Advances in Database Technology
— EDBT 2018

21st International Conference

on Extending Database Technology
Vienna, Austria, March 26-29, 2018
Proceedings

Editors

Michael Bohlen
Reinhard Pichler
Norman May
Erhard Rahm
Shan-Hung Wu
Katja Hose

http://OpenProceedings.org/

Advances in Database Technology — EDBT 2018
Proceedings of the 21st International Conference
on Extending Database Technology
Vienna, Austria, March 26-29, 2018

Editors

Michael Bohlen, University of Ziirich, Switzerland
Reinhard Pichler, TU Wien, Austria

Norman May, SAP Research, Germany

Erhard Rahm, University of Leipzig, Germany
Shan-Hung Wu, National Tsing Hua University, Taiwan
Katja Hose, Aalborg University, Denmark

C proceedings

OpenProceedings.org
University of Konstanz
University Library

78457 Konstanz, Germany

Series ISSN: 2367-2005

COPYRIGHT NOTICE: Copyright © 2018 by the authors of the individual papers.

Distribution of all material contained in this volume is permitted under the terms of the Creative Commons license CC-by-

nc-nd 4.0
OpenProceedings ISBN: 978-3-89318-078-3

DOI of this front matter: 10.5441/002/edbt.2018.01

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.01

Foreword

The International Conference on Extending Database Technology (EDBT) is a leading international forum for database re-
searchers, developers, and users to present and discuss cutting-edge ideas, and to exchange techniques, tools, and experiences
related to data management. Data management is an essential enabling technology for scientific, business, and social com-
munities. It is driven by the requirements of applications across many scientific, business and social communities, and runs
on diverse technical platforms associated with the web, enterprises, clouds and mobile devices. The database community
has a continuing tradition of contributing with models, algorithms and architectures to the set of tools and applications that
enable day-to-day functioning of our societies. Faced with the broad challenges of today’s applications, data management
technology constantly broadens its reach, exploiting new hardware and software to achieve innovative results.

EDBT 2018 solicited submissions of original research contributions, descriptions of industrial solutions and applications, and
proposals for tutorials and software demonstrations. We encouraged submissions of research papers related to all aspects
of data management. In addition to regular research paper submissions, EDBT 2018 again encouraged the submission of
short research papers, which includes visionary papers that provide a forum for the identification and discussion of new or
emerging areas, innovative or risky approaches, or emerging applications that require extensions of established techniques.
Short papers are presented as posters at plenary poster sessions of the conference. This provides an excellent opportunity
to describe significant work in progress or research that is best communicated interactively and fosters discussions.

The program committees of EDBT accepted 35 out of 142 submitted regular research papers, resulting in an acceptance rate
of 24.6% for the research track; 23 out of 84 submitted short research papers, resulting in an acceptance rate of 27.4% for
short research papers; 16 out of 37 demos, resulting in an acceptance rate of 43.2% for the demonstration track; and 10 out
of 28 industrial and application papers, resulting in an acceptance rate of 35.7% for industrial and application papers. The
papers will be presented in twelve research paper sessions, three industrial and application sessions, as well as two plenary
poster and demonstration sessions. The program additionally features four workshops, one of which is the well-established
DOLAP workshop that has successfully been co-located with EDBT since many years. Finally, the conference program
includes four tutorials and an EDBT and ICDT joint session on research challenges.

I would like to thank all authors for their contributions: a successful conference crucially depends on high-quality sub-
missions. I also would like to thank all reviewers for serving on the EDBT 2018 program committee, in particular for the
high quality and timely handling of all reviews and discussions. This community service requires a lot of work on a tight
schedule, and is what makes our research community function and ensures the sustained impact of our research. Thanks to
this effort we can look forward to an exciting program and attractive EDBT conference in Vienna from March 26-29, 2018.
A warm thanks to Norman Paton and Divesh Srivastava for serving on the Test-of-Time Award committee to select the paper
from EDBT 2008 that has had the most lasting influence. The committee selected the paper Social ties and their relevance to
churn in mobile telecom networks by Koustuv Dasgupta, Rahul Singh, Balaji Viswanathan, Dipanjan Chakraborty, Sougata
Mukherjea, Amit A. Nanavati, and Anupam Josi for the test-of-time award.

Lei Chen, Wolfgang Lehner and Kian-Lee Tan generously accepted to serve on the Best Paper committee. As best paper, the
committee selected the paper Temporally-Biased Sampling for Online Model Management by Brian Hentschel from Harvard
University, Peter Haas from the University of Massachusetts Amherst, and Yuanyuan Tian from IBM Almaden Research
Center. The EDBT best paper runner-up was awarded to the paper GeoAlign: Interpolating Aggregates over Unaligned
Partitions by Jie Song from the University of Michigan, Danai Koutra from the University of Michigan, Murali Mani from
the University of Michigan, Flint, and H. Jagadish from the University of Michigan. Congratulations to the awardees and a
warm thanks to the committee members for their work.

The EDBT 2018 program is the result of the joint effort of many people who shared their experience and time to contribute to
the EDBT 2018 program and make the conference a success. Norman May served as PC chair for industrial and application
papers; Shan-Hung as PC chair for the demonstration track; Erhard Rahm as tutorial chair; Nikolaus Augsten as workshop
chair; and Dan Olteanu as challenge session organizer. My warmest thank to all these people.

The general chair, Reinhard Pichler and the local organizers worked hard to make all necessary arrange—ments for a suc-
cessful event. Special thanks to Katja Hose, the proceedings chair; Dimitris Sacharidis, the sponsorship chair; and Shqiponja
Ahmetaj, Markus Kr6ll, and Wolfgang Fischl, the website chairs, for tirelessly finding solutions for all our needs and making
things happen. Norman Paton was most helpful in advising and coordinating with the EDBT Executive Board.

I hope that you find EDBT 2018 inspiring, informative, and enjoyable and look forward to meeting you in Vienna.

Michael Bohlen
EDBT 2018 Program Chair

Program Committee Members

Research Program Committee

Ahmed Eldawy, UC Riverside

Angela Bonifati, U Lyon

Anton Dignos, Free U Bozen-Bolzano
Arash Termehchy, Oregon State U

Arijit Khan, Nanyang Techn. U

Arnab Bhattacharya, IIT Kanpur
Bernhard Seeger, U Marburg

Bin Cui, Peking U

Boris Glavic, Illinois Inst. of Techn.
Carsten Binning, Brown U

Ce Zhang, ETH Zurich

Curtis Dyreson, Utah State U

Daniele Dell’Aglio, U Ziirich

Davide Martinenghi, Politecnico di Milano
Denilson Barbosa, U Alberta

Elena Ferrari, U Insubria

Floris Geerts, U Antwerp

Giansalvatore Mecca, U Basilicata
Gottfried Vossen, U Miunster

Guoliang Li, Tsinghua U

Heiko Schuldt, U Basel

Hong Va Leong, Hong Kong Polytechnic U
Jens Teubner, TU Dortmund

K. Selcuk Candan, Arizona State U

Karl Aberer, EPF Lausanne

Kian-Lee Tan, National U Singapore
Kjetil Norvag, NTNU

Klaus Berberich, MPI Informatics
Klemens Bohm, Karlsruhe Inst. Technology
Kostas Stefanidis, U Tampere

Kyriakos Mouratidis, Singapore Mgmt. U
Lei Chen, Hong Kong U Sc. & Tech.

Man Lung Yiu, Hong Kong Polytechn. U
Marc Spaniol, U Caen Basse-Normandie
Martin Theobald, U Luxembourg
Matthias Renz, George Mason U
Maurice van Keulen, UTwente
Mohamed Eltabakh, Worcester PI
Mohammad Sadoghi, Purdue U

Mourad Ouzzani, Qatar Cmptg. Res. Inst.
Nikos Pelekis, U Piraeus

Nikos Mamoulis, U Ioannina

Panagiotis Papapetrou, Stockholm U
Panagiotis Bouros, Aarhus U
Panagiotis Karras, Aalborg U

Paolo Papotti, EURECOM

Periklis Andritsos, U Toronto

Peter Triantafillou, U Glasgow
Philippe Cudre-Mauroux, U Fribourg
Pierre Senellart, ENS

Rainer Gemulla, U Mannheim

Ralf Hartmut Giiting, FU Hagen
Reynold Cheng, U Hong Kong
Riccardo Torlone, U Roma Tre

Ryan Stutsman, U Utah

Sabrina De Capitani di Vimercati, U Milano
Sebastian Michel, TU Kaiserslautern
Senjuti Roy, New Jersey Inst. Techn.
Sherif Sakr, U New South Wales
Sourav S Bhowmick, Nanyang Techn. U
Stefan Manegold, CWI Amsterdam
Stratis Viglas, U Edinburgh

Sven Helmer, Free U Bozen-Bolzano
Themis Palpanas, Paris Descartes U
Theodore Johnson, AT&T Labs
Thomas Seidl, LMU Miunchen

Timos Sellis, Swinburne UT

Tore Risch, Uppsalla U

Torsten Grust, U Titbingen

UIf Leser, HU Berlin

Verena Kantere, U Geneva

Wai Kit Wong, Hang Seng Mgmt. College
Walid Aref, Purdue U

Wei-Shinn Ku, Auburn U

Wolfgang Lehner, TU Dresden
Wook-Shin Han, Postech

Xin Huang, Hong Kong Baptist U
Yang Cao, U Edinburgh

Yannis Theodoridis, U Piraeus
Yannis Velegrakis, U Trento

Yaron Kanza, Technion

Ying Yang, State U New York

Ying Zhang, UT Sydney

Industrial Program Committee

Berthold Reinwald, IBM Research
Carl-Christian Kanne, Workday
Christian Mathis, SAP

Danica Porobic, Oracle

Eric Simon, SAP-BO

Florian Funke, Snowflake

Jorg Schad, Mesosphere

Manuel Then, Tableau

Martin Grund, Amazon

Matthias Brantner, Oracle
Matthias Boehm, IBM

Philipp Unterbrunner, Facebook
Pinar Tozun, IBM

Stefan Mandl, Exasol

Tobias Muehlbauer, Muehlbauer Tableau

Demonstration Program Committee

Alessandro Campi, Politecnico di Milano
Alfredo Cuzzocrea, U Trieste & ICAR-CNR
Anisoara Nica, SAP SE Waterloo

Berthold Reinwald, IBM Research

Danai Symeonidou, French Nat.Inst. Agricultural Res.

Demetris Zeinalipour, MPI Informatics & U Cyprus
Dirk Habich, TU Dresden

Elisa Quintarelli, Politecnico di Milano

Eric Lo, Chinese U Hong Kong

Ernest Teniente, UP Catalunya

George Fletcher, TU Eindhoven

Guoliang Li, Tsinghua U

Haruo Yokota, Tokyo Inst. Technology

Kai-Uwe Sattler, TU Ilmenau

Katja Hose, Aalborg U

Leopoldo Bertossi, U Carleton

Letizia Tanca, Politecnico di Milano

Michael Gertz, Heidelberg U

Neil Conway, Mesosphere

Norman Paton, U Manchester

Tony Tan, Nat. Taiwan U

Vasilis Vassalos, Athens U Economics & Business
Yi-Leh Wu, Nat. Taiwan U Sci. & Techn.

Yingyi Bu, Couchbase

Zhifeng Bao, RMIT U

External Reviewers

Abdallah Arioua, Lyon 1 U

Alessio Conte, Nat.Inst. Informatics Tokyo
Amit Gupta, EPF Lausanne

Andreas Spitz, Heidelberg U

Anna Beer, LMU Munich

Ben McCamish, Oregon State U

Bo Tang, Southern U Sc. & Techn. China
Chenhao Ma, U Hong Kong

Christian Beilschmidt, U Marburg
Danhao Ding, U Hong Kong

Daniyal Kazempour, LMU Munich

Denis Martins, U Munster

Dimitris Sacharidis, TU Wien

Donatella Firmani, U Roma Tre

iii

Donatello Santoro, U Basilicata
Duong Chi Thang, EPF Lausanne
Evgeniy Faerman, LMU Munich
Fabio Valdés, FU Hagen

Fan Zhang, U New South Wales
Florian Funke, Snowflake Computing
Florian Richter, LMU Munich
Giulia Pretti, U Trento

Hamza Harkous, EPF Lausanne
Hanchen Wang, UT Sydney

Harris Georgiou, U Piraeus
Jan-Kristof Nidzwetzki, FU Hagen
Janina Sontheim, LMU Munich
Jens Lechtenborger, U Miinster
Jiafeng Hu, U Hong Kong

Jilian Zhang, Jinan U

Johannes Droenner, U Marburg
Jose Picado, Oregon State U

Julian Busch, LMU Munich

Kewen Liao, Swinburne UT

Kiril Panev, TU Kaiserslautern
Koninika Pal, TU Kaiserslautern
Kostas Patroumpas, IMIS Athena Res. Ctr.
Kostas Zoumpatianos, Harvard U
Leschek Homann, U Munster

Loc Do, U Hong Kong

Manuel Hoffmann, TU Kaiserslautern
Matteo Lissandrini, U Trento

Max Berrendorf, LMU Munich
Michael Kérber, U Marburg
Michael Mattig, U Marburg
Michele Linardi, Paris Descartes U
Mingjie Li, UT Sydney

Nicolas Pflanzl, U Munster
Nikolaus Glombiewski, U Marburg
Panayiotis Smeros, EPF Lausanne
Parisa Ataie, Oregon State U
Patrick Schaefer, HU Berlin

Pavlos Paraskevopoulos, George Mason U
Peipei Yi, Hong Kong Baptist U
Prithvi Sen, IBM Almaden
Ruey-Cheng Chen, RMIT U
Spencer Pearson, Purdue U

Suyash Gupta, UC Davis

Tam Nguyen Thanh, EPF Lausanne
Thamir Qadah, Purdue U
Theodoros Chondrogiannis, U Konstanz
Thomas Fober, U Marburg

Thomas Krause, HU Berlin

Ugo Comignani, Lyon 1 U

Vahid Ghadakchi, Oregon State U
Yifeng Lu, LMU Munich

Yixiang Fang, U Hong Kong

Yodsawalai Chodpathumwan, Oregon State U

Yongrui Qin, U Huddersfield

You Peng, U New South Wales
Yuli Jiang, Chinese U Hong Kong
Zhipeng Huang, U Hong Kong
Zhipeng Zhang, Peking U
Zichen Zhu, U Hong Kong

Test-of-Time Award

Since 2014, the Extended Database Technology (EDBT) Conference awards the EDBT test-of-time award, with
the goal of recognizing papers presented at EDBT Conferences that have had the most impact in terms of
research, methodology, conceptual contribution, or transfer to practice.

