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ABSTRACT

Grid-based clustering algorithms are well-known due to their
efficiency in terms of the fast processing time. On the other
hand, when dealing with arbitrary shaped data sets, density-
based methods are most of the time the best options. Accordingly,
a combination of grid and density-based methods, where the
advantages of both approaches are achievable, sounds interesting.
However, most of the algorithms in these categories require a
set of parameters to be specified while usually it is not trivial
to appropriately set them. Thus, we propose an Information-
Theoretic Grid-based Clustering (ITGC) algorithm by regarding
the clustering as a data compression problem. That is, we merge
the neighbour grid cells (clusters) when it pays off in terms of
the compression cost. Our extensive synthetic and real-world
experiments show the advantages of ITGC compared to the well-
known clustering algorithms.

1 INTRODUCTION

Among various clustering approaches some of them attract more
attentions because of their advantages. Partition-based clustering
algorithms are popular due to their simplicity and the relative
efficiency [7], [2]. K-means [7] is a well-know and well-studied
representative for this approach where initially the data is par-
titioned into k non-empty sets and iteratively the data points
are assigned to their nearest cluster. Despite the mentioned ad-
vantages, the clustering algorithms in this group suffer from
some drawbacks. For instance, the number of clusters k should
be specified in the beginning and the results are not deterministic
because of their sensitivity to the initialization. Moreover, they
are not suitable to discover clusters with non-convex shapes. As a
subset of this group, model-based clustering algorithms consider
a specific distribution model to represent the data sets. Among
them, Expectation-Maximization (EM) algorithm interpret the
data as a mixture of Gaussian distributions [5]. On the other
hand, density-based clustering algorithms [6], [3] are appropri-
ately designed to deal with clusters having an arbitrary shape.
Unlike the partition-based algorithms, the algorithms in this ap-
proach are able to deal with noisy data sets. However, in order to
find dense regions we need to specify two parameters represent-
ing the radius and the density of a neighborhood. Additionally,
density-based algorithms are not designed to efficiently deal with
clusters with various densities. Spectral clustering [9] is another
approach which has become popular due to its simple implemen-
tation and its performance in many graph-based clustering. It
can be solved efficiently by any standard linear algebra software.
However, this approach is expensive for the large data sets since
the Computing eigenvectors is the bottleneck.
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Another well-known approach is grid-based clustering where
any data set is partitioned using a set of grid-cells and data points
are assigned to the appropriate grid cell. Grid-based methods [1],
[14], [11] quantize the object space into a finite number of cells
(hyper-rectangles) and then perform the required operations on
the quantized space. The main advantage of grid-based methods
is their fast processing time which depends on the number of
cells in the grid. In the other word, no distance computation is
required and the clustering is performed on summaries and not
on the individual objects. Thus, the complexity of grid-based
algorithms is usually O(number of populated grid cells) and not
O(number of objects). Beyond their ability to deal with noisy
data sets, grid-based clustering algorithms are able to identity
clusters irrespective of their shapes. Unlike most of the clustering
algorithm which require an initialization phase, the algorithms
in this category are insensitive to the order of input records and
therefore are deterministic.

Despite the valuable advantages of grid-based clustering algo-
rithms, to the best of our knowledge, all of them are parametric al-
gorithms where a user is required to specify the parameters. How-
ever, most of the time it is not trivial to appropriately set them.
Thus, utilizing the principle of Minimum Description Length
(MDL) we propose a non-parametric Information-Theoretic Grid-
based Clustering algorithm where we regard the clustering task
as a data compression problem so that the best clustering is linked
to the strongest data compression. First, an adaptive grid is con-
structed corresponding to the statistical characteristics of any
data set and non-empty cells are considered as single clusters.
Then, we combine the concept of density and grid-based meth-
ods and employing our compression-based objective function we
start merging clusters with their neighbour grid cells only if it
pays off in terms of the compression cost.

