
Inves: Incremental Partitioning-Based Verification for Graph
Similarity Search

Jongik Kim

Chonbuk National University

Jeonju, Republic of Korea

jongik@jbnu.ac.kr

Dong-Hoon Choi

KISTI

Daejeon, Republic of Korea

choid@kisti.re.kr

Chen Li

University of California

Irvine, CA

chenli@ics.uci.edu

ABSTRACT
We study the problem of graph similarity search with a graph edit

distance (GED) constraint. Existing solutions adopt a filtering-

and-verification framework, with a focus on the filtering phase

where a feature-based index is used to reduce the number of

candidate graphs to be verified. These solutions suffer from a

computationally expensive verification phase. In this paper, we

develop a novel technique called Inves that can significantly

reduce the time of verifying a candidate graph. Its main idea

is to judiciously and incrementally partition a candidate graph

based on the query graph, and use the results to compute a lower

bound of their distance. If a full GED computation is needed, Inves
utilizes the collected information, and uses novel methods and an

A* algorithm to search in the space of possible vertex mappings

between the graphs to compute their GED efficiently. A main

advantage of Inves is that it can be adopted by a plethora of graph
similarity search algorithms. Our extensive experiments on both

real and synthetic datasets show that Inves can significantly

improve the performance of existing techniques by an order of

magnitude.

1 INTRODUCTION
Graph data models are widely used in representing complex

objects, such as chemical compounds, social networks, and bio-

logical structures. Graph search, which finds all occurrences of a

query graph in a database of graphs, is a fundamental operation

needed in many applications. To tolerate data inconsistency, nat-

ural noises, and different data representations in graph search,

very often these applications require finding graphs similar to a

given query graph. Various similarity measures have been pro-

posed, such as maximum common subgraphs [2, 15], missing

edges and features [23, 28], and graph alignment [17]. Among

them, one of the commonly used metric is graph edit distance

(GED) [5, 6, 22], which can capture the structural difference be-

tween graphs, and can be applied to many types of graphs [22, 24].

The GED between two graphs is the minimum number of graph

edit operations to transform one to the other, where a graph edit

operation is insertion, deletion, or substitution of a single vertex

or edge.

The problem of graph similarity search is to find graphs in a

database whose GED to a query graph is within a given threshold.

This problem is challenging because GED computation between

two graphs is NP-hard [22]. Generally, a scan-based approach

that directly computes the GED between each data graph and

the query graph is computationally prohibitive. Many existing

solutions adopt a filtering-and-verification framework. An in-

dex structure is typically used to generate candidate graphs in

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

the filtering phase, and each candidate is compared with the

query graph to find if it is a true match in the verification phase.

Existing studies mainly focus on developing a feature-based in-

dex to generate candidates in the filtering phase. For example,

c-star [22] and k-AT [19] extract tree-structured features from

data graphs and build an inverted index on the extracted features.

GSimSearch [25, 26] builds an inverted index on path-based fea-

tures of graphs. Pars [24] and MLIndex [12] utilize partitions of
graphs as features to be indexed.

The performance of existing solutions can suffer from too

many candidates and an expensive verification phase. Table 1

shows the performance of 100 queries using one of the index-

based search algorithms, Pars [24], on an AIDS dataset containing
42,687 graphs (see Section 5 for details). In the table, we use the

number of data graphs that have passed a primitive filter named

the global label filter (refer to [25] and Section 3.5 for details of the

filter). The number of candidates denotes those candidates that

require full GED computations. For example, when the threshold

τ = 5, only 15.5% of data graphs are filtered from the index-based

filtering phase. Experiments on other solutions show similar

behaviors.

Table 1: Performance of Pars

GED threshold τ 1 2 3 4 5

of data graphs 574 3,335 12,669 34,774 74,937

of candidates 142 591 4,931 22,846 63,301

of answers 105 135 161 221 278

Filtering ratio 75.3% 82.3% 61.1% 34.3% 15.5%

To solve this problem, in this paper we develop a novel verifi-

cation technique, called Inves1. Given a set of candidate graphs

generated from a filtering phase, the proposed technique can

effectively reduce the time for verifying if the GED between each

candidate graph and the query graph is within a given threshold.

Its main idea is to judiciously and incrementally partition the

candidate graph based on the query graph, and use the results

to try to prune this pair. If a full GED computation is needed,

Inves utilizes the collected information, and uses novel methods

and an A* algorithm to search in the space of possible vertex

mappings between the graphs to compute their GED efficiently.

A main advantage of Inves is that it can be adopted by a plethora

of graph similarity search algorithms.

The following are our contributions:

• We propose Inves as a novel incremental partitioning-based

verification technique. Given a candidate graph and a query

graph with a GED threshold, Inves incrementally isolates sub-

graphs of the candidate graph that cause mismatches with the

query graph. If the number of isolated subgraphs is greater than

1
It stands for Incremental partitioning-based verification technique for graph edit
similarity search.

Series ISSN: 2367-2005 229 10.5441/002/edbt.2019.21

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.21

the threshold, Inves filters out this pair since their GED cannot

be within the threshold. In Section 3, we present the details of

the incremental partitioning-based verification framework.

• If the pair of graphs cannot be pruned using the generated

subgraphs, Inves employs efficient methods based on a well-

known A* algorithm for GED computation [14]. It also takes

advantage of the partitioning results by first considering those

vertices that cause edit errors. In this way, it can significantly

reduce the search space of the A* algorithm, thus improve the

performance of GED computation (Section 4).

• We conduct extensive experiments to evaluate Inves on both

real and synthetic data sets (Section 5). The results show the

benefits of the various optimization methods in the technique.

In addition, by adopting Inves in existing index-based algo-

rithms, we can significantly reduce the total running time by

an order of magnitude.

The rest of the paper is organized as follows: Section 2 provides

preliminaries and reviews related work. Section 3 presents the

proposed verification framework, and Section 4 provides our GED

computation methods. Section 5 presents experimental results,

and Section 6 concludes the paper.

2 PRELIMINARIES AND RELATEDWORK
2.1 Graph Similarity Search Problem
We focus on undirected labeled simple graphs defined as follows.

An undirected labeled simple graph д is a triple (Vд , Eд , Lд),
whereVд is a set of vertices, Eд ⊆ {(u,v) |u ∈ Vд∧v ∈ Vд∧u , v}
is a set of edges, and Lд is a labeling function that maps vertices

and edges to labels. Lд (v) and Lд (u,v) respectively denote the

label of a vertexv and the label of an edge (u,v). If there is no edge
between u and v , Lд (u,v) returns a unique value λ distinguished

from all other edge labels. There are no self-loops nor more than

one edge between two vertices. For simplicity, in the rest of the

paper, we use graph to denote undirected labeled simple graph.

The graph edit distance (or GED for short) between two graphs

x and y, denoted by дed (x ,y), is the minimum number of graph

edit operations that transform x to y. A graph edit operation is

one of the following: (1) insertion of an isolated labeled vertex;

(2) deletion of an isolated labeled vertex; (3) substitution of the

label of a vertex; (4) insertion of a labeled edge; (5) deletion of a

labeled edge; or (6) substitution of the label of an edge.

EXAMPLE 1. Figure 1 shows two graphs x and y, which include
vertex labels representing atom symbols and edge labels (i.e., single
and double lines) representing chemical bonds. Besides vertex labels,
the graphs also include vertex identifiers. To transform x into y, we
can do the following three graph edit operations on x : insertion of
a single-bond edge between u3 and u5, and substitutions of labels
of u2 and u8. Therefore, дed (x ,y) is 3.

We formalize the problem of graph edit similarity search as

follows.

DEFINITION 1 (Graph Similarity Search Problem). For a graph
database D = {x1, . . . ,xn } and a query graph y with a GED

O CC

OS N

x

u5

u4

u1u2

u3

u8

u7u6
N

C

y

O CC

SO N
v5

v4

v1v2

v3

v8

v7v6
N

C

Figure 1: Two example graphs

threshold τ , the graph edit similarity search finds every data graph
xi ∈ D such that дed (xi ,y) ≤ τ .

2.2 A* algorithm for GED Computation
In this section, we review themost widely used algorithm for GED

computation [14], which is based on A*. Given a pair of graphs

x and y, the A* algorithm basically traverses all possible vertex

mappings between x and y in a best-first fashion. It maintains a

priority queue that contains states in its state-space tree, where

each state in the tree represents a partial vertex mapping between

the pair. The priority (or edit distance) of a state is determined by

the sum of (1) the existing distance д: the edit operations detected
from the initial state to the current state; and (2) an estimated

distance h: a heuristic estimation of the edit operations from the

current state to the goal. The A* algorithm guarantees that it

finds an optimal mapping if h is not overestimated.