This year the award has been given to a paper from the EDBT 2008 Conference in Nantes, France. The award
was bestowed upon the paper:

Social ties and their relevance to churn in mobile telecom networks

by Koustuv Dasgupta, Rahul Singh, Balaji Viswanathan, Dipanjan Chakraborty, Sougata
Mukherjea, Amit A. Nanavati and Anupam Josi

published in the EDBT 2008 Proceedings, pp. 668-677, DOL: 10.1145/1353343.1353424.

This industry track paper reports on an analysis of mobile telecoms data, with a view to predicting which
customers will leave. The analysis involves commercial mobile telephony data, in which nodes are customers
and edges represent calls. The hypothesis tested is that it is possible to predict who will leave a network
based on earlier departures among their connections. The main technique investigated is the use of spreading
activation, to predict the heat of nodes based on the heat of connected notes. It is shown how the approach
based on connections is more effective than classification techniques based on other properties of the nodes.
As aresult, the paper provides early and compelling experience on the combination an important real problem
(churn in mobile telecom networks) with a powerful technique (social ties) and applies it on large real data
(telecom operator network over 4 months). The approach has influenced many subsequent studies, for the
same problem, but also for analyses involving different types of network and different hypotheses. Social
network analysis continues as an important and active area ten years later, and this paper continues to be
widely cited.

The EDBT 2018 Test-of-Time Award Committee consisted of Michael Bohlen, Divesh Srivastava and Norman
Paton. The EDBT Test-of-Time award for 2018 will be presented during the EDBT/ICDT 2018 Conference,
March 26-29, in Vienna, Austria (http://edbticdt2018.at).

iv

http://doi.acm.org/10.1145/1353343.1353424
http://edbticdt2018.at

Best Paper Award

The best paper award was bestowed upon the paper:

Temporally-Biased Sampling for Online Model Management

by Brian Hentschel from Harvard University, Peter Haas from the University of Massachusetts
Ambherst, and Yuanyuan Tian from the IBM Almaden Research Center. DOI:
10.5441/002/edbt.2018.11

The paper proposes a temporally-biased sampling method for a stream of batches that weighs recent data items
more heavily. The inclusion probabilities of data items decay exponentially over time. The authors introduce
a reservoir-based temporally-biased sampling method that asserts an upper bound on the sample size while
keeping the decay of the sample predictable. The problem is well motivated and described, and the paper
offers an excellent solution that is formalized precisely, is robust in the presence of evolving data, and has
been implemented and evaluated for a distributed setting.

The best paper runner-up award was bestowed upon the paper:

GeoAlign: Interpolating Aggregates over Unaligned Partitions

by Jie Song from the University of Michigan, Danai Koutra from the University of Michigan,
Murali Mani from the University of Michigan, Flint, and H. Jagadish from the University of
Michigan. DOI: 10.5441/002/edbt.2018.32

This paper introduces a novel technique to integrate geographical summaries over unaligned geographical
regions, e.g., counties and ZIP codes. While traditional techniques assume that the data in each region is
uniformly distributed, the proposed approach infers the distribution based on other datasets. The proposed
idea is novel, refreshing, and nicely motivated. The described solutions are practical, have been implemented
and evaluated, and there is good potential for follow-up work.

The EDBT 2018 Best Paper Award Committee consisted of Michael Bohlen, Lei Chen, Wolfgang Lehner, and
Kian-Lee Tan. The EDBT Best Paper Awards for 2018 will be presented during the EDBT/ICDT 2018 Confer-
ence, March 26-29, in Vienna, Austria (http://edbticdt2018.at).

http://dx.doi.org/10.5441/002/edbt.2018.11
http://dx.doi.org/10.5441/002/edbt.2018.32
http://edbticdt2018.at

Table of Contents

Foreword . ..o e i
Program Committee Members ii
Test-of-Time AWardo iv
Best Paper AWardo v
Table of CONENESottt vi

Research Papers

ID Repair for Trajectories with Transition Graphs
Xingcan Cui, Xiaohui Yu, Xiaofang Zhou, Jiong GUO 1

MTBase: Optimizing Cross-Tenant Database Queries
Lucas Braun, Renato Marroquin, Ken Tsay, Donald Kossmann 13

Extending In-Memory Relational Database Engines with Native Graph Support
Mohamed Hassan, Tatiana Kuznetsova, Hyun Chai Jeong, Walid Aref, Mohammad Sadoghi 25

Sequenced Route Query with Semantic Hierarchy
Yuya Sasaki, Yoshiharu Ishikawa, Yasuhiro Fujiwara, Makoto Onizuka. 37

On Complexity and Efficiency of Mutual Information Estimation on Static and Dynamic Data
Michael Vollmer, Ignaz Rutter, Klemens BOIM e 49

Finding All Maximal Connected s-Cliques in Social Networks
Rachel Behar, Sara Cohen 61

Summarization Algorithms for Record Linkage
Dimitrios Karapiperis, Aris Gkoulalas-Divanis, Vassilios S. Verykios 73

Continuous Monitoring of Pareto Frontiers on Partially Ordered Attributes for Many Users
Afroza Sultana, Chengkai Li e 85

Optimizing Selection Processing for Encrypted Database using Past Result Knowledge Base
Wai Kit Wong, Kwok Wai Wong, Ho-Yin Yue e e e 97

Temporally-Biased Sampling for Online Model Management
Brian Hentschel, Peter J. Haas, Yuanyuan Tian.t 109

Detecting Database File Tampering through Page Carving
James Wagner, Alexander Rasin, Tanu Malik, Karen Heart, Jacob Furst, Jonathan Grier 121

User-guided Repairing of Inconsistent Knowledge Bases
Abdallah Arioua, Angela Bonifati 133

Synchronous Multi-GPU Training for Deep Learning with Low-Precision Communications: An Empirical Study
Demjan Grubic, Leo Tam, Dan Alistarh, Ce ZRANGo 145

EasyCommit: A Non-blocking Two-phase Commit Protocol
Suyash Gupta, Mohammad Sadoghi 157

Beyond Frequencies: Graph Pattern Mining in Multi-weighted Graphs
Giulia Preti, Matteo Lissandrini, Davide Mottin, Yannis Velegrakis 169

Scalable Evaluation of k-NN Queries on Large Uncertain Graphs
Xiaodong Li, Reynold Cheng, Yixiang Fang, Jiafeng Hu, Silviu Maniu 181

vi

MatchCatcher: A Debugger for Blocking in Entity Matching
Han Li, Pradap Konda, Paul Suganthan G C, Anhai Doan, Benjamin Snyder, Youngchoon Park, Ganesh Krishnan,
Rohit Deep, Vijay Raghavendra 193

Extracting Statistical Graph Features for Accurate and Efficient Time Series Classification
Daoyuan Li, Jessica Lin, Tegawendé Bissyandé, Jacques Klein, Yves Le Traon 205

Counting Edges with Target Labels in Online Social Networks via Random Walk
Yang Wu, Cheng Long, Ada Fu, Zitong CRen e e 217

An Homophily-based Approach for Fast Post Recommendation on Twitter
Quentin Grossetti, Camelia Constantin, Cedric du Mouza, Nicolas Travers 229

Online Set Selection with Fairness and Diversity Constraints
Julia Stoyanovich, Ke Yang, H. Jagadish 241

Apollo: Learning Query Correlations for Predictive Caching in Geo-Distributed Systems
Brad Glasbergen, Michael Abebe, Khuzaima Daudjee, Scott Foggo, Anil Pacaci 253

Interactive Rule Refinement for Fraud Detection
Tova Milo, Slava Novgorodov, Wang-Chiew Tan e 265

Privacy Preserving Group Nearest Neighbor Search
Yuncheng Wu, Ke Wang, Zhilin Zhang, weipeng lin, Hong Chen, Cuiping Li 277

Pattern Search in Temporal Social Networks
Andreas Ziifle, Matthias Renz, Tobias Emrich, Maximilian Franzke 289

Scalable and Dynamic Regeneration of Big Data Volumes
Anupam Sanghi, Raghav Sood, Jayant Haritsa, Srikanta Tirthapura. 301

TPStream: Low-Latency Temporal Pattern Matching on Event Streams
Michael Korber, Nikolaus Glombiewski, Bernhard Seeger. 313

QUASIIL: QUery-Aware Spatial Incremental Index
Mirjana Pavlovic, Darius Sidlauskas, Thomas Heinis, Anastasia Ailamaki 325

Loom: Query-aware Partitioning of Online Graphs

Hugo Firth, Paolo Missier, Jack Aiston 337
Kernel-Based Cardinality Estimation on Metric Data

Michael Mattig, Thomas Fober, Christian Beilschmidt, Bernhard Seeger 349
GeoAlign: Interpolating Aggregates over Unaligned Partitions

Jie Song, Danai Koutra, Murali Mani, H. Jagadish 361
Distributed query-aware quantization for high-dimensional similarity searches

Gheorghi Guzun, Guadalupe Canahuate 373
Global-Scale Placement of Transactional Data Stores

Victor Zakhary, Faisal Nawab, Divy Agrawal, Amr ELAbbadi 385
SlickDeque: High Throughput and Low Latency Incremental Sliding-Window Aggregation

Anatoli Shein, Panos Chrysanthis, Alexandros Labrinidis 397
Modeling and Exploiting Goal and Action Associations for Recommendations

Dimitra Papadimitriou, Yannis Velegrakis, Georgia Koutrika 409
Short Papers

Very-Low Random Projection Maps
Anastasios Zouzias, Michail VIachos e 421

vii

Interval Count Semi-Joins
Panagiotis Bouros, Nikos Mamoulis 425

Notable Characteristics Search through Knowledge Graphs
Davide Mottin, Bastian Grasnick, Axel Kroschk, Patrick Siegler, Emmanuel Miller 429

EmbedS: Scalable, Ontology-aware Graph Embeddings
Gonzalo Diaz, Achille Fokoue, Mohammad Sadoghi i 433

All that Incremental is not Efficient: Towards Recomputation Based Complex Event Processing for Expensive
Queries
Abderrahmen Kammoun, Syed Gillani, Julien Subercaze, Stephane Frenot, Kamal Singh, Frederique Laforest,
Jacques Fayolle 437

DeepEye: Visualizing Your Data by Keyword Search
xuedi qin, Yuyu Luo, Nan Tang, Guoliang Li e 441

Research Directions in Blockchain Data Management and Analytics
Hoang Tam Vo, Ashish Kundu, Mukesh Mohania 445

Scalable Active Temporal Constrained Clustering
Son Mai, Sihem Amer-Yahia, Ahlame Douzal Chouakria e 449

Global Range Encoding for Efficient Partition Elimination
Jeremy Chen, Reza Sherkat, Mihnea ANDREIL Heiko GErwens, 453

NoFTL-KV: TacklingWrite-Amplification on KV-Stores with Native Storage Management
Tobias Vincon, Sergej Hardock, Christian Riegger, Julian Oppermann, Andreas Koch, Ilia Petrov 457

Towards Hypothetical Reasoning Using Distributed Provenance
Daniel Deutch, Yuval Moskovitch, Itay Polak, Noam Rinetzky 461

On Answering Why-Not Queries Against Scientific Workflow Provenance
Khalid Belhajjame e 465

PRoST: Distributed Execution of SPARQL Queries Using Mixed Partitioning Strategies
Matteo Cossu, Michael Firber, Georg Lausenttt 469

Deep Integration of Machine Learning Into Column Stores
Mark Raasveldt, Pedro Holanda, Hannes Miihleisen, Stefan Manegold 473

Scalable Detection of Concept Drifts on Data Streams with Parallel Adaptive Windowing
Philipp Marian Grulich, Rene Saitenmacher, Jonas Traub, Sebastian Bref3, Tilmann Rabl, Volker Markl 477

Point-of-Interest Recommendation Using Heterogeneous Link Prediction
Alireza Pourali, Fattane Zarrinkalam, Ebrahim Bagheri i 481

MetisIDX - From Adaptive to Predictive Data Indexing
Elvis Teixeira, Paulo Amora, Javam Machado e 485

Efficient SIMD Vectorization for Hashing in OpenCL
Tobias Behrens, Viktor Rosenfeld, Jonas Traub, Sebastian Bref3, Volker Markl. 489

Histogram Domain Ordering for Path Selectivity Estimation
Nikolay Yakovets, Li Wang, George Fletcher, Craig Taverner, Alexandra Poulovassilis 493

Nomadic Datacenters at the Network Edge: Data Management Challenges for the Cloud with Mobile Infrastructure
Faisal Nawab, Divy Agrawal, Amr ELAbbadi 497

Dynamic Resource Routing using Real-Time Information
Sebastian Schmoll, Matthias Schubert 501

Data Structures for Efficient Computation of Influence Maximization and Influence Estimation

Diana Popova, Akshay Khot, Alex TROMO oo e 505
A Roadmap towards Declarative Similarity Queries

Nikolaus Augsten 509
Tutorials

Interactive Exploration of Composite Items
Sihem Amer-Yahia, Senjuti Basu ROY o o oo 513

Recent Advances in Recommender Systems: Matrices, Bandits, and Blenders
Georgia KOUrika oo o 517

openCypher: New Directions in Property Graph Querying
Alastair Green, Martin Junghanns, Max Kiessling, Tobias Lindaaker, Stefan Plantikow, Petra Selmer 520

Real-Time Data Management for Big Data
Wolfram Wingerath, Felix Gessert, Erik Witt, Steffen Friedrich, Norbert Ritter 524

Industrial and Applications Papers

Supporting Similarity Queries in Apache AsterixDB
Taewoo Kim, Wenhai Li, Alexander Behm, Inci Cetindil, Rares Vernica, Vinayak Borkar, Michael Carey, Chen Li . 528

L-Store: A Real-time OLTP and OLAP System
Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranja Bhattacharjee, Mustafa Canim 540

A Hybrid Approach for Alarm Verification using Stream Processing, Machine Learning and Text Analytics
Ana Sima, Kurt Stockinger, Katrin Affolter, Martin Braschler, Peter Monte, Lukas Kaiser 552

Efficient Secure k-Nearest Neighbours over Encrypted Data
Manish Kesarwani, Akshar Kaul, Prasad Naldurg, Sikhar Patranabis, Gagandeep Singh, sameep mehta, Debdeep
Mukhopadhyay 564

A Parallel and Scalable Processor for JSON Data
Christina Pavlopoulou, E. Preston Carman Jr, Till Westmann, Michael Carey, Vassilis Tsotras 576

An Automated System for Internet Pharmacy Verification
Alberto Cordioli, Themis Palpanas. 588

RQL: Retrospective Computations over Snapshot Sets
Nikos Tsikoudis, Liuba Shrira, Sara CoRen e 600