In this paper we propose an information-theoretic clustering
algorithm offering the following contributions:

e Adaptive partitioning: We utilize the statistical charac-
teristics of any data set, e.g. local and global dispersion, in
order to introduce an adaptive partitioning of the data.

e Non-parametric clustering: Employing the MDL-based
objective function, we iteratively merge clusters when it
pays off in terms of the compression cost automatically.
Thus, no parameter needs to be specified.

o Insensitivity to the shape of clusters: ITGC employs
the concept of density-based methods in order to select
the next merging candidate. Thus, it is insensitive to the
shape of clusters whether they are Gaussian, arbitrary or
even having various density regions.

e Scalability: Analogous to other grid-based clustering
algorithm, the complexity of ITGC depends on the number
of cells not on the number of objects which leads to a
scalable algorithm in terms of the number of objects.
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2 INFORMATION-THEORETIC GRID-BASED
CLUSTERING

In order to introduce a grid-based clustering algorithm we need
to address two fundamental questions: (1) how to find a specific
appropriate partitioning (grid) corresponding to any data set; (2)
how to efficiently merge the cells to discover the hidden clusters.
Thus, our proposed algorithm ITGC consists of two main build-
ing blocks: (1) finding a suitable grid corresponding to specific
characteristics of any data set and (2) employing MDL principle to
effectively and efficiently merge the cells without any parameter
to be specified.

2.1 Partitioning the Data

Finding a suitable partitioning with respect to the data is a crucial
task in a grid-based clustering algorithm. Inspired by [8], we
utilize the characteristics of any data set to introduce the best
fitting partition. That is, we are looking for a partition which
leads to high internal homogeneity in the cells and high external
heterogeneity of each cell with respect to its neighbors for every
single cell. Thus, for any cell C; consisting of n; data points the
statistical indicators are defined as:
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Where X is the distance of the i — th data point in C; to the
center of this cell. Thus, X is the average distance of data points
to the center of C; and S; is the standard deviation of the cell.
These are statistical indicators on the local level (each individual
cell), similar indicators are calculated on the global level (the

entire grid) as:
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Where p is the average center - distance of all cells, N is the
total number of cells and ¢ is the standard deviation of all cells.
Based on these indicators, we define CV[ o¢41(j) and CVgjopar as
the coefficient of variation (CV) corresponding to any cell C; and
the global variation, respectively. That is,
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In another point of view, the above scores show how wide-
spread the data points are indicating the relative dispersion at
the local (cell) and global (grid) levels. Finally the partitioning

cost is defined as:
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Considering the cost corresponding to any grid size kxk, we it-
eratively increase k starting from 1 until it pays off. However, it is
not trivial to justify a terminal for this process without observing
its trend. Initially, the grid cost increases sharply by increasing
k then it slows down quickly and continues linearly. Observing
this common trend, we conduct a simple linear regression on
various costs with respect to various k values. The regression
line is expected to fit more through the higher ks where the costs
have lower deviations. Thus, the optimal partitioning can be set
to the first k where the grid cost deviated from the fitted line
lower than the average.

On the other side, by increasing the size of grid the area of
non-empty cells decreases. Thus, it is reasonable to assume this

gridCost =
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trend to continue with even smaller cells, but the descending
trend slows down while decreasing cell sizes. Visualizations of
the collected area reveals a common trend which is reverse to the
previous one. The area starts at a maximum value, decreases very
sharply at lower k and keeps decreasing at a lower gradient. In
order to find the optimum value for k, we analogously fit a linear
regression through the data set rejecting the low k values which
deviate larger than average from the fitted line. The following
steps summarize this procedure.

o Step 1: The grid is divided into k X k cells where the initial
size for k is 1.

e Step 2: The grid cost as well as the area of non-empty cells
are determined and the values are stored.

o Step 3: We iteratively increase k ranging from 1 to a maxy
and repeat the previous steps

o Step 4: Now the optimum partitioning is determined em-
ploying two different criteria.

2.2 MDL-based Objective Function

Utilizing the Minimum Description Length (MDL) principle [10]
we regard the clustering task as a data compression problem
so that the best clustering is linked to the strongest data com-
pression. Given the appropriate model corresponding to any
attribute, MDL leads to an intuitive clustering result employing
the compression cost as a clustering criterion. The better the
model matches major characteristics of the data, the better the
result is. Following the MDL principle, we encode not only the
data but also the model itself and minimize the overall descrip-
tion length. Simultaneously, we avoid over-fitting since the MDL
tends to a natural trade-off between model complexity and the
goodness-of-fit. That is, for a given cluster C; the corresponding
compression cost is defined as:

MDL(C;) = CodingCost(C;) + ParamCost(C;) + IDCost(C;) (5)

where CodingCost shows the cost of coding the data points
in cluster C; by means of a coding scheme. The next two terms
illustrate the model complexity where the model itself needs to
be encoded. In this paper we employ the Huffman coding scheme
to encode the data considering an appropriate model. That is,
given the corresponding Probability Distribution Function (PDF)
to any attribute, the coding cost of any object x is determined by
—logaPDF(x). Any PDF would be applicable and using a specific
model is not a restriction [4] for our algorithm. In this paper,
we consider Gaussian PDF for simplicity. In the following we
elaborate our objective function more concretely.