Algorithm 1: GED(x , y, τ)
input :x and y are graphs; τ is a GED threshold.

output : if дed (x ,y) ≤ τ , дed (x ,y); otherwise, τ+1

1 O ← order the vertices in x ;

2 Q ← ∅; Q .push(∅);
3 while Q , ∅ do
4 M ← Q .pop();
5 if complete(M) then return existingDistance(M);

6 u ← next unmapped vertex in Vx ∪ {ε } as per O;

7 foreach v ∈ (Vy ∪ {ε }) s.t. v < M do
8 д ← existingDistance(M ∪ {u → v});

9 h ← estimateDistance(M ∪ {u → v});

10 if д + h ≤ τ then Q .pushQueue(M ∪ {u → v});

11 return τ + 1;

The GED computation algorithm is outlined in Algorithm 1. It

first determines the order of vertices in x , and pushes the initial

state, i.e., an empty mapping, into the queue (Lines 1–2). In the

main loop, it removes a mapping M from the queue that has a

minimum edit distance (Line 4). If M contains all vertices of x
and y, it returns the existing distance ofM (Line 5). Otherwise,

it expands its state-space tree by mapping the next unmapped

vertex u in x (Line 6) to each unmapped vertex v in y (Line 7). It

pushes each expanded state into the queue if the edit distance of

the state is not greater than τ (Lines 8–10). In the algorithm, ε
is used to denote an insertion or a deletion of a vertex. If it fails

to find any mapping whose edit distance is not greater than τ , it
returns τ + 1 (Line 11).

2.3 Related Work
Previous work on the graph similarity search utilizes small over-

lapping substructures to establish a filtering condition between

dissimilar graphs. Motivated by the gram idea used in string

similarity searches, the k-AT algorithm [19] defines a q-gram
as a tree rooted at a vertex v with all vertices reachable to v in

q hops. A star structure, which is 1-gram defined by k-AT, has
been proposed to set up a filtering condition through bipartite

matching between star structures [22]. SEGOS [20] is a two-level
index structure proposed to efficiently search star structures. The

main focus of these approaches has been on the filtering phase

to develop efficient index-based filtering methods using those

substructures.

230

GSimSearch [25, 26] proposed a path-based q-gram and devel-

oped an index-based filtering technique based on the observation

of the algorithm called ED-join [21] in string search. To further

reduce the number of candidates, GSimSearch proposed local

label filtering in its verification phase. However, this technique

is based on small fixed-size substructures of graphs, thus edit

errors are mainly captured from label differences, and structural

differences are considered inside small substructures only.

There is recent work that makes use of large disjoint sub-

structures of graphs to capture structural differences between

graphs. Pars [24] partitions data graphs into disjoint subgraphs,

and makes an index on the partitioned subgraphs. Using the in-

dex, it identifies data graphs having partitions contained in the

query graph, and generates them as candidate graphs. It employs

a random-graph-partitioning strategy and refines initial parti-

tioning results based on a query workload. It also dynamically

rearranges indexed partitions in a restricted way while searching

its index structure. MLIndex [12] was proposed to reduce the

number of candidates by indexing a few alternative partitioning

results of data graphs. It defines a selectivity of a partition based

on vertex and edge label frequencies, and divides a graph in a

way to increase selectivities of partitions. Despite the efforts in

the previous approaches, their filtering power of partitions is

inherently limited because partitions of data graphs are deter-

mined offline, and one or a few rigid partitionings of a data graph

cannot work well for all queries.

Other related work includes Mixed [27] and LBMatrix [3].

Mixed generates candidates by using small and large disjoint

substructures of a query graph. LBMatrix has proposed a q-gram-

based matrix index structure that can be stored in external mem-

ory to handle very large datasets.

3 INVES: VERIFICATION FRAMEWORK
In this section, we propose the Inves verification framework

aiming to efficiently verify if the GED between a pair of graphs is

within a given threshold. We first introduce the partition-based

verification principle, then present the details of Inves.

3.1 Partition-based Verification Scheme
Due to the high cost of GED computation, it makes the graph sim-

ilarity search impractical to directly compute the GED between

a candidate and the query when there are many candidates gen-

erated from an index-based filtering phase. To efficiently verify a

pair of graphs, in this paper we use a partition-based lower bound

of the GED between the pair before computing the exact GED.

We begin with the concept of an induced subgraph for defining

graph partitions, then present the verification scheme.

DEFINITION 2 (Induced Subgrpah Isomorphism). A graph r
is induced subgraph isomorphic to another graph s , denoted as
r ⊑ s , if there exists an injection f : Vr → Vs such that ∀u ∈
Vr , f (u) ∈ Vs ∧ Lr (u) = Ls (f (u)) and ∀u ∈ Vr , ∀v ∈ Vr ,
Lr (u,v) = Ls (f (u), f (v)). In this case, the graph r is called an
induced subgraph of s .

Recall that the edge labeling function Lд (u,v) returns a unique
value λ if there is no edge betweenu andv in a graph д. It enables
us to check the inducedness of a subgraph in Definition 2.

EXAMPLE 2. Consider the graphs p1, p2, and y in Figure 2. p1 ⊑ y,
but p2 @ y because Lp2 (u4,u6) = λ , Ly (v3,v5) = single-bond.

Given a graph д and a vertex set V ⊆ Vд , there is only one

induced subgraph p of д such that Vp = V . That is, p is uniquely

O

p2

N

C

y

O CC

SO N
v5

v4

v1v2

v3

v8

v7v6
N

C

CC

S

p1

u1 u2

u6

u5

u3

u4

Figure 2: Induced subgraph isomorphism

identified by V . Therefore, we use V interchangeably with the

induced subgraph of д defined by V .

DEFINITION 3 (Graph Partitioning). A partitioning of a graph
д is P (д) = {p1, . . . ,pk } such that ∀i pi ⊑ д, ∀i, j i , j ⇒ Vpi ∩

Vpj = ∅, and Vд =
⋃k
i=1Vpi .

Given a pair of graphs x and y, consider a partition p ∈ P (x).
If p ⊑ y, we say p is matching with y. Otherwise, we say p
is mismatching with y. We also simply call p a matching (or

mismatching) partition if y is clear from the context. An induced

subgraph o of y such that Vo ⊆ Vy is called an occurrence of p
in y if and only if p ⊑ o and o ⊑ p. In Figure 2, for example,

o = {v6,v7,v8} is an occurrence of p1 in y.
With the graph partitioning, a lower bound of the GED be-

tween a pair of graphs are calculated as follows.

LEMMA 1. Consider a pair of graphs x and y with a graph parti-
tioning P (x). lb (x ,y) = |{p | p ∈ P (x) ∧ p @ y}| is a lower bound
of the GED between the pair.

Proof. Since partitions of x share neither a vertex nor an

edge, an edit operation on a partition does not affect to another

partition. Therefore, each mismatching partition p requires at

least one edit operation to transform x to y. □

The following corollary states the partition-based verification

scheme based on the lower bound in Lemma 1.

COROLLARY 1. Given a GED threshold τ , consider a pair of graphs
x and y with a graph partitioning P (x). If lb (x ,y) > τ , the pair
can be pruned without the GED computation.

Partition-based lower bounds and their variants have been

extensively studied and discussed in the literature of string simi-

larity search (e.g. [8, 11]) and approximate subsequence mapping

(e.g. [1, 9, 10]). The same principle is well adopted in recent

work for graph similarity search [12, 24, 27]. Our lower bound

in Lemma 1 is a simple extension of existing partition-based

approaches. While the focus of existing work is on building a

partition-based inverted index for the filtering phase, our focus

in this paper is on the verification phase to efficiently verify a

candidate graph using the partition-based lower bound.

To obtain the lower bound in Lemma 1, we need |P (x) | in-
duced subgraph isomorphism tests, which are generally NP-hard.

However, former studies have empirically showed that subgraph

isomorphism test is on average three orders of magnitude faster

than GED computation [12, 24], and thus it can be practically

used in deriving a partition-based lower bound.

EXAMPLE 3. Consider a pair of graphs x and y shown in Figure 1
with a GED threshold τ = 1. If we partition x into {p1,p2} as
depicted in Figure 3(a), lb (x ,y) = 2 because p1 @ y and p2 @ y.
Therefore, we can safely prune the pair without GED computation
according to Corollary 1. If we partition x into {p′

1
,p′

2
} as illustrated

in Figure 3(b), lb (x ,y) = 1 since p′
1
@ y but p′

2
⊑ y. Thus, we need

a GED computation between the pair.

231

S

N
u1

u2

p1 p2

C

O
u8

u7

p'1 p'2

O CC

O
u5

u4 u3

u8

u7u6
N

C

O C

S N
u5

u4

u1u2

u3 u6
N

C

(a) (b)

Figure 3: Two ways to partition x in Figure 1

As shown in the example above, the tightness of lb (x ,y) is
highly dependent on the way to partition x . However, the graph
partitioning problem is in general NP-hard [12, 24] and enumerat-

ing every possible partitioning to obtain an optimal partitioning

is intractable. In the next section, we introduce a measure for a

partitioning to develop a good partitioning technique.