Big Data Analytics for Time Critical Mobility Forecasting: Recent Progress and Research Challenges
George Vouros, Akrivi Vlachou, Giorgos Santipantakis, Christos Doulkeridis, Nikos Pelekis, Harris Georgiou, Yan-
nis Theodoridis, Kostas Patroumpas, Elias Alevizos, Alexander Artikis, Christophe Claramunt, Cyril Ray, David
Scarlatti, Georg Fuchs, Gennady Andrienko, Natalia Andrienko, Michael Mock, Elena Camossi, Anne-Laure Jous-
selme, Jose Manuel Cordero GArciaot e e 612

Scouter: A Stream Processing Web Analyzer to Contextualize Singularities

Badre Belabbess, Musab Bairat, Jeeremy Lhez, Zakaria Khattabi, Yufan Zheng, Olivier CURE. 624
Finding Contrast Patterns for Mixed Streaming Data (Application track)

Rohan Khade, Jessica Lin, Nital Patel e e 632
Demonstrations

Recalibration of Analytics Workflows
Verena Kantere, Maxim Filatov, Maxim Filatov, Vasiliki Kantere, Verena Kantere 642

ix

Effective Quality Assurance for Data Labels through Crowdsourcing and Domain Expert Collaboration
Wei Lee, Chien-Wei Chang, Po-An Yang, Chi-Hsuan Huang, Ming-Kuang Wu, Chu-Cheng Hsieh, Kun-Ta Chuang 646

Exploring Large Scholarly Networks with Hermes
Gabriel Campero Durand, Anusha Janardhana, Marcus Pinnecke, Yusra Shakeel, Jacob Kriiger, Thomas Leich,
Gunter Saake 650

Don’t write all data pages in one stream
Soyee Choi, Hyunwoo Park, Sang Won Lee 654

eLinda: Explorer for Linked Data
Tal Yahav, Oren Kalinsky, Oren Mishali, Benny Kimelfeld 658

FAIMUSS: Flexible Data Transformation to RDF from Multiple Streaming Sources
Giorgos Santipantakis, Apostolos Glenis, Nikolaos Kalaitzian, Akrivi Vlachou, Christos Doulkeridis, George Vouros 662

SAMUEL: A Sharing-based Approach to processing Multiple SPARQL Queries with MapReduce
InA Kim, Kyong-Ha Lee, Kyuchul Lee e e 666

GEDetector: Early Detection of Gathering Events Based on Cluster Containment Join in Trajectory Streams
Bin Zhao, Genlin Ji, Yu Yang, Zhaoyuan Yu, Xintao Liu, Ningfang Mi 670

Reconciling Privacy and Data Sharing in a Smart and Connected Surrounding
Paul Tran-Van, Nicolas Anciaux, Philippe Pucheral 674

Spatio-Temporal-Keyword Pattern Queries over Semantic Trajectories with Hermes@Neo4j
Fragkiskos Gryllakis, Nikos Pelekis, Christos Doulkeridis, Stylianos Sideridis, Yannis Theodoridis. 678

MDM: Governing Evolution in Big Data Ecosystems
Sergi Nadal, Alberto Abelld, Oscar Romero, Stijn Vansummeren, Panos Vassiliadis 682

Provenance-Based Visual Data Exploration with EVLIN
Houssem BEN LAHMAR, Melanie Herschel, Michael Blumenschein, Daniel Keim 686

Interactive Visualization of Large Similarity Graphs and Entity Resolution Clusters
M. Ali Rostami, Alieh Saeedi, Eric Peukert, Erhard Rahm e 690

FastOFD: Contextual Data Cleaning with Ontology Functional Dependencies
Zheng Zheng, Morteza Alipour, Zhi Qu, Ian Currie, Fei Chiang, Lukasz Golab, Jaroslaw Szlichta 694

Analysis and Visualization of Urban Emission Measurements in Smart Cities
Dirk Ahlers, Frank Kraemer, Anders Braten, Xiufeng Liu, Fredrik Anthonisen, Patrick Driscoll, John Krogstie 698

Pharos: Privacy Hazards of Replicating ORAM Stores
Victor Zakhary, Cetin Sahin, Amr El Abbadi, Huijia Lin, Stefano Tessaro 702

C proceedings

ID Repair for Trajectories with Transition Graphs

Xingcan Cui’ Xiaohui Yu®"
TShandong University, China
xccui@mail.sdu.edu.cn

ABSTRACT

In many surveillance applications, capture devices are set on fixed
locations to track entities, leading to valuable spatio-temporal
trajectories. However, sometimes the IDs of the entities in these
trajectories are incorrectly identified due to various reasons (e.g.,
illumination conditions and partial occlusion). Since very often
the movements of the entities are constrained by certain restric-
tions imposed by the application (e.g., vehicles must move along
the given road network), we consider how to repair the erro-
neous IDs using transition graphs derived from such restrictions.
Roughly speaking, the occurrence of erroneous IDs can cause a
valid trajectory to be broken into trajectory fragments that vio-
late some movement constraints imposed by the transition graph,
and we aim to repair them by rewriting the IDs and merging the
fragments. This problem is practically challenging since it is not
easy to judge which IDs in the dataset are correct, and also there
may be multiple candidates as the correct value for a single error.
We formulate the repair process as an optimization problem and
propose a two-phase repair paradigm, which includes candidate
repair generation and compatible repair selection, to maximize
the quality improvement estimated by a designed objective func-
tion. Though both phases are intractable, we propose effective
algorithms to solve them through exploiting the locality and spar-
sity of trajectories. We further devise an index structure, as well
as a pruning method to make the repair process more efficient.
Experiments on both real and synthetic datasets demonstrate the
effectiveness and efficiency of the proposed methods.

1 INTRODUCTION

Many surveillance related applications require the continuous
tracking of entities over time in a specified area. For example,
in maritime transport, surveillance devices can be set on ports
to track the ships; in traffic surveillance systems, cameras are
placed along city streets to capture images of passing vehicles.
One of the main tasks for these applications is to identify the
unique ID (which may be an atomic value or a composite one
consisting of multiple features, such as name, color and shape)
of each recorded entity (e.g., a ship or a vehicle) so that tracking
records of those entities can be constituted.

For instance, vision-based algorithms are used to identify both
the types [3] and names [15] of ships; similarly, optical character
recognition (OCR) techniques are used to distill license plate num-
bers from the captured vehicle images. Due to various reasons
(e.g., illumination conditions, partial occlusion or masking), it is
not uncommon for the IDs of some entities to be incorrectly iden-
tified. Although much effort has been devoted to developing new
techniques for improving the recognition accuracy, such errors
are still unavoidable, especially when deliberate efforts are made

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Xiaofang Zhou*

$York University, Canada
xhyu@yorku.ca

Jiong Guo'

#University of Queensland, Australia
zxf@itee.uq.edu.au jguo@sdu.edu.cn

to prevent the entities from being recognized (e.g., in the case
of smuggling at sea!). According to recent studies [10, 15], the
recognition rates of modern approaches are generally over 90%
in lab environments, while in real-world settings, the rates may
drop (e.g., to about 83% in the real traffic dataset we examined).

In this paper, we take a different perspective and aim to repair
erroneous IDs by exploiting the inherent movement constraints,
which are formally represented as transition graphs, that each
entity must follow. Specifically, a transition graph is a directed
graph with each vertex corresponding to a location and each
edge a feasible move. Furthermore, some vertices are designated
as the entrance/exit locations. In general, the transition graphs
are the results of geographical restrictions (e.g., road networks),
regulations (e.g., shipping routes), etc., and thus can be easily
derived or sometimes even explicitly given.

1.1 A Motivating Example

1O location
| — feasible move ¢

(a) The Road Network (b) The Transition Graph
Figure 1: A Transition Graph Example

Example 1.1. As a running example, consider the transition
graph depicted in Figure 1(b) for the road network shown in
Figure 1(a) with surveillance cameras installed at locations A,
B, ..., E (where the hollow arrows indicate driving directions) .
The transition graph implies the following two movement con-
straints: (1) vehicles can only enter this area at locations A or C
and leave from location E; and (2) the move of a vehicle must
match a directed edge in this graph.

Table 1 shows an example of the tracking records captured by
the cameras in Figure 1(a). Without loss of generality, we assume
that each tracking record contains at least three fields — the ID,
the capture location and the capture timestamp. We also assume
that errors occur only in the ID field, as the locations are fixed
and the timestamps can be synchronized across cameras and are
thus much less error-prone. Records with the same ID can be
chronologically sorted and concatenated to form a trajectory.
For convenience, we denote a trajectory by the ID followed by
the sequence of locations, e.g., GL21348(A — B — D — E)
represents an entity with ID GL21348 moving from A to B to D
to E.

Suppose that the dataset is complete, i.e., there are no missing
records. Then each trajectory must satisfy both of the aforemen-
tioned movement constraints.

Example 1.2. Table 2 shows the composed trajectories from
the tracking records in Table 1. Among the three trajectories,
only the first one satisfies the movement constraints imposed by

!https://goo.gl/bKGvhb

10.5441/002/edbt .2018.02

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.02

Table 1: Tracking Records

D Loc Time Table 2: Trajectories
GL21348 A 08:09:10
GL21348 B 08:13:07 No. Trajectory
GL03245 C 08:17:23 1 GL21348(A - B —> D — E)
GL21348 D 08:19:13 2 GL03245(C)
GL83248 D 08:19:40 3 GL83248(D — E)
GL21348 E 08:21:29
GL83248 E 08:21:30

the transition graph in Figure 1(b) and is thus considered valid;
the second and third trajectories are invalid as they fail to satisfy
the first movement constraint in Example 1.1.

Note that ID misidentification can cause “fracture” of a valid
trajectory and therefore may render the trajectory invalid with
respect to the given transition graph. The transition graph is
distinct from most existing constraints [9, 25, 27], in that even
trajectories with correct IDs may violate the constraints imposed
by the graph and thus become invalid.

Example 1.3. Assume that the original trajectory for entity
with ID GL83248 is GL83248(C — D — E). Unfortunately, its ID
is misidentified as GL03245 by the camera at C. The trajectory is
thus broken into the second and third trajectories in Table 2, both
of which are invalid (though the second trajectory is actually
error-free).

Some related approaches [27, 29] try to repair erroneous at-
tributes in temporal events (e.g., logs from manufacturing) by
exploiting the structural information or the neighborhood con-
straints of the activities. They propose efficient methods based
on graph structures to detect dirty events and devise heuristic
algorithms to repair them based on the minimum change prin-
ciple [4]. However, these approaches fall short in our scenario
mainly because (1) they perform isolated label rewritings while
in our problem a single repair option may involve multiple ID-
rewritings (as an ID may be identified as multiple erroneous
values), (2) they do not consider the spatial relationships between
the trajectories, which play an important role in our problem,
and (3) the minimum change principle they follow may no longer
be appropriate in our scenario.

1.2 The Present Work

GL21348 | GL21348 } merge GL21348
<d—-B-D—E>! <> <A—B—>C—>D—E>

rewrite to GL21348 T
GL03245
rewrite to GL83248 <f>
———Y¥——
GL83248 | GL83248 | | merge GL83248
<v-p> | <o | <C—D—E>

Figure 2: Two Repair Options for Trajectory GL03245([C]

We propose to repair the erroneous IDs through rewriting the
IDs and merging the trajectory fragments to recover the “original”
trajectories that are valid with respect to the transition graph.

Example 1.4. Consider the trajectory GL03245(C) in Table 2.
As shown in Figure 2, by exploring the inherent location and
timestamp relationships, we can rewrite the trajectory’s ID to
GL83248 (or, GL21348) and then merge the corresponding track-
ing records chronologically to form a valid trajectory GL83248(C —
D — E) (or GL21348(A —» B —» C —» D — E)).

As shown in Figure 2, there could be multiple options to repair
an invalid trajectory, which are mutually exclusive since it is
logically inconsistent to repair a single ID to different values at
the same time. As such, only one of the options can be used.

Various factors can be considered in evaluating the “goodness”
of the two repair options in Example 1.4, e.g., the ID similarity
and the number of invalid trajectories eliminated. In this example,
the bottom repair option in Figure 2 (i.e., rewriting to GL83248)
is more likely to be selected roughly because (1) compared with
“GL21348”, the string “GL83248” is more similar to “GL03245” (in
terms of edit distance), and (2) applying this option can eliminate
all the invalid trajectories in the dataset, while applying the other
one (i.e., rewriting to GL21348) will leave a dangling invalid
trajectory GL83238(D — E) without other trajectories to merge
with.

The examples above represent a simple case where the dataset
contains only one misidentified ID. In practice, the problem of
trajectory ID repair is much more complex because (1) it is non-
trivial to judge which IDs in the dataset are correct, (2) generating
the repair options, each of which may involve multiple trajecto-
ries, can be time consuming, and (3) there can be a large number
of interrelated repair options and we must consider them as a
whole to make global decisions.

To address these issues, we propose a repair paradigm that
consists of two phases. In the first phase, we generate all potential
repair options that meet certain criteria for later consideration; in
the second phase, we use an evaluation function to estimate the
data quality improvement brought by each repair option, and then
search for a set of such options that can be applied in tandem
to maximize an overall objective function (which reflects the
global quality improvement for the given dataset). Specifically,
we extract the core processes in these two phases as a clique
generation problem and a weighted independent set problem,
which are all NP-hard in general settings. To cope with the first
problem, we add some restrictions on the cliques of interest
and provide a backtracking algorithm. To solve the second one,
we propose an approximate greedy algorithm by exploiting the
probability of selecting a correct repair option. Furthermore, we
also devise an index structure and a pruning method to make the
whole repair approach more efficient.

In repairing the IDs, we do not invent new values and assume
the correct IDs can always be found from the dataset, which is in
line with most previous work on data repair or data matching in
other settings [4, 22, 32]. While the datasets often exhibit another
type of error, namely missing records, our focus in this paper is
on repairing erroneous IDs, which constitute the main source
of error in the datasets we have examined. The reason is that
the problem of missing records are often mitigated through the
deployment of other supporting or complementary technologies.
For example, inductive-loop traffic detectors [2] installed at the
same locations as the traffic cameras can detect almost all passing
vehicles and trigger shots by the corresponding cameras. There-
fore, it is rare for a vehicle not to be captured by the camera and
its plate (either correctly or incorrectly) recognized. In general,
dealing with missing records is a separate issue worthy of in-
vestigation in our future work; in fact, most existing methods
on missing value recovery [30, 31] focus on the issue of miss-
ing records itself without tackling other data quality problems
such as indistinguishable objects. Nonetheless, we conduct ex-
periments in Section 6.3.3 to empirically evaluate the impact of
missing records on the performance of the proposed methods.