e Objective Function: The overall MDL-based objective
function is the summation of the all compression costs
with respect to various clusters. That is,

MDL(D) = Z MDL(C;)
C;eC

(6)

where D is the entire data set and C = {Cy, ...,C } is the
set of all clusters.

e Data Coding Cost: Let X = {Xj,...,X;} denote the
set of all attributes. For any object x = (xi, ..., xg4) the
corresponding coding cost is the sum of encoding any
attribute value x;. Putting all together, the coding cost
corresponding to cluster C; is given by:
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CodingCost(C;) = — Z Z log, PDFj(x) (7)

XjEX x€eC;

where PDF;j(.) is the Gaussian model with respect to j—th
attribute X;.

Model Complexity: Without taking the model complex-
ity into account, the best result will be a clustering consist-
ing of singleton clusters. This result is completely useless
in terms of the interpretation. In order to specify the asso-
ciated cluster with any data object, we need to encode the
cluster IDs. Thus, the IDCosts are required to balance the
size of clusters and defined as:
ICil
IDCost(C;) = |Ci|.logy D
Following the fundamental results from the information
theory [10], for any attribute X; the parameters corre-
sponding to model employed to encode the data need to
be encoded as well. That is, concerning any Gaussian dis-
tribution PDF; with respect to the attribute Xj, the mean
value and the standard deviation need to be encoded, i.e.

©)
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ParamCost(C;) = 5.(2|X|).logg|C,~|

2.3 Algorithm

As mentioned, ITGC consists of two main building blocks. Al-
gorithm 1 summarizes our grid-based algorithm ITGC. First, an
optimal grid is constructed following the steps mentioned in Sec-
tion 2.1, i.e. the procedure FindOptimumGrid(.). Then, we start
merging the cells if it pays off in terms of our objective function
(Section 2.2). Initially every cell is considered as a cluster while
empty cells are ignored. The cluster with the most number of
data points is chosen in the sense that at the end the results are
deterministic. We compute the coding cost with respect to the
selected cluster MDLp,f oo and merge this cluster with one of
its neighbors and compute the cost after merging two clusters
MDL e, If the cost after merging is smaller than the cost be-
fore, we merge two clusters and continue the merging process.
Otherwise, the visited cluster is marked. Finally the algorithm
terminates if no unmarked non-empty cell exists.

3 EXPERIMENTS

In this section we assess the performance of ITGC comparing
to other clustering algorithms in terms of Normalized Mutual
Information (NMI) which is a common evaluation measure for
clustering results [13]. NMI numerically evaluates pairwise mu-
tual information between ground truth and resulted clusters
scaling between zero and one.

We conducted several experiments evaluating our algorithm
on synthetic and real-world data sets. In order to investigate
the effectiveness of ITGC we generated various data sets and
compared to the base-line clustering algorithms, i.e. k-means [7]
and DBSCAN [6]. While the insensitivity of ITGC to the shape
of clusters as well as its effectiveness is illustrated by synthetic
experiments, we extended the comparison to the wider range of
well-known clustering algorithms. Our algorithm is implemented
in Java and the source code as well as the data sets are publicly
available 1.

Uhttps://tinyurl.com/y85gglpx
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Algorithm 1: Information-theoretic grid-based clustering

ITGC (D)
G = FindOptimumGrid(D);
C={C1,....C} // Non-empty cells in G

seeds := non-visited clusters;
while (seeds != empty) do
C; := the cluster with the most data points in C
C; is visited
while (MDLbefore > MDLafter) do
MDLyefore = MDL(C;)
Cj := a random non-visited neighbor cell w.r.t C;
Cm := the cluster after merging C; and C;
MDLgfer = MDL(C)
if MDLbefore > MDLafter then
remove Cj and C; from C .

add Cy, to C
end if
end while
seeds := non-visited clusters;
end while
return (C)
Ground Truth ITGC K-means DBSCAN
@ @ (( Q
NMI=1.0 NMI=0.007 NMI=0.68
NMI=1.0 NMI1=0.49 NMI=1.0

=1 NMI=0.37 NMI=0.85
<
(@ _
& .
NMI=1.0

NMI=0.45 NMI=0.73
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NMI=0.99

NMI=0.98
Figure 1: Comparison on various synthetic data sets.