3.2 A Qualitative Measure for a Partitioning
Consider a pair of graph x and y with a partitioning P (x). An
inherent limitation of partition-based approaches is that the con-

tainment test of each partition is independent, and thus multiple

partitions of x can be matching with y in overlapping areas of y.
This limitation makes the partition-based bound loose. However,

it is hard to tackle the problem because lb (x ,y) can exceed the

GED if we use a non-overlapping alignment of partitions, where

a mismatching partition p is allowed to be aligned to a subgraph

of y whose size is less than the size of p. Finding a legal non-

overlapping alignment of partitions (i.e., an alignment that results

in a minimum lower bound) is computationally impractical.

Beside this fundamental limitation, the following are major

problems that make the partition-based lower bound loose.

P1 In partition-based approaches, only one edit error is counted

from a mismatching partition. A tighter bound can be cal-

culated as lb (x ,y) =
∑
p∈P (x)∧p@y sed (p,y), where sed (p,y)

denotes the subgraph edit distance [22, 26] between p and y.
P2 A substructure of x that causes insertion or deletion errors

can be divided into multiple partitions. In this case, those

edit errors can be hidden between partitions to make the

lower bound loose. They can be detected by enumerating

every subgraph of x consisting of adjacent partitions, and

investigating the subgraphs through subgraph edit distance

computations.

P3 Edit errors can be buried in edges connecting different parti-

tions and these errors also make the lower bound loose. To

precisely find them, we need to solve the problem of place-

ment of partitions into y.

Due to the complexities of subgraph edit distance and parti-

tion alignment, the problems above cannot be efficiently solved.

The hardness of the limitation and problems also prevents us

from accurately analyzing the tightness of lb (x ,y). In fact, there

is no given proof on the tightness of existing partition-based

bounds [6], and it is hard to measure the tightness of lb (x ,y) in
a quantitative manner. To the best of our knowledge, the only

theoretical analysis on the tightness lb (x ,y) is that increasing the
number of partitions has more chance to get a tighter bound [12].

However, the analysis is based on an assumption that does not

take the problem P2 into consideration. In this paper, instead of

a quantitative measure, we introduce a qualitative measure of

goodness of a partitioning as stated in the following claim.

CLAIM 1. Given two graphs x and y, a partitioning P (x) is a
good partitioning if every mismatching partition p ∈ P (x) meets
the following conditions.

C1 Edit errors in p are indivisible, or edit errors in p cannot be
distributed over partitions (indivisibility). Ideally, p is minimal,
that is, p loses its edit errors and become a matching partition
if any vertex in p is removed (mininality).

C2 An edit error in an edge connecting p to another partition is
captured by p, while preserving the condition C1.

The indivisibility constraint in C1 alleviates the problem P1
since each partition contains the least number of edit errors it can

have. The minimality constraint in C1 alleviates the problem P2,
because by removing unnecessary vertices that do not contribute

to edit errors from a partition, those vertices can be combined

with other vertices in another partition and cause edit errors.

Claim 1 also has the condition C2 to alleviate the problem P3.
Although we develop a qualitative measure for a partitioning,

it is hard to make a partitioning that exactly meets the measure

because a graph partitioning problem even with a simple condi-

tion tends to be intractable [24]. Nonetheless, the measure can be

a guideline for producing a partitioning to get a tighter bound. In

the following sections, we develop a novel partitioning method

based on this measure (Section 3.3 for C1 and Section 3.4 for C2).

3.3 Incremental Partitioning
In this section, we present a systematic way to produce mis-

matching partitions that approximately meet the condition C1 in

Claim 1. We begin with the definition of the incremental parti-

tioning strategy.

DEFINITION 4 (Incremental Partitioning). Given two graphs
x and y, an incremental partitioning of x is to extract mismatching
partitions from x as follows. Let Vx = {u1, . . . ,un }. We move the
vertices inVx one after another into a partition p, which is initially
empty, while p ⊑ y. Let the last vertex moved from x to p be ul .
We finally move ul+1 to p to make p @ y, and produce P (x) =
{p,x\p}, where x\p denotes the induced subgraph s of x such that
Vs = Vx −Vp . We repeat this partitioning strategy with x\p until
either x\p ⊑ y or x\p = ∅.

A graph partitioning produced by the incremental partitioning

strategy in Definition 4 satisfies the following property.

PROPERTY 1. Given a pair of graphs x and y, if x is partitioned
into P (x) = {p1, . . . ,pk−1,pk } using our incremental partitioning
strategy, then p1, . . . ,pk−1 are mismatching with y and the last
partition pk , which can be empty, is matching with y. Therefore,
lb (x ,y) = k − 1.

The following lemma states that the incremental partitioning

strategy generates a partitioning that exactly meets the indivisi-

bility constraint in the condition C1 in Claim 1.

LEMMA 2. Given a partitioning P (x) = {p1, . . . ,pk−1,pk } pro-
duced by the incremental partitioning strategy in Definition 4, it
is not possible to divide any partition pi ∈ (P (x) − {pk }) into two
partitions pi1 and pi2 such that pi1 @ y ∧ pi2 @ y.

Proof. For each pi = {ub , . . . ,ue } except pk , our incremental

partitioning scheme guarantees that (p′ = pi − {ue }) ⊑ y. Since
ue cannot be included in both pi1 and pi2, either pi1 ⊑ p′ ⊑ y or

pi2 ⊑ p′ ⊑ y should be satisfied. □

EXAMPLE 4. For a pair of graphs x andy in Figure 1, we incremen-
tally partition x by comparing it with y as follows. Assume that
vertices of x are investigated from u1 to u8. We first make P (x) by
isolating {u1,u2} from x into p′

1
as shown in Figure 4(a), because

(p′
1
− {u2}) ⊑ y but p′

1
@ y. Given two partitions of x , we further

232

partition p2 into p′
2
and p3 by isolating a mismatching partition

{u3,u4,u5} from p2, as depicted in Figure 4(b). Since p3 ⊑ y, we
cannot proceed the incremental partitioning. Hence, lb (x ,y) = 2.

S

N

S

N
u1

u2

u1

u4

P(x) = {p'1, p2} P(x) = {p'1, p'2, p3}
p'1 p2 p'1 p'2 p3

O CC

O
u5

u4 u3

u8

u7u6
N

C

O CC

O
u5

u4 u3

u8

u7u6
N

C

(a) (b)

Figure 4: Incremental partitioning of x in Figure 1

When the incremental partitioning strategy produces a mis-

matching partition, an induced subgraph isomorphism test is an

essential operation. The common principle on subgraph isomor-

phism test is to visit vertices based on connectivity of vertices and

frequencies of vertices and edges [7, 16]. Following the existing

solutions, we investigate vertices of x by considering infrequent

vertices and edges early while preserving the connectivity.

Given a mismatching partition p in P (x) generated from the

incremental partitioning strategy, we can find an induced sub-

graph of p that meets the minimality constraint in the condition

C1 as follows. Since the last vertex in p causes the mismatch, we

enumerate every induced subgraph ofp containing the last vertex
and perform an induced subgraph isomorphism test against y to

find a subgraph s such that s @ y and |Vs | is minimum. This pro-

cess is obviously time consuming. Instead of finding a minimal

one, we propose a method that refines a mismatching partition

in P (x) to approximately meet the minimality constraint.

After we find a mismatching partition p, we rematch p against

y using an alternative vertex ordering of p to remove unneces-

sary vertices from p that do not contribute to edit errors. Let the

mismatching partition p be {u1, . . . ,uf }. Because {u1, . . . ,uf −1}
is matching with y by Definition 4, uf causes the mismatching

and edit errors are likely to be clustered in uf and vertices adja-

cent to uf . Therefore, by using the vertex uf as the start vertex

and reordering p in the same way (i.e., considering infrequent

vertices and edges early while preserving the connectivity), we

have a chance to reduce the size of the mismatching partition.

The following example illustrates rematching of a mismatching

partition to reduce the size of the mismatching partition.

EXAMPLE 5. Consider a pair of graphs x andy in Figure 5. Assume
the vertices of x is ordered as {u1,u2,u3,u4,u5,u6}. Based on the
order, we isolate {u1,u2,u3,u4} into a separate partition p. In this
case, x\p is matching with y and lb (x ,y) = 1. We reorder vertices
in the mismatching partition p into {u4,u3,u2,u1} by using u4 as
the first vertex and preserving the connectivity of the vertices. By
rematching p against y using the vertex ordering, we reduce the
mismatching partition p to {u4,u3}. From x\p, in this case, we can
find one more mismatching partition {u1,u5}, which is refined from
{u1,u2,u5} by the rematching method, and obtain a tighter bound
lb (x ,y) = 2.