1.3 Contributions

To the best of our knowledge, we are the first to study the prob-
lem of trajectory ID repair facilitated by the moving rules. In
summary, we make the following contributions in this paper.

(1) We propose a novel transition graph based trajectory ID
repair problem, as well as a two-phase repair paradigm to
solve it.

(2) By exploiting the locality and sparsity of the spatio-temporal
trajectories, we provide practical algorithms that can solve
the problem effectively.

(3) We further devise some optimization methods, which
make our approach more efficient.

(4) Extensive experiments are conducted on both real and
synthetic datasets, which demonstrate the effectiveness
and efficiency of the proposed methods.

The rest of the paper is organized as follows. In Section 2,
we provide the preliminaries and formally define the problem.
We present the two-phase repair paradigm and the detailed al-
gorithms in Section 3 and Section 4, respectively. We further
propose some optimization methods in Section 5, and show the
experimental results in Section 6. We provide an overview of the
related work in Section 7, and conclude this paper in Section 8.

2 PROBLEM DESCRIPTION

2.1 Preliminaries

We first define several terms that will be used throughout the
paper.

Definition 2.1. Transition Graph, Entrance Location and
Exit Location. A transition graph G; = (V, E) is a directed graph
that represents the set of movement constraints that the entities
must follow. Each vertex loc € V represents a location (e.g., where
a surveillance device is installed), and an edge (loc;, locj) € E
indicates that an entity can directly move from location loc; to
location locj. Among these vertices (locations), there are some
special ones from which the entities can enter or leave the area
of interest. We call them the entrace locations (the set of which is
denoted by I) and exit locations (the set of which is denoted by
0).

For the transition graph shown in Example 1.1, V = {A, B,
C.D,E},E = {(A, B), (B,C), (B, D), (C, D), (D, E)},1 = {A,C} and
0= {E}.

Definition 2.2. Valid Path. Given a transition graph G; =
(V,E) with the entrance location set I and the exit location set
O, we call a location sequence loc; — locy -+ — locq a valid
path if it satisfies the following three conditions: (1) loc; € I, (2)
(loci,loci+1) € E(1 < i < g), and (3) locg € O.

Definition 2.3. Tracking Record. A tracking recordr is a triple
(id, loc, ts), where id is the entity’s unique identifier (which may
be erroneous and is the subject of our study), loc is the location,
and ts is the timestamp.

Definition 2.4. Trajectory, Valid Trajectory, and Invalid
Trajectory. A trajectory T is a chronologically ordered sequence
of tracking records with the same ID (denoted by T.id), i.e., T =
— rg with T.id = r1.id = rp.id = --- = r4.id and
ri.ts < r2.ts < -+ < rq.ts. We can represent a trajectory with
the ID followed by the location sequence, e.g., GL12345(A — B —
C). Given a transition graph G; and a trajectory T, we call T a
valid trajectory (or VT for short) if the location sequence r;.loc —

rp —>ry---

rz.loc- -+ — rq.loc of T is a valid path w.rt. G;. Otherwise we
call T an invalid trajectory (or IVT for short).

In an ideal setting, each trajectory in a dataset is error-free and
contains all the tracking records of an entity (e.g., GL21348(A —
B — D — E) in Example 1.2). Due to ID errors, however, a
trajectory may be broken into multiple fragments, each contain-
ing tracking records with a different ID (e.g., GL03245(C) and
GL83248(D — E) in Example 1.2). Certainly, at most one of the
IDs is correct, and the the rest are all erroneous. Most of the time,
those fragments are invalid trajectories (including the one with
the correct ID), but there does exist a slight possibility that each
of the fragments coincidentally corresponds to a valid path in
the transition graph and is thus deemed valid. Considering its
rarity, we ignore this case in our subsequent discussion.

We view the ID repair problem as one of “restoring” the origi-
nal true trajectory through ID rewriting. That is, we seek to find
a subset of trajectories and rewrite their IDs to (hopefully) the
correct one, and then merge those trajectories to form a valid
trajectory. As such, we introduce the following definitions.

Definition 2.5. Join, Joinable Subset and Target ID. Given a
transition graph G;, we define join on a trajectory set 7’ and an
existing ID r from 7 as first rewriting the ID for each T € 7’
to r and then merging all tracklng records in 7/ chronologically
to constitute a new trajectory T, ie. Tr = join(7’,r). The join
is valid iff the newly formed trajectory Tr isa VT w.rt. G4, and
we call r the target ID and 7 a joinable subset iff such a valid
join exists.

Definition 2.6. Candidate Repair. A candidate repair (or re-
pair for short) R is a pair (7, r) consisting of a joinable subset
7’ and a target ID r. For a repair R, the corresponding joinable
subset and the invalid trajectories contained therein are denoted
by jns(R) and ivt(R). With R defined, the join operation can be
rephrased as fr = join(R). If r is the true ID for all trajectories
contained in 7/ (which implies that they actually come from the
same entity), and fr is the true trajectory for the entity with ID
r, we call R a correct candidate repair (or correct repair for short).
For two candidate repairs R; and Rj, if their joinable subsets are
mutually exclusive, i.e., jns(R;) N jns(Rj) = 0, we say that R; and
Rj are compatible; otherwise incompatible. If all pairs of repairs in
a set of repairs are compatible, then we call this set a compatible
repair set.

Figure 2 shows two candidate repairs whose correctness is
unknown. They are incompatible due to the sharing of trajectory
GL03245(C).

Given a trajectory set 7 and a compatible repair set R’, a
new trajectory set 7 can be produced by joining the trajectories
indicated by each R € R’. As illustrated before, the reason why
the repairs must be compatible is that it does not make sense to
rewrite a trajectory’s ID to more than one target ID at the same
time.

2.2 Problem Statement

Given a transition graph G, a set of trajectories 7~ with ID errors,
we use R to represent the set which contains all the potential
candidate repairs. The ID repair problem can be regarded as
searching a compatible repair set R’ C R, and joining trajectories
designated by the compatible candidate repairs in R’ to obtain a
new trajectory set T.

Note that there may exist various (incompatible) candidate
repairs in R for a single trajectory, and our goal is to find the

most promising one. We thus need a function w(R) to evaluate
the effectiveness of R, which serves as an estimate of how much
quality improvement can be gained by R.

2.2.1 The Evaluation Function for Repair Effectiveness. We
first discuss the factors that we have considered in devising a
suitable evaluation function for the effectiveness of a repair.

e The individual fitness of a repair. In real applications,
the erroneous IDs often bear some similarities with their
correct values, i.e., the more similar two IDs are, the more
likely they correspond to the same entity. In the case of
composite IDs, even if attempts are made to camouflage
the entities with a fake name, the remaining components
of the IDs, such as color and type, are more difficult to
conceal and thus the erroneous IDs would still be similar
to the true IDs. For that reason, we use ID similarity to
evaluate the individual fitness of a repair. This similarity
can be measured by the distance between the strings or
feature vectors representing the IDs, and there have been
dozens of metrics (e.g., edit distance, overlap coefficient,
and cosine similarity) proposed in the literature for this
purpose [24]. In this paper, we choose edit distance as
the similarity metric, but this can be replaced by other
metrics for different applications. Specifically, for a repair
R = (7’,r), we use the similarity function sim(R), which
is based on the minimum similarity from an ID in 7’ to
the target ID r, to evaluate the individual fitness of R:

(dist(r, T.id))

L e (Ir] IToidD))

sim(R) = min
TeT’
where dist(r, T;.id) is the edit distance between r and
T;.id, and |T;.id| is the length of T;.id. Apparently, the
range of the similarity function is [0, 1].
o The potency of a repair. As illustrated before, ID errors
will cause invalid trajectories. Candidate repairs that fix
more [VTs are considered more “powerful” and are ex-
pected to bring greater quality improvement to a dataset.
The rarity of a repair. For a set of trajectories 7~ and a set
of corresponding potential candidate repairs R, each IVT
T’ € 7 may be covered by multiple repairs in R. We call
the number of those repairs the degree of T’ (denoted by
d(T’)). A smaller degree implies that the trajectory is more
“endangered’", i.e., there are fewer candidate repairs that
are able to fix it. On the other hand, each such candidate
is considered more precious or rarer and thus should be
preferred. We define the rarity of a repair R as

ra(R) = min d(T) (2)
Teivt(R)
The value of ra(R) ranges from 1 to |R|. When ra(R) takes
the minimum value of 1, it means that only R can fix a
certain IVT in the dataset.

Different effectiveness evaluation functions can be designed
based on the factors above. We find the following one performs
well in our scenarios:

livt(R)| = 0

o(R) = {) . . ®)
sim(R) + Alog, (g1 10t (R)| |ivt(R)] > 1

where sim(R) and ra(R) are the similarity function and the rarity
function respectively, |ivt(R)| represents the number of invalid
trajectories in R, and A € (0, 1] is a coeflicient controlling the
trade-off between the two terms.

In Equation (3), the first term sim(R) acts as assurance on the
matching fitness and makes it unlikely for an ID to be rewritten
to another arbitrary ID. The second term log,. ;g1 livt(R)] rep-
resents the potency impact scaled by the rarity factor. According
to this term, repairs holding more invalid trajectories and being
more rare will be more effective. In general, ra(R) + 1 > |ivt(R)|
and thus the range for log,. ;g4 livt(R)] is also [0, 1].

Note that due to the introduction of ra(R), the effectiveness
of a repair cannot be evaluated unless a full candidate repair set
R is provided.

2.2.2 The ID Repair Problem. Given a trajectory set 7~ (with
ID errors), a transition graph G;, and an evaluation function w
for repair effectiveness, the ID repair problem is to search for a
compatible repair set R’ that can maximize the sum of the repair
effectiveness. Formally, this can be described as

maximize QR = Z w(R)
R ReRr' ()
subjectto jns(R;) N jns(R;) = O,YR;,R; € R'.

2.3 Applicability and Assumptions

The ID repair approach we adopt exploits the locality and sparsity
properties of the real world spatio-temporal trajectories:

e Locality of movement — a given entity is more likely to
move within a local geospatial neighborhood than “jump-
ing” between far-away locations in a relatively short time
span. This implies that it is more likely to find the true
value of an erroneous ID based on entities that are close
in time and space.

e Sparsity of IDs - two entities with different but very sim-
ilar IDs are highly unlikely to appear in the same local
neighborhood during a relatively short period of time.

Based on these properties, we make the following assumptions.
First, we assume that identical IDs in the data, whether correct
or not, belong to the same entity. In other words, we would not
break a trajectory into smaller pieces. In exceptional cases, it may
so happen that a tracking record with an erroneous ID becomes
part of a valid trajectory in place of a missing record with the
true ID; but such cases are so rare due to the sparsity of IDs that
we could consider them negligible.

Second, we consider all records with the same ID constitute a
trajectory with bounded length and time span. The rationale is
that despite some entities intending to wander around in the area
of interest, the majority should be passing traffic and thus their
trajectories should not be too long. Based on this assumption, we
set two bounds 8 and r, where 6 is the maximum possible length
of a VT (i.e., the maximum number of tracking records in it) in a
dataset, and 7 is the maximum time span for a VT.

Finally, we assume that the error rate for ID identification is
not too high (which is consistent with what we observe from
real data), i.e., the number of trajectory fragments caused by
erroneous IDs in a trajectory is limited. We use a bound ¢ to
represent the maximum possible number of trajectories in a join-
able subset. Although there may be extraordinary cases where
these assumed bounds do not hold, their establishment grants
us the opportunity to significantly improve the efficiency of the
proposed algorithms, as will be shown in Section 6.2.

3 A TWO-PHASE REPAIR PARADIGM

We now describe a two-phase repair paradigm that serves as
the framework for solving the ID repair problem. The detailed

algorithms involved in this paradigm will be presented in Section
4.

3.1 Overview of the Paradigm

The basic idea of the proposed paradigm is to first generate all
possible candidate repairs and then select a set of repairs that can
maximize the objective function (Equation (4)). Figure 3 depicts
the repair paradigm consisting of two phases: candidate repair
generation and compatible repair selection.

S
|1. candidate repair generation_:_

_'L2'_C°_m£’at_lble repair select lo_nll
Figure 3: The Two-Phase Repair Paradigm

In the candidate repair generation phase, we generate all po-
tential candidate repairs R (which are not necessarily compatible
with each other) from the input trajectory set 7~ according to
the transition graph G;. This phase can be accomplished using
an undirected graph with each vertex representing a different
trajectory and each edge indicating that the two trajectories
corresponding to its connected vertices can appear in the same
joinable subset. We call this graph the trajectory graph (denoted
by Gm).

In the compatible repair selection phase, we perform the actual
ID repair by selecting a set of compatible repairs R’ C R that have
the maximum total effectiveness in terms of Equation (4). This
task can be carried out by introducing another undirected graph
that reflects the incompatible relationships between different
repairs in R. We call this graph the repair graph (denoted by G,).

3.2 Candidate Repair Generation

This phase performs two core tasks, namely joinable subset deter-
mination and target ID assignment.

3.2.1 Joinable subset determination. Before delving into the
details of joinable subset determination, we first introduce two
predicates.

(1) The cex predicate. Given a transition graph G;, the cex
predicate works by checking whether two trajectories can
coexist in a joinable subset w.r.t. Gy, i.e., {Tx, Ty|cex(Tx,
Ty)} = (Tx, Ty|3T '(Tx, Ty € 7’), and 7’ is a joinable
subset}. Apparently, only if the location sequence for the
chronologically merged records of the two trajectories is
a subsequence (which does not have to be continuous) of
a path in G, can this predicate evaluate to true.

The jnb predicate. Given a transition graph G;, the jnb
predicate is used to determine whether a set of trajec-
tories is a joinable subset w.r.t. Gy, i.e., {Tx|jnb(7%x)} =
{7137’ (9x = T’'), and T’ is a joinable subset}. This
can be performed by checking whether the location se-
quence for the chronologically merged records is a valid
path in G;. As a special case, for a trajectory set with only
one element, the jnb predicate evaluates to true if that
element is a valid trajectory.

—
Y
~

We first use the cex predicate to construct the trajectory graph
Gm. Specifically, each vertex v; in G, correspondstoaT; € 7,
and each undirected edge (v;, vj) corresponds to a trajectory pair
(T}, Tj) such that cex(T;, T;) evaluates to true.

Example 3.1. Let us use Tq, T2, and T3 to represent the three
trajectories shown in Table 2. To construct G, we first create

w(Ry) = 0.428

C—E—G @@@

=0 w(Rs) = 1.029

(a) The Trajectory Graph (b) The Repair Graph

Figure 4: G, and G, for the Running Example
three vertices v1, vz, and v3, corresponding to Ty, Tz, and T3
respectively. Since both cex(T1, T2) and cex (T2, T3) evaluate to
true, two edges (v1, v2) and (vg, v3) are added to Gyy,. Figure 4(a)
shows the constructed trajectory graph for the dataset.