3.1 Synthetic Experiments

In order to cover all aspects of ITGC, we investigate the per-
formance of the algorithms considering various synthetic data
sets including arbitrary shaped data sets as well as clusters with
different densities. Then, we continue experiments by comparing
all algorithms in terms of the scalability.

Performance: Most of the time any clustering algorithm is
designed for a specific kind of data sets. For instance, k-means
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Dataset Attr/Objects ITGC k-means DBSCAN EM  Spectral C. CLIQUE Single L.
Iris 4/150 0.66 0.53 0.59 0.60 0.6 0.00 0.59
Occupancy Detection 7/20560 0.61 0.56 0.00 0.31 0.00 0.61 -
Breast Cancer 9/286 0.47 0.32 0.41 0.45 0.45 0.39 0.27
User Knowledge 5/403 0.24 0.27 0.01 0.27 0.27 0.00 0.01
Table 1: Comparison on real data sets.
30000 1 —e—k-means -#-DBSCAN ITGC data set). Although some of the comparison methods perform
25000 - slightly better than ITGC on User Knowledge data set, our result
2 is still comparable and we outperform DBSCAN, CLIQUE and
20000 - : ;
< Single link.
E 15000
10000 4 CONCLUSION AND FUTURE WORKS
= i
z In this paper we propose an information-theoretic clustering
5000 1 algorithm, ITGC, utilizing the MDL-principle. Firstly, We employ
0 Bt ——t————t——t———p the statistical characteristics of any data set to appropriately par-
1 2 3 4 5 6 7 8 9 10 tition the data without any presumptions. Then, an MDL-based
Number of Objects/1000 objective function is proposed to iteratively merge the neigh-

Figure 2: Scalability of the algorithms by increasing the
number of objects.

appropriately deals with Gaussian shaped data sets and its perfor-
mance dramatically decreases when the clusters have no specific
shape. On the other hand density-based clustering algorithms
are sensitive to different densities w.r.t. various clusters. In order
to evaluate the performance of ITGC concerning various shapes
of clusters, we synthetically generated arbitrary shaped clusters
in a combination with some Gaussian clusters. Figure 1 shows
the effectiveness and the insensitivity of ITGC considering vari-
ous cases. As expected, k-means fails when the clusters are not
Gaussian (Figure 1a,b,c,d). On the other hand, DBSCAN is not
able to discover the clusters with various densities (Figure 1d,e)

Scalability: To evaluate the efficiency in terms of the runtime
complexity we generated 5 dimensional synthetic data sets where
we iteratively increased the number of data objects ranging from
1,000 to 10,000. Figure 2 shows the result of this experiment. As
expected, k-means is the fastest algorithm while DBSCAN is
the worse since its complexity highly depends on the number
of objects. Although ITGC is not able to outperform k-means,
its corresponding execution time is still reasonable and more
efficient than DBSCAN.

3.2 Real Experiments

In this section we extend our experiments to the wider range of
clustering algorithms including EM [5], Single link [12], spectral
clustering [9] and CLIQUE [1] as the well-known representatives
for any clustering approach. We evaluate clustering quality of
ITGC on real-world data sets. We used Iris, Occupancy Detection,
User Knowledge and Breast Cancer data sets from the UCI Reposi-
tory 2. Table 1 shows the characteristics of any data set and the
results of applying various algorithms in terms of NMI. Concern-
ing any data set the best NMI is high lighted and when getting
"Out Of Memory" error we inserted "-" in the table. As Table 1 il-
lustrates ITGC outperforms other algorithms considering the first
3 real-world data sets. Interestingly, in this experiment we out-
perform CLIQUE which is a well-known grid and density-based
clustering algorithm ( the results are similar on the Occupancy

Zhttp://archive.ics.uci.edu/ml/index.php
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bour clusters when it pays of in terms of the compression cost
of the clusters. Our experiments on synthetic and real-world
data sets show the advantages of our proposed algorithm com-
pared to other well-known clustering algorithms. Similar to other
grid-based clustering algorithms, our algorithm may lead to inef-
ficiency when dealing with huge data sets in terms of the dimen-
sionality. Thus, a possible future work would be to investigate the
parallelization approaches in the sense that the required memory
to store the grid information could be distributed. As another
option for the further investigation could be to enhance the parti-
tioning procedure in the sense that it results a sparse grid which
is cheaper in terms of the memory.
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