C C

N C OS
u1 u2 u3 u4

u5 u6
C C

N C OS
v1 v2 v3 v4

v5 v6

x y

Figure 5: Rematching a mismatching partition

Table 2: Average number of rematching

GED threshold τ 1 2 3 4 5

AIDS 1.41 1.36 1.37 1.38 1.38

PROTEIN 1.50 1.81 1.76 1.69 1.59

PubChem 1.56 1.50 1.47 1.46 1.46

To further reduce the size of a mismatching partition, we re-

peat rematching while the partition size decreases. As the edit

errors are likely to be clustered around the last vertex, we can

expect that subgraph isomorphism tests are terminated early and

the number of rematching is very small. Table 2 shows the aver-

age number of rematching for AIDS, PROTEIN, and PubChem

datasets when extracting a mismatching partition (see Section 5

for details of the datasets and queries).

Algorithm 2: IncrementalPartitioning(x , y)

input :x and y are graphs

output :a partition-based GED lower bound lb (x ,y)

1 DetermineVertexOrdering(x);
2 f ← InducedSI(x ,y, ∅);
3 if f > |Vx | then return 0 ;

4 p ← first f vertices of x ;

5 repeat
6 DetermineRematchingOrdering(p);
7 f ← InducedSI(p,y, ∅);
8 p ← first f vertices of p;

9 until |Vp | does not change;

10 x ′ ← x\p;

11 foreach connected component c ∈ x ′ do
12 if |Vc | ≤ α then x ′ ← x ′\c;

13 return 1+IncrementalPartitioning(x ′,y);

Algorithm 2 outlines the incremental partitioning algorithm.

Given a pair of graphs x and y, the algorithm computes the

lower bound lb (x ,y) by partitioning x based on the condition

C1 in Claim 1. It first determines the vertex ordering of x using

DetermineVertexOrdering (omitted, Line 1) and then perform an

induced subgraph isomorphism test of x against y based on the

ordering (Line 2). InducedSI, which will be presented at the end

of the next section, identifies and returns the least vertex position

in x that makes the matching fail. If the position is greater than

the number of vertices in x , then x ⊑ y, and return lb (x ,y) = 0

(Line 3). Otherwise, it extracts the vertices causing the mismatch

into a partition p (Line 4).

The algorithm reduces the size of the mismatching partition p
using the rematching method (Lines 5–9). DetermineRematchin-
gOrdering (omitted, Line 6) is the same with DetermineVertex-
Ordering except that it uses the last vertex in p as the start vertex.

After reordering vertices in p, the algorithm rematches p against

y (Line 7). It repeats rematching while the size of the mismatch-

ing partition p shrinks (Line 9). The algorithm finally detaches p
from x to make x ′ (Line 10).

After isolating a mismatching partition p from x , the remain-

ing part of x , which is x ′, often forms a disconnected graph. We

observed that a tiny connected component in a disconnected

graph can cause a serious performance problem in subgraph iso-

morphism test. The existing subgraph isomorphism algorithms

233

assume connected graphs, and thus they do not pay attention to

this problem. To prevent this worst case in subgraph isomorphism

test, the algorithm removes each tiny connected component c
from x ′ such that |Vc | ≤ α , where α is a tunable parameter (Lines

11–12). Then, it recursively identifies the number of mismatching

partitions in x ′ and returns lb (x ,y) (Line 13).

Correctness and Complexity of Algorithm 2: Whenever

a mismatching partition is identified, the algorithm increments

the lower bound by 1 (Line 13). Therefore, the algorithm cor-

rectly returns a lower bound by Lemma 1. Assuming the number

of rematching is bound to a constant, the worst case complex-

ity is

∑
p∈P (x) O ((γp · γp)

|Vp |) = O ((γx · γx)
|Vx |), which is the

same as traditional subgraph isomorphism, where γд denotes the

maximum vertex degree in a graph д.

3.4 Exploiting Bridges
In this section, we propose a novel technique to detect and exploit

edit errors buried in those edges connecting different partitions.

With the proposed technique, we develop the bridge constraint to
meet the condition C2 in our qualitative measure. We first define

bridge and then present formulas to count edit errors in bridges.

DEFINITION 5 (Bridge). Given a partition p, a bridge of a vertex
u ∈ p is an edge connecting u to a vertex u ′ < p.

LEMMA 3. Given a partition p of a graph x and an occurrence
o of p in another graph y, suppose a vertex u ∈ p is mapped to a
vertex v ∈ o.
(1) The number of edit errors between bridges of u and v is

Be (u,v) = Γ(Lbr (u),Lbr (v)),

where Lbr (w) denotes the label multiset of the bridges of a
vertexw , and Γ(A,B) is max(|A − B |, |B −A|).

(2) The number of edit errors in bridges of p with respect to o is

B (p,o) = B (M) =
∑

u→v ∈M
Be (u,v),

whereM denotes the vertex mapping between p and o, which
are identified during induced subgraph isomorphism test of p.

Proof. (1) Let D1 = Lbr (u) − Lbr (v) and D2 = Lbr (v) −
Lbr (u), and assume |D1 | ≥ |D2 |. To transform Lbr (u) to Lbr (v),
we need |D2 | substitutions of labels inD1 and |D1 |−|D2 | deletions

of labels in D1. That is, we need |D2 | + |D1 | − |D2 | = |D1 | =

Γ(Lbr (u),Lbr (v)) edit operations. (2) Since no bridge can shared

by multiple vertices inp by Definition 5, the number of edit errors

inp is the sum of the number of edit errors in the bridges ofp. □

The following example illustrates the number of edit errors in

bridges of a matching partition.

EXAMPLE 6. In Example 4, consider the matching partition p3 =
{u8,u7,u6} and its occurrence o = {v3,v6,v7} in y as shown in
Figure 6. Be (u8,v3) = 3 because u8 has no bridge while v3 has 3
bridges. Likewise, Be (u7,v6) = 0 and Be (u6,v7) = 0. Therefore,
B (p3,o) = 3 + 0 + 0 = 3.

O CC

OS N

p3 in x

u5

u4

u1u2

u3

u8

u7u6
N

C

C

SO N
v5

v4

v1v2

v3

v8

v7v6
N

occurrence of p3 in y

O C

C

Figure 6: Bridge errors of a matching partition in Figure 4

Given two partitions p and p′ of a graph x , suppose that a

bridge e connecting p and p′ causes one edit error with respect

to another graph y. When we count edit errors in bridges of x ,
the edit error in e is counted twice (i.e., once in p and once in

p′). Hence, we can use half of the edit errors counted in bridges

so that we do not over-count edit errors in x . Lemma 4 formally

states this observation.

LEMMA 4. Given a pair of graphs x and y, consider a matching
partition p in x and an occurrence o of p iny. The mapping between
p and o causes at least ⌊B (p,o)/2⌋ edit errors.

Proof. In this proof, we consider deletion or substitution

errors of bridges in x only. Insertion of bridges to x can be proved

similarly. Consider we have a partitioning of x such that the ith

partition pi has ei bridges. Since each bridge is shared by two

partitions, bridges should be distributed in a disjoint manner. We

distribute bridges to each partition using the following procedure.

initially, all bridges are unassigned;

p ← an arbitrary partition;

while there is an unassigned bridge in x do
if no unassigned bridge is connected to p then

p ← an arbitrary partition to which at least one

unassigned bridge connected;

e ← an unassigned bridge connected to p;

assign e to p;

p ← the partition connected to p via e;

The procedure above guarantees that at least ⌊ei/2⌋ bridges are as-
signed topi because if a partition loses a bridge, another bridge (if
exists) is always assigned to the partition. If we consider bridges

causing edit errors only (i.e., each of ei bridges causes an edit

error), pi has at least ⌊ei/2⌋ edit errors. Since there are B (p,o)
edit errors in the bridges connected to p, we can always assign

at least ⌊B (p,o)/2⌋ edit errors to p using the procedure. □

By pushing edit errors in bridges into a matching partition,

we can make a rigorous partition matching condition called the

bridge constraint as follows.

COROLLARY 2. Given a partition p of a graph x and another graph
y, p is matching with y if and only if there exists an induced sub-
graph o of y such that Vo ⊆ Vy , o ⊑ p, p ⊑ o, and B (p,o) < 2.

EXAMPLE 7. In Example 6, since o is the only occurrence of p3
in y and B (p3,o) ≥ 2, p3 is mismatching with y by Corollary 2.
Therefore, in Example 4, the graph x is divided into four partitions
(three mismatching partitions and one empty partition), and we
obtain a tighter lower bound lb (x ,y) = 3.

Notice that our bridge constraint detects edit errors much

more accurately than the half-edge subgraph isomorphism used

in existing techniques [12, 24]. For example, in Example 6 and 7,

existing techniques cannot detect any edit errors in p3 (we omit

the precise comparison in the interest of space; refer to Pars[24]
for the details of the half-edge subgraph isomorphism).

By integrating the bridge constraint with the induced sub-

graph isomorphism test, we can detect a mismatching partition

early to approximately preserve the indivisibility and minimal-

ity constraints in C1 of Claim 1. Algorithm 3 encapsulates our

induced subgraph isomorphism test with the bridge constraint.

234

Algorithm 3: InducedSI(x , y,M)

input :x and y are graphs;

M is a mapping vector (initially ∅).

output : the least position in x where the matching fails.