Such construction allows the problem of searching for joinable
subsets to be transformed to operations on G, as shown in the
theorem below.

THEOREM 3.2. A necessary but not sufficient condition for a
trajectory set to be a joinable subset is that its corresponding vertex
set in G is a clique.

To compute the joinable subsets, we first generate all cliques
in G, and then use the jnb predicate to check whether their cor-
responding trajectory sets can really be joinable subsets. Actually,
the clique generation process can be regarded as a preprocessing
step which saves us from enumerating all the trajectory combina-
tions. In general settings, listing all cliques in a graph is NP-hard
[19]. Fortunately, since both the length of a VT and the number
of trajectories contained in a candidate repair are bounded ac-
cording to our aforementioned assumptions, the problem can be
solved in polynomial time in our case. We present the detailed
algorithm for generating the qualified-cliques in Section 4.1.2.

Example 3.3. For the trajectory graph shown in Figure 4(a),
there are five cliques: {v1}, {v2}, {v3}, {v1,v2}, and {v2, v3}. How-
ever, evaluating jnb on their corresponding trajectory sets re-
veals that there are only three joinable subsets: {T1}, {T1, T2},
and {Tz, T3}.

3.22 Target ID Assignment. After generating all the joinable
subsets, we assign target IDs to them. Given a joinable subset
T, the target ID is decided by selecting a trajectory T, that
maximizes the following equation.

T, = argmax
T;eT’ T;eT’
In this equation, |T;| (|T}|) is the length of trajectory T; (T}),
IT;.id| (IT;.id]) is the length of ID T;.id (T;.id), and dist(T;.id,
T;.id) is the edit distance between them. The rationale behind
the choice of this equation is that when all trajectories have the
same length, our goal is to choose a target ID that can maximize
the sum of similarities of all IDs with the target ID. We also
give preference to longer trajectories, as the error rate for ID
identification is usually low and it is unlikely for the same error
to be made at consecutive locations in a trajectory. Note that we
choose to use edit distance here to measure the (dis-)similarity
between IDs, but other distance measures can also be used where
appropriate.

|T1-|(1 dist(T,-.id,Tk.id)) 6
T/] max(|T;.id|, |T;.id|)

Example 3.4. Based on Equation (5), we assign GL21348, GL21348,
and GL83248 as the target IDs for the three joinable subsets
{T1}, {T1, T2}, and {T3, T3} generated in Example 3.3 and com-
bine them respectively to generate three candidate repairs: Ry =
({T1},GL21348), Ry = ({T1, T2}, GL21348) , and R3 = ({T2, T3},
GL83248). Then we calculate their effectiveness values accord-
ing to Equation (3), which are w(R1) = 0, w(R2) = 0.428, and
w(R3) = 1.029.

3.3 Compatible Repair Selection

In the previous phase, we have generated all candidate repairs
R. Next, we select compatible repairs from R to maximize the
objective function in Equation (4). The selection process can be
mapped to operations on another undirected graph, namely the
repair graph, G,, which can be constructed as follows: (1) for each
candidate repair R; € R, add a corresponding vertex v] to Gy;
(2) if R;, Rj € R share an identical trajectory, add an undirected
edge (v}, vj’.) to Gr.

Example 3.5. To construct G, for the three candidate repairs
generated in Example 3.4, we first add three corresponding ver-
tices v}, vy, and vj. Since jns(Ry) N jns(Rz) = {T1} and jns(Rz2) N
Jjns(R3) = {Tz}, two edges (v}, v;) and (v}, v3) are added. Finally,
we get the repair graph shown in Figure 4(b).

Such construction allows us to view the problem of select-
ing compatible repairs as packing vertices from G, where no
pairs are adjacent. This translates to the well known weighted
independent set problem, which is NP-hard in common settings
[23]. Considering the inherent relationships between repairs, we
present a greedy algorithm to approximately solve this problem
in Section 4.2.

4 ALGORITHMS

In this section, we present the core algorithms for the two-phase
repair paradigm.

4.1 Algorithms for Repair Generation

4.1.1 Evaluating the cexnd jnbredicates. Given a transition
graph G;, the cex predicate determines whether two trajectories
T; and T3 can coexist in a joinable subset. The key idea in eval-
uating this predicate is to check whether the location sequence
for the chronologically merged records is a subsequence of a
path in G;. This can be considered a reachability problem, i.e.,
for the merged location sequence loc; — loc; — -+ — locg
(g = IT1] +|T2]), if loc; and loc;41 belong to different trajectories,
we check whether loc;1 is reachable from loc;.

A straightforward solution for this problem using breadth-first
(or depth-first) search takes linear time, but we can do some pre-
processing to have it done in constant time. Specifically, the Floyd
Warshall algorithm [16] can be employed to calculate the shortest-
path matrix M for G;, where M{[i][j] indicates the number of
edges in the shortest path from loc; to loc;j. After this preprocess-
ing step, the reachability queries can be answered instantly by
consulting the elements in M.

Moreover, recall that we have two user-defined bounds, the
maximum length 6 and the maximum time span 7 for each VT.
Thus we should also check whether |T{| + |T2| < 0 and whether
the time span for the merged sequence exceeds 5. Putting things
together, we show the algorithm for evaluating the cex predicate
in Algorithm 1.

Compared with the cex predicate, the jnb predicate is more
strict in that it evaluates to true only if the given trajectories
can perfectly make up a joinable subset. The algorithm for this
predicate is similar to that for the cex predicate with the follow-
ing two additional restrictions: (1) the location attributes in the
earliest and the latest records of the input trajectories must be an
entrance location and an exit location in G;, respectively, and (2)
no matter whether two adjacent records (in the merged sequence)
r; and rj;1 belong to the same trajectory or not, there must be an

Algorithm 1 Algorithm for the cex predicate

Input: The reachability matrix M for G;; the maximum length
0; the maximum time span 7; two trajectories T; and T».
Output: trueif T1 and Ty can coexist in a joinable subset; false
otherwise.
. if |T1| + |T2| > O then
2: return false

—_

3. merge records in T; and Ty by their timestamps to get a
sequence ry — Iz — -+ = Ig;

4 if rg.ts —r1.ts > n then

return false

o

. for all r; and r;41 in the merged sequence do
if rj.id # ri+1.id then
if M[i][i + 1] > 6 then
return false

¥ %o 3

0: return true

—_

edge from r;.loc to rj41.loc. Due to space limitation, the detailed
algorithm for evaluating the jnb predicate is omitted.

4.1.2 Generating Qualified Cliques. We now introduce the
algorithm for generating the qualified cliques in Gp,. In general,
enumerating all cliques in an undirected graph requires expo-
nential time, and the running time is output-sensitive (i.e., the
running time depends on the size of the output). However, when
the trajectory length and clique size are bounded (by 0 and {
respectively), the problem can be much simplified. We show how
to generate the qualified cliques in Algorithm 2, which runs in
O([V,|%) time.

Algorithm 2 Algorithm for generating qualified cliques

Input: The adjacency matrix representation of trajectory graph
Gm = {Vm,Em}; a set C to store vertices in the current
clique; an index list L for vertices; the maximum trajectory
length 0; the maximum clique size {.

Output: a set of generated cliques results.

1 fill Lwith 1,2,---,|[Vy]
2: function CrLiQue(C, L)

3: for i « L.size(),1do

4 v « L.get(i)

5 C e« CU({T,}

6: create a new list Lye4y

7 for j « 0,ido

8 w « L.get(j)

9: if (v, w) € E;, then

10: Lyew-add(w)

11: results « results U {C}

12: if =Lpew.empty() and C.RecordNumber < 6 and
IC] < { then

13: CLIQUE(C, Lpew)

14: C « C\{T,}

15: L.remove(i)

16: return results

The main idea of the generation algorithm is backtracking.
It iteratively adds to a temporary vertex set C a vertex that is
adjacent to all existing ones in C from an input vertex list, outputs
the result, starts a recursion with a new list of vertices that are
adjacent to the newly added vertex, and finally removes the vertex
added in this round. As shown in Line 12, unnecessary recursions
are eliminated using the bounds 6 and ¢.

{v5} {114} {“3} {vz} {711}
{us ‘uf} {vs, Ug}{vs v}l ,vl}{v.], l\fm,vz\fvz v}

RTINS
{bf b47U1}{U U3, bz}{“oﬂiz,?'l}

@\/@

(a) A Sample G, (b) The Clique Generation Process
Figure 5: An Example of Clique Generation

Example 4.1. Figure 5 shows an example of the clique gen-
eration process. Given a trajectory graph with 5 vertices, the
15 cliques are generated in turn with Algorithm 2. As shown
in Figure 5(b), if { = 2, the algorithm will automatically skip
generating cliques beneath the dashed line.

4.2 Algorithms for Repair Selection

As discussed in Section 3.3, the repair selection problem corre-
sponds to a weighted-independent set problem on G,, which
is NP-hard. In search of efficient solutions, consider the effec-
tiveness evaluation function in Equation (4). It is defined as an
indicator of the potential quality improvement due to a repair, but
by no means a definitive measure of the true improvement. That
is, for two compatible repair sets R] and R, if Q(R]) > Q(R)),
it just indicates that R is likely better than R}, but not definitely,
especially when the values of Q(R]) and Q(R}) are close. This is
confirmed by a large number of experiments on different datasets,
from which we find that the Q values of the optimal compatible
repair sets (which include all the correct repairs) are randomly
distributed in the proximity of, but not exactly the same as, the
optimal results from the weighted-independent set problem.
The observation inspires us to seek approximate solutions to
the repair selection problem instead. Many heuristic algorithms
have been proposed for the weighted-independent set problem
(see [5] for a survey). Here we propose a greedy algorithm named
maximum-effectiveness first (EMAX), which gives superior empir-
ical results in our settings. As shown in Algorithm 3, the EMAX
algorithm always selects from G, a vertex whose corresponding
repair is evaluated to be the most effective according to Equa-
tion (3), and then discards its adjacent vertices until there is no
vertex left.
Algorithm 3 The EMAX algorithm

Input: the repair graph G, = (V,,E;).
Output: a set of selected vertices V.
1: sort vertices in V, by the w values of their corresponding
repairs in a decreasing order
2: forallvinV, do
3 if v.discard = false then
4 add v to V
5 for all v, adjacent to v do
6 vq.discard « true
7

: return V

Compared with the exact algorithm that requires exponential
running time, the EMAX algorithm runs in only O(|V,|log |V,|)
time. The rationale behind this heuristic is that, repairs evaluated
to be more effective are more likely to be correct, and thus giving
them priorities them makes it more likely to select the best result.

Example 4.2. For the repair graph shown in Figure 4(b), the
EMAX algorithm first selects the vertex v; corresponding to
candidate repair R3 (since it is the most effective according to
Equation (3)) and then discards v;, adjacent to v;. Since the effec-
tiveness of Ry, the only vertex left, is zero, U{ will not be selected.

max, —ts, <7,

tse — ming <7 max, —ts, <17

ts, — min, <7

4 2-dimentional array

ts, ts, array

(a) Time Boundaries (b) Data Structure for LIG
Figure 6: Time Boundaries and the Data Structure for LIG

4 500 o s
4 » % o ° %0 i
K ° ;
P ,
50 ° 450 it
8 ts.t) ;
A & [#5H] x ty ,
S o 400
23 g
5 8 ;
K | E: ,
o = ,
B & 350 ,
38 B o ’
3 o o ts % ,
s & 5 ol Xty 3 , fstn
o ’v Sao0t L [2=H0] x
He2 R 2 ° ! L
3
R 250 ,
C i ° ;
o8 -
& ’0 200
i V.», ” xt
1 / , 0 t
3600 $ 150 &
3000 4
Zaog > N e by
1200 1800 2400 2000 100
600 00 1200 100 150 200 250 300 350 400 450 500

0

end time (s) start time (s) start time (s)

(a) A Three-Dimensional View (b) A Slice of LIG with Length 3
Figure 7: Overview of the Length-Indexed Grids

5 OPTIMIZATION

In this section, we provide some optimization methods to make
the repair approach more efficient.

5.1 An Index for Constructing G,

The candidate repair generation phase requires evaluating the
cex predicate on each pair of trajectories in 7~ for constructing
the trajectory graph Gn,. Suppose that there are |V, | trajectories.
This procedure requires O(|Vy 1) comparisons, which could be
costly in practice. Recall that valid trajectories are upper-bounded
in length and time span, and we thus make use of the bounds 0
and 7 to filter out some unnecessary comparisons.

Definition 5.1. Start Time and End Time. The start time and
the end time of a trajectory T are defined as the timestamps of
the earliest and latest records in T, respectively.

Given a trajectory Ty with start time ts; and end time s,
another trajectory T, that may constitute a joinable subset with
T} must first meet the length criterion, i.e., |Ty| < 6 — |Tg|. Also,
for the bound on time span 7, the max/min start time (denoted
by maxs and min,) and max/min end time (denoted by max,
and min) of Ty, should satisfy the following inequalities (which
are demonstrated in Figure 6(a)): ts, — ming < 1, maxs — tss <
n, tse — mine < n, and max, — tss < 1. According to these
inequalities, both the start time and end time of T, should fall in
[tse — 1, tss + n], and we can transform the criteria into a range
query on a three-dimensional index structure on the trajectories
called Length-Indexed Grids (LIG).

Overview. As shown in Figure 7(a), the three dimensions of
LIG are the length, the start time and the end time of a trajectory.
Specifically, we divide the time span of interest along both the
start time and end time dimensions into time bins with fixed
size tp, resulting in a two-dimensional time grid shown in Fig-
ure 7(b). A separate time grid is created for each trajectory length
appearing in the dataset.

The Data Structure. Figure 6(b) illustrates the data structure
of LIG. An array is used to store the grids with different trajectory
lengths. Each grid is actually a two-dimensional array. Trajec-
tories are distributed to grids according to their start/end times
and trajectories in the same grid are linked to be an element of

the two-dimensional array. We construct LIG by successively
add trajectories. For each trajectory, we first decide the grid it
belongs to according to the trajectory’s length. Then we assign a
time grid for the trajectory and add it as a new element to the
tail of the corresponding list.

Usage. We use the index to answer the range query by first de-
ciding a set of feasible grids according to the trajectory’s length
and the threshold 6. After that, in each grid, we select trajec-
tory lists that meet the start/end time restrictions from the two-
dimensional array. Without loss of generality, suppose that the
timestamps of tracking records are represented as offsets to the
earliest timestamp in the dataset. Then the target trajectories we
are interested in should be contained in elements whose indices
are bounded by [I_tsj—b_qj X tp, [tslf:”] X tp] in both dimensions.

