dimensional Iris dataset. Here our method yields the
best results compared to its competitors, especially with regards
to the computed ARI as can be seen in the rightmost case in
Figure 6. The exact parameters for the comparative methods are
shown in table 2 in the appendix.

5 CONCLUSION
In conclusion we developed an algorithm which is able to au-
tonomously find clusters of various kind. Due to the successive
increase of neighbors being decisive to a point, we are able to find
non-convex shaped clusters. Without this successive increase
Rock would be equivalent to a simple k-Means, but with the
increase we only obtain the advantages of k-Means: being simple

and providing kind of a cluster centroid which gives us evenmore
information about the found clusters than DBSCAN provides.
With the right use of index structures Rock is not only effective
but also efficient. We showed that Rock surpasses good methods
like Mean Shift, DBSCAN and k-Means in regards to non-convex
shaped clusters, colliding clusters of different densities and even
overlapping clusters like in the Iris dataset. Since it regards k-NN
and no other distance measures it works on high dimensional
datasets as well as on two dimensional ones. The rate of increase
of k will be treated in future work, as a logarithmic or hyperbolic
increase could lead to interesting results. Moreover we are also
curious to know the impact of using reverse k-Nearest Neighbors
instead of the k-NN, as well as using the median or mode of the
k-NN instead of the mean. The influence of the parameter tmax
was also not yet analyzed thoroughly. And, last but not least, the
feature of Rock to create skeletons of the clusters before reducing
them further to representatives could be used to detect advanced
structures, eliminate noise, or deliver anytime results.

A APPENDIX

Dimensions Mean Shift DBSCAN k-Means
bandwidth minPts ε k

(0, 1) 0.9 2, 8 0.4, 0.5 3
(0, 2) 0.8, 0.6 2 0.5 3
(0, 3) 0.7, 0.8 2 0.5 3
(1, 2) 1.0 2 0.59 3
(1, 3) 0.8 2 0.7 3
(2, 3) 0.5 2, 7 0.3, 0.2 3

(0, 1, 2, 3) 0.7 3 0.4 3

Table 2: Parameters used for the respective comparative
methods on Iris. Multiple values indicate that the first
value is optimizing the NMI and differed from the second
value, which optimizes the ARI.

ACKNOWLEDGMENTS
This work has been funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A.
The authors of this work take full responsibilities for its content.

REFERENCES
[1] Vineet Chaoji, Geng Li, Hilmi Yildirim, and Mohammed J. Zaki. [n. d.]. ABA-

CUS: Mining Arbitrary Shaped Clusters from Large Datasets based on Backbone
Identification. 295–306.

[2] Yizong Cheng. 1995. Mean shift, mode seeking, and clustering. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 17, 8 (Aug 1995), 790–799.

[3] Robert P. W. Duin, Ana L. N. Fred, Marco Loog, and Elżbieta Pękalska.
2012. Mode Seeking Clustering by KNN and Mean Shift Evaluated. Springer
Berlin Heidelberg, Berlin, Heidelberg, 51–59. https://doi.org/10.1007/
978-3-642-34166-3_6

[4] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A
density-based algorithm for discovering clusters in large spatial databases
with noise.. In Kdd, Vol. 96. 226–231.

[5] K. Fukunaga and L. Hostetler. 1975. The estimation of the gradient of a
density function, with applications in pattern recognition. IEEE Transactions
on Information Theory 21, 1 (January 1975), 32–40.

[6] M. Lichman. 2013. UCI Machine Learning Repository. http://archive.ics.uci.
edu/ml

[7] S. Lloyd. 1982. Least Squares Quantization in PCM. IEEE Trans. Inf. Theor. 28,
2 (1982), 129–137.

[8] Jonas Nordhaug Myhre, Karl Øyvind Mikalsen, Sigurd Løkse, and
Robert Jenssen. 2015. Consensus Clustering Using kNN Mode Seeking.
Springer International Publishing, Cham, 175–186. https://doi.org/10.1007/
978-3-319-19665-7_15

[9] StephenM. Omohundro. 1989. Five Balltree Construction Algorithms. Technical
Report.

[10] Ilan Shimshoni, Bogdan Georgescu, and Peter Meer. 2006. Adaptive Mean Shift
Based Clustering in High Dimensions. Nearest-neighbor methods in learning
and vision: theory and practice (2006), 203–220.

633

	Rock - Let the points roam to their clusters themselvesAnna Beer, Daniyal Kazempour, Thomas Seidl