1 iteration ← |M | + 1;

2 if iteration > |Vx | then return iteration ;

3 u ← the iterationth vertex in Vx ;

4 C ← {v | v ∈ y ∧v < M ∧ Lx (u) = Ly (v)};

5 foreach v ∈ C do
6 if ∀u ′ → v ′ ∈ M Lx (u,u

′) = Ly (v,v
′) and

B (M ∪ {u → v}) < 2 then
7 depth ← InducedSI(x , y,M ∪ {u → v});

8 if iteration < depth then iteration ← depth;

9 if iteration > |Vx | then return iteration;

10 return iteration;

Like most existing subgraph isomorphism techniques, our algo-

rithm also adopts the Ullmann’s algorithm [18] with a difference

that ours returns the least vertex position in a partition where

the induced subgraph isomorphism test fails. Given a pair of

graphs x and y, the algorithm maps the vertices in x one by one

to find a mapping M between x and y. For the current vertex
u of x (Line 3), it enumerates all unused vertices v ∈ y whose

label is equivalent to the label of u (Line 4), and test if the vertex

mapping u → v is valid (Lines 6). Then, the bridge constraint

in Corollary 2 is applied to the vertex mapping M ∪ {u → v}
(Line 6). If it is a valid mapping, the algorithm goes down to the

next vertex of x (Line 7). It keeps track of the least position (or

maximum iteration count) in x where the induced subgraph iso-

morphism will fail (Lines 1, 8), and returns the position if x @ y
(Line 10). If x ⊑ y, the algorithm returns |Vx | + 1 (Lines 2, 9).

EXAMPLE 8. Given a pair of graph x and y depicted in Figure 7,
consider we perform InducedSI(x ,y, ∅). Let us assume the vertex
ordering of x is from u1 to u6. At the first iteration, InducedSI adds
u1 → v7 into M , and considers u2 → v2 at the second iteration.
Because Lx (u2,u1) = Ly (v2,v7) andB ({u1 → v7}∪{u2 → v2}) =
1, it adds u2 → v2 into M . At the third iteration, it maps the
next vertex u3 to v3, and checks the inducedness: Lx (u3,u1) =
Ly (v3,v7) = λ and Lx (u3,u2) = Ly (v3,v2). Then, it tests the
bridge constraint and fails to find an occurrence because B ({u1 →
v7,u2 → v2} ∪ {u3 → v3}) = 2. Therefore, it returns its iteration
count 3, which denotes {u1,u2,u3} is a mismatching with y.

u6

u4

u1

u2 u3

u5
C C

x

N

S

y

O C

C CN

S O CC

v7

v3v1 v2 v4

v5v8

Figure 7: Example of InducedSI

Correctness of Algorithm 3: Given two vertices u and v in

a graph д, Lд (u,v) returns a unique value λ when there is no

edge between u andv . Therefore, it correctly checks the induced-
ness of x in Line 6. Mismatching caused by bridge differences is

also detected from Line 6, where the correctness is guaranteed by

Corollary 2. Because the algorithm basically follows Ullmann’s al-

gorithm except the test of inducedness, it correctly computes the

induced containment of x . It can be inductively verified the algo-

rithm correctly returns the least position where the isomorphism

test fails.

3.5 Verification Algorithm
In this section, we provide Inves verification algorithm. Given a

pair of graph x and y and a GED threshold τ , Inves incrementally

partitions x to obtain a GED lower bound, and prune the pair

if the lower bound is greater than τ . Otherwise, Inves directly
calculates the GED between x and y.

Algorithm 4: InvesVerifier(x , y, τ)
input :x and y are graphs; τ is a GED threshold.

output :a boolean value of дed (x ,y) ≤ τ

1 if Γ(LV (x),LV (y)) + Γ(LE (x),LE (y)) > τ then
2 return false;

3 lb ← IncrementalPartitioning(x ,y);
4 if lb > τ then return false;

5 p ← the last partition of P (x);

6 if |Vp |/|Vx | > β then
7 M ← vertex mapping between Vp and Vy ;

8 if GEDPartial(M,x ,y,τ) ≤ τ then return true;

9 return GED(x ,y,τ) ≤ τ ;

Algorithm 4 shows the details of Inves verification algorithm.

Using the label differences of vertices and edges, it first computes

a loose GED lower bound and prune the pair if the bound is

greater than τ , where LV (д) and LE (д) denote the label multisets

of vertices and edges in a graph д respectively (Lines 1–2). This

technique is originated from the letter-count filter in the prob-

lem of DNA read mapping [1, 4] and exploited recently in graph

similarity search as a name of the global label filter [25]. Because

the global label filter is very simple and highly selective, it is

essentially used in graph similarity search (e.g., [24, 25]). After

applying the global label filter, Algorithm 4 uses IncrementalPar-
titioning presented in Algorithm 2 to obtain a partition-based

lower bound (Line 3). If the lower bound is greater than τ , it
prune the pair (Line 4). We remark that it is obviously optimized

by pushing the threshold into IncrementalPartitioning and ter-

minating the partitioning process as soon as τ + 1 mismatching

partitions are found.

If the algorithm fails to prune the pair, the last partition p ∈
P (x), which can be an empty partition, is matching with y ac-

cording to Property 1 (Line 5), and a vertex mappingM betweenp
and y is obtained from InducedSI (Line 7). The algorithm exploits

this mapping to compute the GED by using it as the initial state

of the A* algorithm (i.e., pushing the mapping into the queue

instead of an empty mapping in Line 2 of Algorithm 1) (GEDPar-
tial, Line 8). This procedure is called a partial GED computation.
Notice that the distance calculated by the partial GED computa-

tion is an upper bound of the GED of the pair. If it finds the pair

meets τ through the partial GED computation, therefore, it can

save the time for traversing vertices inM . To prevent frequent

invocations of partial GED computation for false positives, we

use the partial GED computation only when the size of matching

partition is big enough (the tunable parameter β in Line 6). If it

235

fails to identify if дed (x ,y) ≤ τ from the partial GED computa-

tion, it finally performs a full GED computation between x and y
(Line 9).

Correctness of Algorithm 4: It can be seen GEDPartial cor-
rectly returns a GED upper bound. Hence, the correctness of the

algorithm is guaranteed by Lemma 1 and Corollary 1.

4 INVES: EFFICIENT GED COMPUTATION
In this section, we develop new methods on top of Algorithm 1 to

improve the performance of GED computation. We first propose

a method to accurately calculate an estimated distance of a vertex

mapping. We then propose a vertex ordering technique that takes

advantage of the partitioning results of InvesVerifier.
The performance of the A* algorithm in Algorithm 1 depends

on the accuracy of an estimated distance of unmapped vertices

and edges. Riesen et al. proposed a bipartite heuristic [14], which

gives a lower bound of the distance between unmapped parts

with bipartite matching.GSimSearch [25, 26] show that the lower

bound of the bipartite heuristic is exactly the same as the label

difference in unmapped parts in the unweighted case. This ap-

proach does not improve the accuracy of the estimation, but it

is significantly faster than the bipartite heuristic because the

bipartite heuristic uses the Hungarian algorithm [13] with a high

complexity of O (n3).
To improve the accuracy of the estimated distance, in this

paper we distinguish bridges of mapped vertices (i.e., edges con-

necting mapped vertices to unmapped vertices) from unmapped

edges. For a vertex mapping M , each u → v ∈ M has Be (u,v)
edit errors in bridges. Since two different mapped vertices in

a graph cannot share any bridges, the total edit errors in the

bridges ofM are B (M). Therefore, the estimated distance ofM ,

denoted by h(M), can be calculated by the sum of B (M) and
the label difference in unmapped vertices and unmapped edges

except bridges. Formally:

h(M) = B (M) + Γ(LV (x ′),LV (y′)) + Γ(LE (x
′),LE (y

′)),

where x ′ and y′ respectively denote the unmapped part of x
and y except bridges. The following example illustrates that our

method accurately calculates an estimated distance.

EXAMPLE 9. For the graphs x andy in Figure 8, consider a vertex

mapping {u1 → v1,u2 → v2,u3 → v3,u4 → v4} is given. The
existing distance in the mapping is 1 (due to the label difference

between u2 and v2). The estimated distance can be calculated in

the following two different ways, where the first is the technique

used in the previous work while the second is ours.

(1) If we use the label difference of unmapped parts of x and y,
we calculate an estimated distance 1 because x has one more

single bond (u5,u7) in its unmapped part.

(2) If we use the bridge method, the number of edit errors in the

bridges is 2 because Be (u2,v2) = 1 and Be (u4,v4) = 1. By

using the label difference of the unmapped vertices and the

unmapped edges except the bridges, we get an additional edit

x y

u1 u2 u3 u4

u7 u6 u5

v1 v2 v3 v4

v7 v6 v5NC C NC C

ON S C BN S C

Figure 8: Estimating distance using bridges

error 1. By adding the two distances from the bridge method

and label filtering, the estimated distance becomes 3.