With the index technique provided above, we can prune many
useless trajectory comparisons. As the time grids are static, the
index can be constructed efficiently in ©(|V,,|) time. As such,
the running time for generating G, can be significantly reduced.

5.2 A Pruning Method for Clique Generation

In Section 4.1.2, we show how to generate qualified cliques from
the trajectory graph G,. All the trajectory sets corresponding
to the cliques will be further checked by the jnb predicate to see
if they are really joinable subsets. Considering that Algorithm 2
is output-sensitive, it will be more efficient if we can eliminate
some worthless vertex combinations early on during the clique
generation process. We propose an optimization method named
minimum cover prefix pruning for this purpose.

Minimum Cover Prefix

Figure 8: The Minimum Cover Prefix

Definition 5.2. Minimum Cover Prefix. As shown in Fig-
ure 8, given a trajectory set 7 = {T1,Ta,---, Tp}, we can
merge their tracking records chronologically to get a sequence
r; — r2 — - - - 1q. The minimum cover prefix (abbreviated as MCP)
for 7~ is defined as the minimum prefix of this sequence that con-
tains at least one tracking record from all trajectories in 7°.

THEOREM 5.3. The MCP condition. Given a list of trajectories
[T1,T2,---,Tp] sorted by their start times in an increasing order
(i.e, Ti.startTime < T;y1.startTime), a necessary but not suffi-
cient condition for these trajectories to compose a joinable subset is
that the location sequence for the MCP of any {T1, T2, -+ , T ¢ }(0
< k < p) must be a prefix of a valid path in G;.

According to Theorem 5.3, when generating cliques, if the
vertices are added to C in an increasing order of the start times
of their corresponding trajectories, we can prune some unneces-
sary vertex combinations according to the MCP condition. The
checking is performed with a pck predicate.

The pck predicate. Similar to the cex and jnb predicates,
given a trajectory graph G;, the pck predicate can be applied
on one or more trajectories and evaluates to true iff the MCP
condition holds, i.e., {Tx|(pck(7x))} = {Tx|FP(r1.loc — -+ —
r.loc = prefix(P)), [r1,- - ,ri] is the MCP of 7 and pre fix(P)
is the prefix of a valid path P in G;}. In terms of “restrictiveness”,
this predicate falls somewhere between the cex and jnb predi-
cates. Compared with cex, it further requires that the location
sequence must be a prefix of a valid path, not just a subsequence;

compared with jnb, it just ensures that the first location is an
entrance location. Due to space limitation, the detailed algorithm
for evaluating this predicate is omitted.

With the pck predicate defined, we try to modify the qualified-
clique generation algorithm by pruning worthless results and
recursions. First of all, we must ensure that the cliques are gen-
erated in the order of their trajectories’ start times. Fortunately,
Algorithm 2 iterates through the vertices with an index list L.
Thus, to keep the generation order, we just need to sort the ver-
tices in Gp,. Then, each time before outputting a generated clique
to the result set, we check its corresponding trajectory set with
the pck predicate, and only if it evaluates to true, can we accept
the clique and continue adding more vertices into the result set.
The modified algorithm snippet is shown in Algorithm 4.

Algorithm 4 Clique generation with pruning

sort vertices in G, by their corresponding trajectories’ start
times in descending order
function CriQUE(C, L)

if pck(C.trajectories) = true then
results « results U {C}
if =Lpew.empty() and C.RecordNumber < 6 and
|C| < { then
CLIQUE(C, Lyew)

Example 5.4. Suppose that the vertices in Figure 5(a) are al-
ready sorted by the start times of their corresponding trajectories,
ie., Ts.startTime < Ty4.startTime < --- < Ty.startTime. If the
MCP condition does not hold on {Ts}, any cliques containing vs
(e.g., {vs, v4} and {vs, v4, v1}) Will be pruned by the modified al-
gorithm. For the same reason, if the MCP condition does not hold
on {Ts, Ty}, the cliques {vs, vy} and {vs, v2,v1} will be pruned.
Obviously, the modified algorithm is more efficient thanks to the
pruning of some cliques and unnecessary calculations.

6 EXPERIMENTS

We conduct extensive experiments on both real and synthetic
datasets to thoroughly evaluate the properties of the proposed
approach and compare it to baseline methods.

6.1 Experimental Settings

All algorithms are implemented in Java and run on a desktop
PC with a 2.5GHz Intel i5 CPU and 8GB of memory. Each set
of experiments are repeated at least 30 times and the average
results are recorded.

A real dataset and a series of synthetic datasets with different
characteristics are used in the experiments. According to Sec-
tion 2.3, the repair approach we proposed in this paper is in the
interest of local regions. For such small regions, the transition
graphs may seem simple. However, note that even for such seem-
ingly simple graphs, the repair problem is still quite challenging,
as revealed in Section 3.

6.1.1 Datasets. Real Dataset. The real dataset is obtained
from a real traffic surveillance system in a provincial capital
in China. We choose a specific region of this city and extract
699 trajectories of vehicles which contain 2,045 tracking records
between 8:00 a.m. and 9:00 a.m. on a particular day. Figure 9(a)
illustrates the road network and the distribution of surveillance

pon 21 0!
L NS S

(a) The Road Network (b) The Transition Graph
Figure 9: Road Network and Transition Graph
cameras in this region. The license plate numbers of the vehicles
are captured by cameras located at A, B, C, and D whenever they
pass by these sites. Figure 9(b) is the corresponding transition
graph we derived. Due to OCR errors and other issues, some of
the license plates in the dataset were misidentified. We manually
label the plate numbers by examining the original photos taken
by the cameras, which serves as the ground truth. In this way, we
obtain a labeled dataset that contains both the raw and the true
values. The default values of 0, , { and A for the real dataset are
empirically set to 4, 600 seconds, 4, and 0.5, respectively, unless

otherwise specified.

Synthetic Datasets. To generate a synthetic trajectory set
for ID repair, we first choose a transition graph, based on either
the real dataset or a sample of the California road network [21].
Then we repeatedly sample random valid paths and generate
corresponding trajectories until we have obtained the desired
number of trajectories. Without loss of generality, we assume
that an ID consists of 7 to 9 lower-case letters only, which are
independently and identically generated following a uniform
distribution. The time span is sampled from the empirical dis-
tribution of travel time between the corresponding locations in
the real dataset. After that, using the edit distance distribution
for erroneous IDs in the real dataset as a ballpark, we randomly
inject ID errors to the tracking records with a specified error rate,
and eventually get a synthetic dataset. The default error rate is
set to 20%, unless otherwise specified.

6.1.2 Metrics. We use elapsed time as the metric for efficiency,
and adopt precision, recall and f-measure as the general metrics
for effectiveness. Using 7, to represent all the trajectories with
ID errors, 75 to represent those trajectories with ID rewritten by
applying candidate repairs, and 7; to represent all the trajectories

whose IDs are correctly repaired, we define recall = |7¢|/|7el,

2-(precision-recall)
(precision-+recall) * There

are also some specialized metrics used in certain groups of ex-
periments, which will be introduced later.

precision = |7¢|/|7;], and f-measure =

6.2 Effects of Parameters

We first evaluate the effects of different parameters through a
group of experiments on the real dataset.

The effects of 6, {, and 7. Figures 10(a), 10(b) and 10(c) show
the f-measure and running time with varying values of 0, {, and
n, respectively, with all other parameter values fixed at their
default values. We observe that for each of these parameters, the
running time grows with increasing parameter values. For the
f-measure, it initially increases as well, but eventually flattens
out. This verifies our earlier observation that for a particular
dataset, there exist bounds on these parameters, beyond which
no further gains in repair effectiveness can be achieved. Thus, by
carefully choosing the bounds, we can reduce the running time
of the repair process significantly.

The effect of A. Figure 10(d) shows the effect of A in Equa-
tion (3). With A varying from 0.1 to 0.9, the running time remains
stable, and the f-measure first increases and then decreases after

H
o

running time (s)

—O— f-measure
—}¢— running time

X,
s o

o &
TS

&

f-measure
o
IS
~

f-measure
°
&
~

running time (s)

°
N

—O— t-measure 1.5
—3— running time

3 4 5
0 ¢
(b) Results with Varying ¢

1

—e— f-measure
0.9 —3— running time

f-measure
°

f-measure
°
running time (s)

~
running time (s)

—O— f-neasure
—}¢— running time

0 200 400 600 800 0.1 0.3 0.5 0.7 0.9
n A

(c) Results with Varying (d) Results with Varying A
Figure 10: Results with Different Bounds on the Real
Dataset
A = 0.5. The results imply that (1) there exists an optimal A value
with which the best results can be produced, and (2) the repair
results are not sensitive to changes in A.

6.3 Effects of Data Characteristics

We next conduct a set of experiments using synthetic datasets
to investigate the impact of different data characteristics. All the
datasets used in this set of experiments are produced based on 500
original trajectories (before injecting errors). The actual number
of trajectories in a dataset is affected by different parameters
(e.g., error rate and record missing rate), and will be shown for
different groups of experiments. The default values of 6, 5, { and
A for the synthetic datasets used here are set to 8, 600 seconds, 4,
and 0.5, respectively.

6.3.1 Size and Density of the Transition Graph. The first data
characteristics we explore are the size (number of vertices) and
density (number of edges) of the transition graph. The experi-
ments are conducted on synthetic trajectory sets generated from
transition graphs with different sizes and different densities. We
vary the density of a transition graph with 8 vertices G; =
(V,E,LO), where V = {locy, locy, - - - ,locg}, E = {(locy, locs),
(locg,locs), - -+, (locy, locg)}, I = {loc}, and O = {locg}, by ran-
domly adding a specific number of edges (without duplicate) to
it.

IS
)
~

—O— f-measure
—— running time .2

—©— t-measure
—3¥— running time

1

f-measure
=)
©

running time (s)
f-measure
°
@
&
=
running time (s)

)
N

IS
o
1)

6 7 8 9 10 0 1 2 3 4
of vertices # of added edges

(a) Varying # of Vertices (b) Varying # of Edges Added
Figure 11: Effect of the Size and Density of Transition
Graphs

The effect of graph size. Figure 11(a) shows the results
on varying transition graph sizes. It is evident that both the
f-measure and the running time decrease with the number of
vertices increasing. That is because a transition graph with more
vertices tends to have longer valid paths, and the longer the valid
paths are, the harder it is to form candidate repairs that could
“reassemble” the original trajectory;

The effect of graph density. The results for adding varying
number of edges to a given transition graph are shown in 11(b).

The f-measure decreases while the running time increases with
more edges added, due to the following reasons: (1) adding edges
to the transition graph will increase the number of valid paths
and thus there will be more candidate repairs; (2) with the number
of candidate repairs growing, there may be more false positive
repairs (vertices) being selected and that will cause the f-measure
to deteriorate; and (3) having more candidate repairs also leads
to longer candidate generation and selection time, resulting in
an increase in the total running time.

The results above imply that our ID repair approach is more
suitable for sparse transition graphs with limited number of ver-
tices, which is actually the case in many, if not most, application
scenarios. This is also consistent with our assumptions and anal-
ysis made in Section 2.3.

6.3.2 ID Error Rate. To evaluate the effect of the ID error rate,
we create a cohort of synthetic datasets by randomly injecting
ID errors, each time with a different error rate, into an identical
original trajectory set.

—O—# of trajectories
—3f—# of repairs

—e— f-measure
—3¥— running time

of trajectories
of revpairs

f-measure
°
o
=
running time (s)

0
0.05 0.1 0.15 0.2
error rate of records

0
0 0.05 0.1 0.15 0.2
error rate of records

(a) # of Trajectories/Repairs (b) F-Measure and Running Time
Figure 12: Effect of ID Error Rate

The experiment results are reported in Figures 12(a) and 12(b),
from which we can observe that with the error rate increasing,
(1) the number of trajectories for the input dataset increases
linearly; (2) both the number of candidate repairs and the running
time increase polynomially; and (3) the f-measure drops near
linearly. The reason is as follows. Since ID errors can cause a
trajectory to break into multiple pieces, the input number of
trajectories grows linearly with respect to the error rate. Both the
number of candidate repairs and the running time also increase
accordingly. The f-measure drops mainly because intuitively it is
more difficult to “reassemble” the original trajectory with more
IDs misidentified. Also, recall that our repair approach assumes
that all the correct IDs exist in the dataset, which may no longer
hold if the error rate gets high. In summary, the lower the ID
error rate is, the better our repair approach works.

6.3.3 Record Missing Rate. As mentioned in Section 1, in this
work we only consider errors caused by ID misidentification,
ignoring the effect of missing records. In practice, however, there
may be a slight chance of record missing from the dataset. We thus
conduct experiments to evaluate whether this has a significant
impact on the effectiveness of the proposed approach. To this end,
we first generate a synthetic dataset and then randomly remove
records from it with varying record missing rates.

©
@
o

4500 1 3
—O— f-measure
—— running time

—O—# of trajectories
—¥—# of repairs

©
S
S

4000

f-measure

of trajectories
©
a
S

of repairs
running time (s)

©
S
S

0
0.05 0.1 0.15 0.2
record missing rate

[0.05 0.1
record missing rate

0.15

(a) # of Trajectories/Repairs (b) F-Measure and Running Time
Figure 13: Effect of Record Missing

10

As illustrated in Figures 13(a) and 13(b), with the missing rate
increasing from 0% to 20%, all the metrics decrease. The reason
is that (1) record missing will make some joinable subsets in-
complete and thus cannot compose the corresponding candidate
repairs (this is verified by the decrease of candidate repairs shown
in Figure 13(a)); (2) trajectories belonging to different entities
may be joined due to the absence of some trajectories; and (3)
records containing the true ID for an entity may have all been
removed, which makes some errors irreparable.

According to the experiment result, although having missing
records has a notable impact on the effectiveness of the proposed
ID repair approach, it is still applicable for datasets with relatively
low record missing rates.

6.4 Effectiveness of the Optimization
Methods

The main purpose of the next group of experiments is to explore
the performance improvements brought by the Length-Indexed
Grids (in Section 5.1), as well as the pruning method (in Sec-
tion 5.2).

We conduct the experiments on synthetic datasets with the
number of trajectories varying from 2,000 to 6,000 and the corre-
sponding number of records varying from 5,189 to 15,795. All the
datasets are generated using the same transition graph as that
for the real dataset.

~15 4
a S P 0 —O—with pruning method
with index 3 4 | —¥—without pruning method
g + without index %
- 10 bl
» + 3.5
o o
o =l)
k=1 5 3
g 5 e
5 5
Bl D Ry

0 2
2000 3000 4000 5000 2000

of trajectories

6000 3000 4000 5000

of trajectories

6000

(a) Construction Time for Gy, (b) Running Time with Different Data
with Different Data Sizes Sizes
Figure 14: Effectiveness of Optimization Methods

Figure 14(a) shows the running time of the trajectory graph
construction process with different number of trajectories. From
this figure we can observe that without indexing, the construc-
tion time of G, grows superlinearly with the number of tra-
jectories, whereas the trend becomes almost linear with the
Length-Indexed Grids. This observation indicates that the Length-
Indexed Grids can help eliminate a large number of unnecessary
trajectory comparisons.

Figure 14(b) reports the running time of the whole repair
process with the number of trajectories varying from 2,000 to
6,000. We can see that the time increases polynomially with the
number of trajectories. Besides, compared with the basic clique
generation algorithm, algorithm with the pruning method can
reduce about 30% running time.

6.5 Comparison with Competing Approaches

To evaluate the effectiveness of our proposed method, we com-
pare it with other approaches that use different repair selection
algorithms or exploit different constraints.

6.5.1 Alternative Repair Selection Algorithms. In this set of
experiments, we aim to investigate the performance of different
algorithms for the repair selection phase. In addition to EMAX
and the exact algorithms introduced in Section 4.2, we also imple-
ment three other algorithms for comparison. The first algorithm,

named optimal selection, is an oracle machine based algorithm
that always selects and applies correct candidate repairs regard-
less of their w values. Theoretically, this algorithm can achieve
the highest quality improvement. The second and the third algo-
rithms are minimum degree first (DMIN) and maximum degree
first (DMAX). As their names suggest, they select the vertex with
the minimum/maximum degree from G, in each step and discard
adjacent vertices until there is no vertex left.

As the exact algorithm for weighted-independent set is time
consuming, the experiments are conducted on 5 small synthetic
datasets whose sizes do not exceed 100. Even so, the average
running time for the exact algorithm is still thousands times
longer than the other algorithms. Thus we only report on their
effectiveness rather than the performance.

To measure the real quality of a dataset, we employ the metric
trajectory accuracy, which is defined as the ratio of trajectories
with correct IDs. Thereby, the real quality improvement after
repairing can be measured by the increment in this metric. As
trajectory merging can change the data size, we will only per-
form ID rewritings. Using AE (AA) and AEpqx (AAop:) to repre-
sent the selected Q value (trajectory accuracy improvement) and
the maximum selected Q value (maximum trajectory accuracy
improvement), the approximation ratio for maximum Q value
selection and data quality improvement can be calculated by
AE/AEmax and AA/AAop;.

,_
-

T
P
[_Jexact I OMAX

-

approximation ratio
o o
» o

o
5

1 2 3 4 5
datasets

(a) Approximation Ratios for Repairs Selection

approximation ratio

o o o o o
hoa Y o o

1 2 3 4 5
datasets

(b) Approximation Ratios for Quality Improvement
Figure 15: Approximation Ratios for Different Selection
Algorithms on Synthetic Datasets

Figures 15(a) and 15(b) report the experiment results of max-
imum Q value selection and data quality improvement, from
which we can observe that (1) the selected Q value can reflect the
data quality improvement well, (2) the total selected Q value for
the optimal selection algorithm is randomly distributed around,
rather than always coincides with, the maximum value, and (3)
remarkably, the proposed EMAX algorithm can achieve an av-
erage approximation ratio of more than 0.95 and 0.85 for repair
selection and real data quality improvement respectively, which
significantly beats the other two heuristic algorithms. In sum-
mary, as the optimal selection algorithm is evasive in practice
and the exact algorithm is time-consuming, the proposed EMAX
algorithm seems highly promising.

6.5.2 Comparison with Other Repair Approaches. To evalu-
ate our proposed ID repair approach, we implement a baseline
approach based on ID similarity = 3, i.e., trajectories with ID

11

similarity < 3 are considered to come from the same entity and
thus will be merged. Also, we implement another greedy heuris-
tic method based on neighborhood constraints proposed in [27].
We take the transition graph G; as the constraint graph and the
trajectory graph G, as the instance graph. The cost function is
set to be the edit distance of two ID strings. To make sure the
algorithm terminates, we add a variation to the approach that
edges are allowed to be removed from G, during relabeling.

The repair results of the three approaches are shown in Fig-
ure 16, from which we can observe that (1) while the precision
of the other competing approaches is somewhat close to our
proposed approach, their recall is significantly lower; and (2)
the neighborhood constraint based method performs even worse
than the baseline method for our problem. The recall of the ID
similarity based approach is better than that of the neighborhood
constraint based approach because it supports “partial recovery"
of the original trajectories. Actually, both the ID similarity based
approach and the neighborhood constraint based approach are
binary constraints that only consider the relationship between
trajectories pairs. In contrast, our transition graph based ap-
proach considers the relationships between multiple trajectories,
which is why it can cover more correct repairs.

7 RELATED WORK

There has been a sizable body of work in the areas of data repair
and data matching that can be considered related to our work,
which we summarize below.

7.1 Data Repair

Most previous work on data repair has focused on relational data
by exploiting the different types of dependencies [1], e.g., match-
ing dependencies [12],differential dependencies [26], and order
dependencies [28]. Fan et al. extend the functional and inclusion
dependencies with conditions [6, 13] and also extend their data
inconsistency detection method to distributed environments [14].
Although highly successful, most of the work has not considered
spatial and temporal factors.

Moreover, sequential dependencies [18] are developed to con-
strain attributes’ transitions. Song et al. use neighborhood con-
straints to repair vertex labels in graphs [27]. Wang et al. employ
the Petri Net to repair the names of event logs [29]. Similar to
our study that focuses on repairing the IDs, Song et al. propose
a method for cleaning timestamps facilitated by temporal con-
straints [25].

For unified approaches, Ilyas et al. propose a novel holistic
repairing algorithm [8], as well as a general system [11] that puts
multiple constraints into consideration and repairs them all at
once. Similarly, Geerts et al. develop a uniform data-cleaning
framework with a cell group and partial order based cleaning se-
mantics [17]. However, those methods cannot be trivially adopted,
since it is difficult to transform the constraints posed by transi-
tion graphs in our setting into the denial constraints or equality-
generating dependencies required by those methods.

7.2 Data Matching

In the field of data matching, Yakout et al. try to identify the same
entity in different transactions by detecting regularity patterns
from merged behavior logs [32]. Similarly, Zhu et al. perform
heterogeneous event matching by finding an optimal mapping
that can maximize the frequency similarity of patterns [33].
When patterns are not explicitly given, Li et al. propose a
temporal model, as well as an algorithm to perform temporal

—@O—transition graph

—¥— 1D similarity

recall

—<}— neighborhood constraint

precision

—O—transition graph

—¥—1D similarity

—<—neighborhood constraint

3000 4000 5000
of trajectories

(a) Recall

3000

4000

of trajectories

(b) Precision

o —O—transition graph
50- —3¥— 1D similarity
o neighborhood constraint
2 e —
o
0.6
5000 6000 2000 3000 4000 5000 6000

of trajectories

(c) F-Measure

Figure 16: Comparisons with Other Repair Approaches

records clustering [22]. They utilize both the usual similarity
metrics and the temporal model with collected evidences to make
the decision. Chiang et al. extend their work and develop a two-
phase method called “static first, dynamic second” to reduce the
complexity of the temporal model [7]. Also, they use signatures
to improve the computing efficiency. Note that both their work
and ours are to identify entities by exploring their transitions.
The main difference is that while their work mainly focuses on
when the state attributes of entities should change, we focus on
how (through which paths) the entities pass through the area of
interest.

8 CONCLUSIONS AND FUTURE WORK

We have studied a novel problem of repairing erroneous IDs in
spatio-temporal trajectories with transition graphs. A two-phase
repair paradigm, which includes candidate repair generation and
compatible repair selection, is proposed to address this problem.
Since both phases are intractable in general, we exploit the lo-
cality and sparsity properties of trajectories and present efficient
solutions in restricted but practical scenarios. For the candidate
repair generation phase, we propose a backtracking algorithm,
as well as a pruning method to speed it up. For the candidate
repair selection phase, we present a practical greedy algorithm.
Extensive experiments are conducted on both real and synthetic
data to study the effects of various parameters and data character-
istics. In addition, we compare our proposed approach with some
baseline methods and the results have confirmed its effectiveness.

One possible direction for future work would be to deploy our
algorithms on some distributed repair systems with UDF support
[20]. It would also be interesting to study solutions that could
perform ID repair as the tracking records stream in.

ACKNOWLEDGMENTS

This work was supported in part by the National Basic Research
973 Program of China under Grant No. 2015CB352502, the Na-
tional Natural Science Foundation of China under Grant Nos.
61272092 and 61572289, the Natural Science Foundation of Shan-
dong Province of China under Grant No ZR2015FM002, and the
NSERC Discovery Grants.

REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995.
databases. Vol. 8.

S Sheik Mohammed Ali, Boby George, Lelitha Vanajakshi, and Jayashankar
Venkatraman. 2012. A multiple inductive loop vehicle detection system for
heterogeneous and lane-less traffic. IEEE Transactions on Instrumentation and
Measurement 61, 5 (2012), 1353-1360.

Jorge A Alves. 2001. Recognition of ship types from an infrared image using
moment invariants and neural networks. Technical Report. NAVAL POST-
GRADUATE SCHOOL MONTEREY CA.

Philip Bohannon, Michael Flaster, Wenfei Fan, and Rajeev Rastogi. 2005. A
Cost-Based Model and Effective Heuristic for Repairing Constraints by Value
Modification. In SIGMOD. 143-154.

Foundations of

[2

(3]

[4

12

5]

[12

(13

(14

(15]

[16

(17

(18

[19

(20

(31]

%
N,

[33

Immanuel M Bomze, Marco Budinich, Panos M Pardalos, and Marcello Pelillo.
1999. The maximum clique problem. In Handbook of combinatorial optimiza-
tion. 1-74.

Loreto Bravo, Wenfei Fan, and Shuai Ma. 2007. Extending Dependencies with
Conditions. In VLDB. 243-254.

Yueh-Hsuan Chiang, AnHai Doan, and Jeffrey F. Naughton. 2014. Tracking En-
tities in the Dynamic World: A Fast Algorithm for Matching Temporal Records.
PVLDB 17, 6 (2014), 469-480. http://www.vldb.org/pvldb/vol7/p469-chiang.pdf
Xu Chu, Thab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting
violations into context. In ICDE. 458-469.

Dong Deng, Guoliang Li, Jianhua Feng, and Wen-Syan Li. 2013. Top-k string
similarity search with edit-distance constraints. In ICDE. 925-936.

Shan Du, Mahmoud Ibrahim, Mohamed Shehata, and Wael Badawy. 2013.
Automatic license plate recognition (ALPR): A state-of-the-art review. IEEE
Transactions on circuits and systems for video technology 23, 2 (2013), 311-325.
Amr Ebaid, Ahmed Elmagarmid, Thab F Ilyas, Mourad Ouzzani, Jorge-Arnulfo
Quiane-Ruiz, Nan Tang, and Si Yin. 2013. NADEEF: A generalized data cleaning
system. PVLDB 6, 12 (2013), 1218-1221.

Wenfei Fan. 2008. Dependencies revisited for improving data quality. In PODS.
159-170.

Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008.
Conditional functional dependencies for capturing data inconsistencies. ACM
Trans. Database Syst. 33 (2008).

Wenfei Fan, Floris Geerts, Shuai Ma, and Heiko Miiller. 2010. Detecting
inconsistencies in distributed data. In ICDE. 64-75.

Joao C Ferreira, Jorge Branquinho, Paulo Chaves Ferreira, and Fernando
Piedade. 2017. Computer Vision Algorithms Fishing Vessel Monitoringa ATI-
dentification of Vessel Plate Number. In International Symposium on Ambient
Intelligence. Springer, 9-17.

Robert W Floyd. 1962. Algorithm 97: shortest path. Commun. ACM 5, 6 (1962),
345.

Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro.
2013. The LLUNATIC data-cleaning framework. PVLDB 6, 9 (2013), 625-636.
Lukasz Golab, Howard J. Karloff, Flip Korn, Avishek Saha, and Divesh Srivas-
tava. 2009. Sequential Dependencies. PVLDB 2, 1 (2009), 574-585.

Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In
Proceedings of a Symposium on the Complexity of Computer Computations.
85-103. http://www.cs.berkeley.edu/~luca/cs172/karp.pdf

Zuhair Khayyat, Ihab F Ilyas, Alekh Jindal, Samuel Madden, Mourad Ouz-
zani, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Si Yin. 2015.
Bigdansing: A system for big data cleansing. In SIGMOD. ACM, 1215-1230.
Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. (June 2014).

Pei Li, Xin Luna Dong, Andrea Maurino, and Divesh Srivastava. 2011. Linking
Temporal Records. PVLDB 4, 11 (2011), 956-967.

R Garey Michael and S Johnson David. 1979. Computers and intractability: a
guide to the theory of NP-completeness. WH Free. Co., San Fr (1979), 90-91.
Sunita Sarawagi and Alok Kirpal. 2004. Efficient set joins on similarity predi-
cates. In SIGMOD. 743-754.

Shaoxu Song, Yue Cao, and Jianmin Wang. 2016. Cleaning timestamps with
temporal constraints. PVLDB 9, 10 (2016), 708-719.

Shaoxu Song and Lei Chen. 2011. Differential dependencies: Reasoning and
discovery. ACM Trans. Database Syst. 36, 3 (2011), 16.

Shaoxu Song, Hong Cheng, Jeffrey Xu Yu, and Lei Chen. 2014. Repairing
Vertex Labels under Neighborhood Constraints. PVLDB 7, 11 (2014), 987-998.
Jaroslaw Szlichta, Parke Godfrey, Jarek Gryz, and Calisto Zuzarte. 2013. Ex-
pressiveness and Complexity of Order Dependencies. PVLDB 6, 14 (2013),
1858-1869.

Jianmin Wang, Shaoxu Song, Xuemin Lin, Xiaochen Zhu, and Jian Pei. 2015.
Cleaning structured event logs: A graph repair approach. In ICDE. 30-41.
Jianmin Wang, Shaoxu Song, Xiaochen Zhu, and Xuemin Lin. 2013. Efficient
Recovery of Missing Events. PVLDB 6, 10 (2013), 841-852.

Andreas Wombacher. 2011. A-posteriori detection of sensor infrastructure
errors in correlated sensor data and business workflows. Business Process
Management (2011), 329-344.