The second method is to reorder vertices of the graph x (Line 1

in Algorithm 1). Similar to the problem of subgraph isomorphism,

a proper vertex order is also crucial in the GED computation.

Since most candidates generated from the filtering phase are

false positives, we limit our discussion here to a false positive

only (i.e., дed (x ,y) > τ). In general, as a vertex mappingM con-

tains more edit errors, the search space of A* algorithm is reduced.

For example, consider all edit errors in M and there is no edit

error in the remaining vertices and edges. In this case, the A* algo-

rithm can abandonM immediately. To makeM contain as many

edit errors as possible, therefore, we first consider vertices and

edges causing edit errors by placing vertices in the mismatching

partitions in the front positions. Since our partitioning method

makes the size of a mismatching partition as small as possible,

the A* algorithm accurately identifies many edit errors at higher

levels of the state-space tree. It is worth noting that our first

method is essential to detecting edit errors in those mismatching

partitions isolated due to edit errors in bridges.

Algorithm 5: GEDVertexOrder(P (x))
input :P (x) is the partitioning result of x .
output :O is an ordered set of vertices in x

1 O ← ∅;

2 foreach mismatch partition p ∈ P (x) do O ← O ∪Vp ;
3 DetermineVertexOrdering(O);
4 O ← O ∪Vx \O;

5 Return O;

Another consideration is the connectivity among vertices tra-

versed by the A* algorithm. To reduce the search space, it is

important to select the next vertex (Line 8 of Algorithm 1) that

is connected to a vertex inM . Algorithm 5 is the vertex ordering

algorithm. It first pushes vertices in mismatching partitions to

O (Lines 1–2). Then, it orders the vertices in O using Determin-
eVertexOrdering, which traverses the vertices as described in

Section 3 (Line 3). It finally places the remaining vertices (i.e.,

vertices in a matching partition) at the end (Line 4).

5 EXPERIMENTS
5.1 Experimental Setup
We used the following public real datasets.

• AIDS is an antiviral screen compound dataset containing 42, 687

chemical compounds, published by National Cancer Institute
2
.

The dataset contains graphs with large size variation. It is a

popular benchmark used in many graph search techniques.

• PROTEIN is a protein dataset from the Protein Data Bank
3
,

containing 600 protein structures. It contains denser and less

label-informative graphs.

• PubChem is a chemical compound dataset from the PubChem

Project
4
. We used a subset of PubChem consisting of 22, 794

chemical compounds. Graphs in the PubChem dataset contain

repeating substructures and have less size variation compared

with the AIDS and PROTEIN datasets.

2
http://dtp.nci.nih.gov/docs/aids/aids_data.html

3
http://www.iam.unibe.ch/fki/databases/

iam-graph-database/download-the-iam-graph-database

4
http://pubchem.ncbi.nlm.nih.gov, Compound_000975001_001000000.sdf

236

GED Computation
Incremental Partitioning

10-2

10-1

100

101

R
es

po
ns

e
Ti

m
e

(in
 s

ec
.) 102

GED threshold ()
-BR +BR

= 1 = 2 = 3 = 4 = 5

-BR +BR -BR +BR -BR +BR -BR +BR

(a) Bridge constraint (AIDS, query time)

GED Computation
Incremental Partitioning

𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 5

GED threshold (𝜏)
-RM +RM10-2

100

101

102

R
es

po
ns

e
Ti

m
e

(in
 s

ec
.)

10-1

-RM +RM -RM +RM -RM +RM -RM +RM

(b) Partition rematching (AIDS, query time)

Size of Isolated Connected Component (α)

10-1

100

102

Pa
rti

tio
ni

ng
 T

im
e

(in
 s

ec
.)

0 1 2 3 4 5

𝜏 = 1 𝜏 = 2 𝜏 = 3
𝜏 = 4 𝜏 = 5

(c) Worst-case prevention (AIDS)

GED Computation
Incremental Partitioning

10-1

100

101

102

R
es

po
ns

e
Ti

m
e

(in
 s

ec
.)

103

GED threshold ()
-BR +BR

= 1 = 2 = 3 = 4 = 5

-BR +BR -BR +BR -BR +BR -BR +BR

(d) Bridge constraint (PubChem, query time)

GED Computation
Incremental Partitioning

𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 5

GED threshold (𝜏)

10-2

100
101

102
R

es
po

ns
e

Ti
m

e
(in

 s
ec

.)

103

10-1

-RM +RM -RM +RM -RM +RM -RM +RM -RM +RM

(e) Partition rematching (PubChem, query time)

Size of Isolated Connected Component (α)

10-1

100

102

Pa
rti

tio
ni

ng
 T

im
e

(in
 s

ec
.)

1 2 3 4 5 6

𝜏 = 1 𝜏 = 2 𝜏 = 3
𝜏 = 4 𝜏 = 5

101

103

(f) Worst-case prevention (PubChem)

Figure 9: Evaluating optimization methods in Inves incremental partitioning

Table 3 summarizes the datasets, where NLv and NLe denote

the number of distinct vertex and edge labels in the dataset,

respectively.

Table 3: Statistics of datasets

Dataset |D| |V |avg |E |avg |V |max |E |max NLv NLe

AIDS 42,687 25.60 27.60 222 247 62 3

PROTEIN 600 32.63 62.14 126 149 3 5

PubChem 22,794 48.11 50.56 88 92 10 3

For the scalability test, we also used synthetic datasets (see Sec-

tion 5.3). For each dataset, we conducted experiments using a

workload of 100 queries graphs randomly sampled from the

dataset
5
. Candidates requiring GED computation, query response

time, incremental partitioning time, and GED computation time

are measured and reported on the basis of these 100 queries.

All experiments were run on a machine with 32GB RAM, and

an Intel core i7 at 3.4 GHz, running a 64-bit Ubuntu OS. We

implemented Inves in C++, and compiled it using GCC 4.4.3 with

the -O3 flag6. By scanning each dataset once, we pre-computed

vertex and edge frequencies, label multisets of vertices and edges

of each graph, and the label multiset of edges connected to each

vertex. This pre-computation was performed offline and excluded

from the query time.

5.2 Evaluating Optimization Methods in
Inves

We first evaluated various optimization methods used in Inves.
Since the technique is orthogonal to how candidates are gener-

ated, we scanned each dataset, and directly applied InvesVerifier
on each graph to measure the query time. Notice that y-axis is

log-scaled in all experiments.

5
For the PubChem dataset, we manually replaced a few queries because existing

techniques did not evaluate those queries in a reasonable amount of time.

6
The source code of Inves is available at https://github.com/JongikKim/Inves

5.2.1 Methods in Incremental Partitioning. Figure 9(a) and

(d) show the effect of the bridge constraint on the AIDS and

PubChem datasets. -BR is the InducedSI without the bridge con-
straint in Corollary 2, and +BR denotes the case where the bridge

constraint is added to InducedSI. +BR significantly improved

the performance by utilizing differences of bridges connecting

different partitions. For example, GED computation time was

reduced by 2.4 times on the AIDS dataset and 3.3 times on the

PubChem dataset when τ = 4. The significant improvement can

be explained by the number of candidates requiring GED com-

putation. Table 4 shows the results on the AIDS and PubChem

datasets. As shown in the table, +BR substantially reduced the

size of the candidates requiring GED computation.

Table 4: Bridge constraint (number of candidates)

GED threshold (τ) 1 2 3 4 5

AIDS

–BR 135 517 4,686 21,780 60,443

+BR 125 253 1,086 6,902 30,565

PubChem

–BR 226 397 1,138 5,827 25,354

+BR 219 369 838 3,675 16,907

Figure 9(b) and (e) show the effect of the partition rematching

method on the AIDS and PubChem datasets, where +RM and -RM
denotes the results with and without the partition rematching

method, respectively. On the PubChem dataset,+RM significantly

reduced the GED computation time. For example, the GED time

of +RM was about 10, 6, 5, 6, and 3 times faster than -RM for

τ ∈ [1, 5], respectively. Table 5 shows the number of candidates

requiring GED computation with and without the rematching

method. Interestingly, the number of candidates reduced by +RM
was smaller than that of +BR, while +RM achieved a higher

performance gain on GED computation. This is because, although

-BR does not use the bridge constraint, the bridge errors are

considered in our GED algorithm and those false positives having

bridge errors are quickly pruned when computing GED. It can

also be explained by the size of mismatching partitions. Since the

rematching method reduces the size of mismatching partitions,

237

+PA (with partial GED)
−PA (without partial GED)

GED threshold ()
1 2 3 4 5

10-3

10-2

10-1

100

101

G
ED

 T
im

e
(in

 s
ec

.)

102

(a) Partial GED (AIDS)

+BR (with bridge errors)
−BR (without bridge errors)

10-3

10-2

10-1

100

101

G
ED

 T
im

e
(in

 s
ec

.) 102

GED threshold ()
1 2 3 4 5

103

(b) Bridge method (AIDS)

PO (mismatching partition ordering)
VO (vertex ordering)

CO (connectivity ordering)

GED threshold (𝜏)
1 2 3 4 5

10-3

10-2

10-1

100

101

G
ED

 T
im

e
(in

 s
ec

.) 102

103

(c) Reordering method (AIDS)

+PA (with partial GED)
−PA (without partial GED)

GED threshold ()
1 2 3 4 5

10-2

10-1

100

101

G
ED

 T
im

e
(in

 s
ec

.)

102

103

(d) Partial GED (PubChem)

+BR (with bridge errors)
−BR (without bridge errors)

GED threshold ()
1 2 3 4 5

103

10-2

10-1

100

101

G
ED

 T
im

e
(in

 s
ec

.)
102

104

(e) Bridge method (PubChem)

PO (mismatching partition ordering)
VO (vertex ordering)

CO (connectivity ordering)

GED threshold (𝜏)
1 2 3 4 5

10-2

10-1

100

101

G
ED

 T
im

e
(in

 s
ec

.)

102

104

103

105

(f) Reordering method (PubChem)

Figure 10: Evaluating optimization methods in Inves GED computation

A* algorithm can identify more edit errors at higher levels of the

state-space tree and prune false positives early. Table 6 shows

average sizes of mismatching partitions on the PubChem dataset.

Table 5: Partition rematching (number of candidates)

GED threshold (τ) 1 2 3 4 5

AIDS

–RM 129 279 1,451 8,807 36,265

+RM 125 253 1,086 6,902 30,565

PubChem

–RM 223 384 951 4,184 18,322

+RM 219 369 838 3,675 16,907

Table 6: Average mismatching partition size (PubChem)

GED threshold (τ) 1 2 3 4 5

–RM 4.49 17.93 27.34 33.79 37.73

+RM 1.78 9.13 18.28 26.5 31.69

On the AIDS dataset, however, +RM slightly degraded the overall

performance because the GED computation on the AIDS dataset

is much faster than that on the PubChem dataset and the re-

matching overhead of +RM is greater than the performance gain

on GED computation. From the experiments, we observed that

the rematching method should be used for steady performance

even though it increases the partitioning time.

Figure 9(c) and (f) show the effect of the tunable parameter α
described in Algorithm 2 in Section 3.3. As shown in the figure,

tiny connected components greatly degraded the partitioning

performance. Without the worst-case prevention method, the

partitioning was extremely slow on the PubChem dataset and it

did not finish in a reasonable amount of time. For this reason, we

omit the result for α = 0 in Figure 9(f). Based on the experiment,

we used α = 1 for the AIDS dataset and α = 4 for the PubChem

dataset. We performed similar experiments on the PROTEIN

dataset, and chose α = 1.

5.2.2 Methods in GED Computation. Evaluation results of the

GED computation methods on the AIDS and PubChem datasets

are shown in Figure 10. Figure 10(a) and (d) show the effect of

the partial GED computation, where -PA and +PA denote In-
vesVerifier with and without this method, respectively. In our

experiments, we observed that the tunable parameter β in In-
vesVerifier is relatively insensitive, and used β = 0.7 (we omit the

results in the interest of space). +PA showed a good performance

for low GED thresholds on both datasets. When a GED thresh-

old was low, most candidates were answers, thus we had more

chances to find an answer through a partial GED computation.

As the threshold increased, however, most query time was spent

on verifying false positives, and this method provided a marginal

benefit only.

Figure 10(b) and (e) show the experimental results of our GED

computation method with and without exploiting bridge errors,

which are denoted by +BR and -BR, respectively. By precisely

calculating edit errors in bridges, +BR reduced GED computation

time up to 7 times on both datasets.

Figure 10(c) and (f) show the evaluation results of alternative

vertex orderings.VO, PO, andCO denote the original vertex order,

the vertex order considering vertices in mismatching partitions

first, and the vertex order considering connectivity of vertices

in Algorithm 5, respectively. PO significantly outperformed VO
on both datasets. For example, PO is about 1.5 to 3 times faster

than CO on the AIDS dataset. The performance on the PubChem

dataset was extremely poor when VO was used. For example, VO
was about 100 times slower than PO when τ = 3. This is because

the dataset contains graphs having repeating substructures, and

thus the A* algorithm cannot efficiently prune the state-space tree

without a proper vertex ordering. Considering the connectivity

of vertices in different partitions, CO exhibited best performance

for all the GED thresholds on both datasets.

5.3 Improving existing techniques
In this experiment, we evaluated how Inves can be adopted by

existing techniques to improve their performance.We chose three

representative techniques:

238

P PV PH PI P PV PH PI P PV PH PI P PV PH PI P PV PH PI

Candidate Generation

GED Computation
Incremental Partitioning

10-1

100

101

102

103

R
es

po
ns

e
Ti

m
e

(in
 s

ec
.)

GED threshold ()

= 1 = 2 = 3 = 4 = 5

(a) Pars (AIDS, query time)

10-2
10-1
100
101
102

R
es

po
ns

e
Ti

m
e

(in
 s

ec
.)

103

GED threshold ()
G GI G GI G GI G GI G GI

Candidate Generation

GED Computation
Incremental Partitioning

= 1 = 2 = 3 = 4 = 5

(b) GSimSearch (AIDS, query time)

100

101

102

103

R
es

po
ns

e
Ti

m
e

(in
 s

ec
.)

GED threshold ()
M MI M MI M MI M MI M MI

Candidate Generation

GED Computation
Incremental Partitioning

= 1 = 2 = 3 = 4 = 5

(c) MLIndex (AIDS, query time)

P PV PH PI P PV PH PI P PV PH PI P PV PH PI P PV PH PI

Candidate Generation

GED Computation
Incremental Partitioning

10-1

100

101

102

103

R
es

po
ns

e
Ti

m
e

(in
 s

ec
.)

GED threshold ()

= 1 = 2 = 3 = 4 = 5

(d) Pars (PubChem, query time)

10-2
10-1
100
101
102

R
es

po
ns

e
Ti

m
e

(in
 s

ec
.)

103

GED threshold ()
G GI G GI G GI G GI G GI

Candidate Generation

GED Computation
Incremental Partitioning

= 1 = 2 = 3 = 4 = 5

(e) GSimSearch (PubChem, query time)

100

101

102

103

R
es

po
ns

e
Ti

m
e

(in
 s

ec
.)

GED threshold ()
M MI M MI M MI M MI M MI

Candidate Generation

GED Computation
Incremental Partitioning

= 1 = 2 = 3 = 4 = 5

(f) MLIndex (PubChem, query time)

Figure 11: Improvement of existing techniques

102

103

104

105

N
o.

 o
f C

an
di

da
te

s

Real Results

P G M
PI GI MI

GED threshold ()
1 2 3 4 5

(a) AIDS

GED threshold ()
1 2 3 4 5

102

103

104

105

N
o.

 o
f C

an
di

da
te

s

Real Results

P G M
PI GI MI

(b) PubChem

Figure 12: Number of candidates

(1) GSimSearch, labeled as G in figures, is a path-based q-gram
approach proposed in [25, 26]. According to the results of

[25], we used q = 4 for the AIDS dataset and q = 3 for

the PROTEIN dataset. We conducted experiments on gram

lengths for the PubChem dataset, and used q = 4 based on

the results.

(2) Pars, labeled as P, is the state-of-the art partition-based ap-

proach [24]. For best performance, we improved Pars in the

following ways. Since sequential scanning of indexed parti-

tions was very slow, we implemented an index access method

by modifying the SwiftIndex [16]. After we generated can-

didates using the index access method, we applied their re-

cycling subgraph isomorphism test to each candidate. We

also improved its verification process by using the local la-

bel filtering and the vertex ordering based on mismatching

q-grams proposed in GSimSearch.

(3) MLIndex, labeled as M, is a multi-layered index technique

proposed in [12]. We also improved MLIndex in the same

way as Pars.

For each of the three implemented techniques, we adopted

Inves in their verification phase. We labeled the corresponding

improved techniques as PI, GI, and MI, respectively. We did not

include other existing techniques such as c-star [22], SEGOS [20]
and k-AT [19] since GSimSearch and Pars consistently outper-

formed these techniques [24–26]. We also excludedMixed [27]

because its performance results showed no significant differences

with the performance of GSimSearch as reported in [3].

Figure 11 shows the results on the AIDS and PubChem datasets

(see Figure 13(b) for the results of the PROTEIN dataset). In Fig-

ure 11(a) and (d), PV and PH denote Pars with the proposed

verifier (without our GED computation methods), and Pars with
the bridge method for GED (without the incremental partition-

ing), respectively. As shown in Figures 11, Inves improved the

performance of all these three existing techniques by up to an or-

der of magnitude. The significant improvement can be explained

by the results of PV, PH, and PI in Figure 11(a) and (d). Both

our partitioning and GED computation methods significantly

reduced the total search time. When the incremental partitioning

and GED computation methods are used together, the overall

performance improvement was even more. In Figure 11(a), for

example, when τ = 4, PV was about 2 times faster than P, and
PH was about 4 times faster than P. PI was about 25 times faster

than P. Similar results were also observed on GSimSearch and

MLIndex. Another important indicator of the improvement is the

number of candidates requiring GED computation. As shown in

Figures 12, Inves generated much smaller sets of candidates for

the AIDS and PubChem datasets.

Scalability tests: We also evaluated the scalability of the pro-

posed technique, on both the PROTEIN dataset and synthetic

datasets generated by a graph generator
7
. The generator mea-

sured the graph size in terms of the number of edges (|E |), and

7
GraphGen (http://www.cse.ust.hk/graphgen/) is a popular graph generator widely

used in related work (e.g., [12, 24, 26]) for scalability tests.

239

Dataset Cardinality (n)

n = 60k n = 80k n = 100k
Candidate Generation

GED Computation
Incremental Partitioning

n = 20k n = 40k

P PI P PI P PI P PI P PI100

101

102

103

R
es

po
ns

e
Ti

m
e

(in
 s

ec
.) 104

(a) Dataset cardinality (Synthetic, τ = 3)

=1 =2 =3 =4 =5
Candidate Generation

GED Computation
Incremental Partitioning

GED threshold ()

=6 =7 =8

10-3
10-2

100
101
102
103

10-1

R
es

po
ns

e
Ti

m
e

(in
 s

ec
.)

M G P I M G P I M G P I M G P I M G P I M G P I M G P I M G P I

(b) GED threshold (PROTEIN)

Figure 13: Evaluating scalability

the density of a graph defined as d = 2|E |/|V |(|V | − 1). We used

|E | = 20 and d = 0.3 for the experiments, which were default

values of the generator. The cardinality of vertex and edge label

domains were set to 2 and 1, respectively. Figure 13(a) shows the

results. To evaluate the scalability, we generated five synthetic

datasets consisting of 20k, 40k, 60k, 80k, and 100k graphs. In

the experiments, 100 query graphs were randomly sampled from

each dataset and the GED threshold was fixed as 3. The query

time grew steadily and the growth ratios of query times were

similar in P and PI.
Figure 13(b) shows the scalability results of the GED threshold.

Because the PROTEIN dataset contains dense graphs, we chose

the dataset to increase τ up to 8. Since the dataset contains 600

graphs only, we separately ran Inves, denoted by I in the figure,

by scanning all the data graphs. As shown in the figure, Inves
scaled best in terms of response time and outperformed existing

techniques by up to about 65 times.

6 CONCLUSIONS
In this paper, we developed a novel technique called Inves for
verifying if the graph edit distance (GED) between two graphs

is within a threshold, an important and expensive step in graph

similarity search. Its main idea is to judiciously and incrementally

partition a candidate graph based on the query graph, and use the

results to compute a lower bound of their distance. If a full GED

computation is needed, Inves utilizes the collected information,

and uses novel methods and anA* algorithm to search in the space

of possible vertex mappings between the graphs to compute their

GED efficiently.We presented a full specification of the technique,

and conducted extensive experiments on both real and synthetic

datasets. The results showed that the technique can significantly

improve the performance of existing techniques [12, 24–26] by

an order of magnitude.

ACKNOWLEDGMENTS
This researchwas supported by theMSIT (Ministry of Science and

ICT), Korea, under the ITRC (Information Technology Research

Center) support program (IITP-2018-2015-0-00378) supervised by

the IITP (Institute for Information & communications Technology

Promotion). Dong-Hoon Choi was partially supported by ETRI

R&D Program (“Development of Big Data Platform for DualMode

Batch-Query Analytics, 14Z1400”) funded by the Government of

Korea. Chen Li has been partially supported by NSF award III

1745673.

REFERENCES
[1] A. Ahmadi, A. Behm, N. Honnalli, C. Li, and X. Xie. 2012. Hobbes: Optimized

gram-based methods for efficient read alignment. Nucleic Acids Res. 40 (2012),

e41.

[2] H. Bunke and K. Shearer. 1998. A graph distance metric based on the maximal

common subgraph. Pattern Recogn. Lett. 19, 3-4 (1998), 255–259.
[3] X. Chen, H. Huo, J. Huan, and J. S. Vitter. 2017. Efficient graph similarity

search in external memory. IEEE Access 5 (2017), 4551–4560.
[4] A. Döring, D. Weese, T. Rausch, and K. Reinert. 2008. SeqAn an efficient,

generic c++ library for sequence analysis. BMC Bioinformatics. BMC Bioin-
formatics 9 (2008), 11.

[5] A. Fischer, C. Y. Suen, V. Frinken, K. Riesen, andH. Bunke. 2015. Approximation

of graph edit distance based on Hausdorff matching. Pattern Recognition 48, 2

(2015), 331 – 343.

[6] K. Gouda and M. Arafa. 2015. An improved global lower bound for graph edit

similarity search. Pattern Recogn. Lett. 58 (2015), 8–14.
[7] W.-S. Han, J. Lee, and J.-H. Lee. 2013. TurboISO : Towards ultrafast and robust

subgraph isomorphism search in large graph databases. In SIGMOD Conference.
337–348.

[8] J. Kim. 2015. An effective candidate generation method for improving per-

formance of edit similarity query processing. Information Systems 41 (2015),
116–128. Issue 1.

[9] J. Kim, C. Li, and X. Xie. 2014. Improving read mapping using additional prefix

grams. BMC Bioinformatics 15 (2014), 42.
[10] J. Kim, C. Li, and X. Xie. 2016. Hobbes3: Dynamic generation of variable-

length signatures for efficient approximate subsequence mappings. In ICDE.
169–180.

[11] G. Li, D. Deng, J. Wang, and J. Feng. 2011. Pass-Join: A Partition based method

for similarity joins. PVLDB 5, 3 (2011), 253–264.

[12] Y. Liang and P. Zhao. 2017. Similarity search in graph databases: a multi-

layered indexing approach. In ICDE.
[13] J. Munkres. 1957. Algorithms for the assignment and transportation problems.

J. SIAM 5 (1957), 32–38.

[14] K. Riesen, S. Fankhauser, and H. Bunke. 2007. Speeding up graph edit distance

computation with a bipartite heuristic. In MLG.
[15] H. Shang, X. Lin, Y. Zhang, J. X. Yu, andW.Wang. 2010. Connected substructure

similarity search. In SIGMOD Conference. 903–914.
[16] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. 2008. Taming verification hardness:

an efficient algorithm for testing subgraph isomorphism. PVLDB 1, 1 (2008),

364–375.

[17] Y. Tian, R. C. Mceachin, C. Santos, D. J. States, and J. M. Patel. 2007. SAGA:

A subgraph matching tool for biological graphs. Bioinformatics 23, 2 (2007),
232–239.

[18] J. R. Ullmann. 1976. An algorithm for subgraph isomorphism. J. ACM 23, 1

(1976), 31–42.

[19] G. Wang, B. Wang, X. Yang, and G. Yu. 2012. Efficiently indexing large sparse

graphs for similarity search. IEEE Trans. on Knowl. and Data Eng. 24, 3 (2012),
440–451.

[20] X. Wang, X. Ding, A. K. H. Tung, S. Ying, and H. Jin. 2012. An efficient graph

indexing method. In ICDE. 210–221.
[21] C. Xiao,W.Wang, and X. Lin. 2008. Ed-Join: an efficient algorithm for similarity

joins with edit distance constraints. PVLDB 1, 1 (2008), 933–944.

[22] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou. 2009. Comparing stars:

On approximating graph edit distance. PVLDB 2, 1 (2009), 25–36.

[23] S. Zhang, J. Yang, and W. Jin. 2010. SAPPER: Subgraph indexing and approxi-

mate matching in large graphs. PVLDB 3, 1 (2010), 1185–1194.

[24] X. Zhao, C. Xiao, X. Lin, Q. Liu, and W. Zhang. 2013. A partition-based

approach to structure similarity search. PVLDB 7, 3 (2013), 169–180.

[25] X. Zhao, C. Xiao, X. Lin, and W. Wang. 2012. Efficient graph similarity join

with edit distance constraints. In ICDE. 834–845.
[26] X. Zhao, C. Xiao, X. Lin, W. Wang, and Y. Ishikawa. 2013. Efficient processing

of graph similarity queries with edit distance constraints. The VLDB Journal
22, 6 (2013), 727–752.

[27] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao. 2015. Efficient graph

similarity search over large graph databases. IEEE Trans. on Knowl. and Data
Eng. 27, 4 (2015), 964–978.

[28] G. Zhu, X. Lin, K. Zhu, W. Zhang, and J. X. Yu. 2012. TreeSpan: Efficiently

computing similarity all-matching. In SIGMOD Conference. 529–540.

240

	Inves: Incremental Partitioning-Based Verification for Graph Similarity SearchJongik Kim, Dong-Hoon Choi, Chen Li