Mohamed Yakout, Ahmed K. Elmagarmid, Hazem Elmeleegy, Mourad Ouzzani,
and Alan Qi. 2010. Behavior Based Record Linkage. PVLDB 3, 1 (2010), 439-
448.

Xiaochen Zhu, Shaoxu Song, Jianmin Wang, Philip S. Yu, and Jiaguang Sun.
2014. Matching heterogeneous events with patterns. In ICDE. 376-387.

O

proceedings

MTBase: Optimizing Cross-Tenant Database Queries

Lucas Braun*
Oracle Labs
lucas.braun@oracle.com

Donald Kossmann*
Microsoft Research
donald @microsoft.com

ABSTRACT

In the last decade, many business applications have moved into the
cloud. In particular, the “database-as-a-service” paradigm has be-
come mainstream. While existing multi-tenant data management
systems focus on single-tenant query processing, we believe that
it is time to rethink how queries can be processed across multiple
tenants in such a way that we do not only gain more valuable
insights, but also at minimal cost. As we will argue in this paper,
standard SQL semantics are insufficient to process cross-tenant
queries in an unambiguous way, which is why existing systems use
other, expensive means like ETL or data integration instead. We
first propose MTSQL, an extension to standard SQL, which fixes
the ambiguity problem. Next, we present MTBase, a query pro-
cessing middleware that efficiently processes MTSQL on top of
SQL. As we will see, there is a canonical, provably correct, rewrite
algorithm from MTSQL to SQL, which may however result in
poor query execution performance, even on high-performance
database products. We further show that with carefully-designed
optimizations, execution times can be reduced in such ways that
the difference to single-tenant queries becomes marginal.

1 INTRODUCTION

Indisputably, cloud computing is one of the fastest growing busi-
nesses related to the field of computer science. Cloud providers
promise good elasticity, high availability and a fair pay-as-you-
go pricing model to their tenants. Moreover, corporations are
no longer required to rely on on-premise infrastructure which is
typically costly to acquire and maintain. While it is still an open re-
search question whether and how these good promises can be kept
with regard to databases [19, 32], all the big players, like Google
[30], Amazon [8], Microsoft [34] and recently Oracle [38], have
launched their own Database-as-a-Service (DaaS) cloud products.

All these products host massive amounts of data from multiple
clients and are therefore multi-tenant. However, as pointed out by
Chong et al. [17], the term multi-tenant database is ambiguous
and can refer to a variety of DaaS schemes with different degrees
of logical data sharing between tenants. On the other hand, as
argued by Aulbach et al. [11], multi-tenant databases not only
differ in the way how tenants logically share information, but also
how information is physically separated. We conclude that the
multi-tenancy spectrum consists of four different schemes: First,
there are DaaS products that offer each tenant her proper data-
base while relying on shared resources (SR), i.e. hardware (e.g.

*most of the work performed while at ETH

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

13

Renato Marroquin
Systems Group, Department
of Computer Science, ETH Zurich
marenato @inf.ethz.ch

Ken Tsay*
Careem Networks GmbH
ken.tsay @careem.com

CPU, network, storage) and/or software (e.g. buffer pools, system
tables, system users, etc.). Examples include SAP HANA [42],
SqlVM [36], RelationalCloud [35], Snowflake [18] and Oracle’s
multitenant container database (CDB) [40]. Next, there are sys-
tems that share databases (SD), but each tenant gets her own set of
tables within such a database, as for instance Azure SQL DB [20].

Finally, there are the two schemes where tenants not only share
a database, but also the table layout (schema). Either, as for exam-
ple in Apache Phoenix [9], tenants still have their private tables,
but these tables share the same (logical) schema (SS), or the data
of different tenants is consolidated into shared tables (S7') which
is hence the layout with the highest degree of physical and logi-
cal sharing. Prominent examples for ST include Oracle’s Virtual
Private Database [3] as well as different Microsoft Azure DaaS
offerings [33, 34]. SS and ST layouts are not only used in DaaS,
but also in Software-as-a-Service (SaaS) platforms, as for exam-
ple in Salesforce [44]. The main reason why all these commercial
systems prefer ST over SS is cost [11]. Moreover, if the number of
tenants exceeds the number of tables a database can hold, which
is typically a number in the range of ten thousands, SS becomes
prohibitive. Conversely, ST databases can easily accommodate
hundred thousands to even millions of tenants.

An important feature of multi-tenant databases, which, to the
best of our knowledge, no DaaS or SaaS natively supports today,
is cross-tenant query processing, i.e. combining data of different
tenants and query this unified data set as if it was single-tenant,
using SQL. In order to illustrate that cross-tenant query processing
is indeed a highly relevant requirement, let us have a look at one
of the many initiatives to democratize the use of personal data, the
Health Data Cooperative (HDC) [27]. In HDC, all patient data is
stored in a single, multi-tenant SaaS database, each patient being
a tenant managing her own data. For clinical studies, however, it
is essential to be able to run queries over a cohort of patients who
give their consent, or, in other words enable cross-tenant query
processing. Clearly, the health data use case has also another big
challenge, which is data privacy. This aspect, despite being out of
the scope of this paper, is considered essential future work.

There are several existing approaches to cross-tenant query
processing which are summarized in Figure 1. The first approach
is data warehousing [29] where data is extracted from several data
sources (tenant databases/tables), transformed into one common
format and finally loaded into a new database where it can be
queried by the client. This approach has high integration trans-
parency in the sense that once the data is loaded, it is in the
expected format as required by the client and she can ask any
query she wants, using plain SQL. Moreover, as all data is in
a single place, queries can be optimized. On the down-side of
this approach — well-known and argued by many [10, 14, 37] —
are costs in terms of both, developing and maintaining such ETL

10.5441/002/edbt .2018.03

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.03

High integration transparency

Data warehousing / ETL MTSQL on SS MTSQL on ST (MTBASE)

-
=

Employes Roles

Low Cost

-
=

Tenant1 Tenant 2

Federated|Databases

High Cost

Roles

Employes

=

=
Tenant1 Tenant2

Application Integration
Application Integration ©on ST (Salesforce)
on SR (SAP)

Low integration transparency

Figure 1: Cross-tenant query processing systems

pipelines, as well as maintaining a separate copy of the data. An-
other disadvantage is data staleness in the presence of frequent
updates.

Federated Databases [26, 31] reduce some of these costs by
integrating data on demand, i.e. there is no data copying. How-
ever, maintenance costs are still significant as for every new data
source, a new integrator/wrapper has to be developed. As data
resides in different places (and different formats), queries can only
be optimized to a very small extent (if at all), which is why the
degree of integration transparency is considered sub-optimal. Fi-
nally, systems like SAP HANA [42] and Salesforce [44], which are
mainly tailored towards single-tenant queries, offer some degree
of cross-tenant query processing, but only through their applica-
tion logic, not natively. This means that the set of queries that can
be asked is limited, accounting for low integration transparency.

We believe that the reason why none of these previous works
uses a native approach, i.e. SQL plus transparent rewriting, for
cross-tenant query processing is that there is an ambiguity prob-
lem.! Consider, for instance, the ST database in Figure 2, which
we are going to use as a running example throughout the paper.
Further assume that we would like to query the joint dataset of
tenants 0 and 1: As shown on the left, we might want to join
Employees with Roles. Joining on role_id alone is not e-
nough as this would also join Alice with executive, which
does not correspond to the expected output because Alice is a pro-
fessor, and only a professor. In this case, a rewrite algorithm would
have to add the tenant-ID tt id to the join predicate. On the other
hand, joining the Employees table with itself on E1.age =
E2.age, as illustrated on the right, does not require ttid to be
present in the join predicate because it actually makes sense to
include results like (Alice, Ed) because they are indeed the
same age.

An additional challenging fact is that different tenants might
store their data in different units. In our example, tenant O might
store her employees’ salaries in a different currency than tenant 1.
If this is the case, computing the average salary across all te-
nants clearly involves some value conversions that should, ideally,
happen without the client noticing or even worrying about.

This paper presents MTSQL as a solution to these ambigu-
ity problems, following a native approach. MTSQL extends the
SQL API and provides additional data definition syntax and cor-
responding semantics specifically-suited for cross-tenant query

!Note, however, that SQL plus transparent rewriting works for single-tenant query
processing in a multi-tenant system. Apache Phoenix [9] and Oracle’s Virtual Private
Database [3] do exactly that.

14

Employees
E_ttid | E_emp_id E_name E_role_id E_salary E_age
Patrick

R_ttid" R_role_id R_name
phD student

postdoc

professor
intern
researcher

SELECT * SELECT *
FROM Employees, Roles FROM Employees E1, Employees E2
WHERE E_role_id = R_role_id [> WHERE El.age = E2.age

i - - - it
rewritel), [always include ttid? §f nol > ambiguous! Jeve
SELECT * 4 SELECT *
FROM Employees, Roles FROM Employees E1, Employees E2
WHERE E_role_id = R_role_id WHERE El.age = E2.age

AND E_ttid = R_ttid

Figure 2: Multi-tenant database in basic layout (ST), illustrat-
ing the ambiguity problem in cross-tenant queries

processing. It enables high integration transparency because once
the schema is defined and the database connection established, any
client, with any desired data format, can ask any query at any time
and do so by using nothing else but plain SQL. Moreover, as data
resides in a single database (SS or ST'), queries can be aggressively
optimized with respect to both, standard SQL semantics and addi-
tional MTSQL semantics. As MTSQL adopts the single-database
layout, it is also very cost-effective, especially if used on top of
ST. Also, data conversion only happens as needed, which perfectly
fits the cloud’s pay-as-you-go cost model and thus makes MT-
SQL an attractive option to complement existing DaaS offerings.
Specifically, the paper makes the following contributions:

o It defines the syntax and semantics of MTSQL, a database
language that extends SQL and solves the ambiguity prob-
lem for cross-tenant query processing.

o It presents the design and implementation of MTBase, a
database middleware that executes MTSQL on top of any
shared-table multi-tenant database.

o It studies MTSQL-specific optimizations for query execu-
tion in MTBase.

o [t extends the well-known TPC-H benchmark in order
to run and evaluate MTSQL workloads, resulting in new
benchmark called MT-H.

o [t evaluates the performance and the implementation cor-
rectness of MTBase with MT-H, concluding with satisfac-
tory results.

The rest of this paper is organized as follows: Section 2 defines
MTSQL, while Section 3 gives an overview on MTBase. Section 4
discusses the MTSQL-specific optimizations which are validated
in Section 5. Section 6 shortly summarizes lines of related work,
specifically focusing on the relation of MTSQL to data integra-
tion as well as data privacy, whereas the paper is concluded in
Section 7.

2 MTSQL

In order to model the specific aspects of cross-tenant query pro-
cessing in multi-tenant databases, we developed MTSQL, which
will be described in this section. MTSQL extends SQL in two
ways: First, it extends the SQL interface with two additional pa-
rameters, C and D. C is the tenant ID (or ttid for short) of the
client who submits a statement and hence determines the format
in which the result must be presented. The data set, D, is a set of
ttids that refer to the tenants whose data the client wants to query.
Secondly, MTSQL extends the syntax and semantics of SQL, as
well as its Data Definition Language (DDL), Data Manipulation

Language (DML) and Data Control Language (DCL, consists of
GRANT and REVOKE statements).

As mentioned in the introduction, there are several ways how a
multi-tenant database can be laid out: Figure 2 shows an example
of the ST scheme, also referred to as basic layout in related work
[11] where tenants’s data is consolidated using the same tables.
Meanwhile, there also exists the SS scheme, also referred to as
private table layout, where every tenant has her own set of tables.
In that scheme, data ownership is defines as part of the table name
(e.g. Roles_1, Roles_2, ...) while in ST, records are explicitly
annotated with the ##id of their data owner, using an extra meta
column in the table which is invisible to the client.

As these two approaches are semantically equivalent, the MT-
SQL semantics that we are about to define, apply to both. In the
case of the SS, applying a statement s with respect to D simply
means to apply s to the logical union of all private tables owned
by a tenant in D. In SS, s is applied to tables filtered according to
D. In order to keep the presentation simple, the rest of this paper
assumes an ST scheme, but sometimes defines semantics with
respect to SS if that makes the presentation easier to understand.

2.1 MTSQL API

MTSQL needs a way to incorporate the additional parameters C
and D. As C is the ttid of the tenant that issues a statement, we
assume it is implicitly given by the SQL connection string. ttids
are not only used for identification and access control, but also
for data ownership. While this paper uses integers for simplicity
reasons, ftids can have any data type, in particular they can also
be database user names.

SET SCOPE = "IN (1,3,42)";

Listing 1: Simple SCOPE expression using IN

SET SCOPE = "FROM Employees WHERE E_salary > 180K";

Listing 2: Complex SCOPE expression with sub-query

D is defined using the MTSQL-specific SCOPE runtime para-
meter on the SQL connection. This parameter can be set in two
different ways: Either, as shown in Listing 1, as simple scope with
an IN list stating the set of #fids that should be queried, or as
in Listing 2, as a sub-query with a FROM and a WHERE clause
(complex scope). The semantics of the latter is that every tenant
that owns at least one record in one of the tables mentioned in
the FROM clause that satisfies the WHERE clause is part of D. The
SCOPE variable defaults to {C}, which means that by default
a client processes only her own data. Defining a simple scope
with an empty IN list, on the other hand, makes D include all the
tenants present in the database.

Making C and D part of the connection allowed for a clear
separation between the end users of MTSQL (for which ttids
do not make much sense and hence remain invisible) and adminis-
trators/programmers that manage connections (and are aware of
ttids).

2.2 Data Definition Language

DDL statements are issued by a special role called the data mod-
eller. In a multi-tenant application, this would be the SaaS provider
(e.g. a Salesforce administrator) or the provider of a specific ap-
plication. However, the data modeller can delegate this privilege
to any tenant she trusts using a GRANT statement, as will be de-
scribed in Section 2.3.

15

There are two types of tables in MTSQL.: tables that contain
common knowledge shared by everybody (like the Regions
table in TPC-H [43]) and those that contain data of a specific
tenant (i.e. Employees and Roles in Figure 2). More formally,
we define the table generality of Regions as global and the one
of Employees as tenant-specific. In order to process queries
across tenants, MTSQL needs a way to distinguish whether an
attribute is comparable (can be directly compared against attribute
values of other tenants), convertible (can be compared against
attribute values of other tenants after applying a well-defined
conversion function) or tenant-specific (it does semantically not
make sense to compare against attribute values of other tenants).
An overview of these types of attribute comparability, together
with examples from Figure 2, is shown in Table 1.

[type [description [examples |
N can be directly compared to and . .
comparable aggregated with other values E_age, R_name

other values need to be converted
convertible to the format of the current tenant E_salary

before comparison or aggregation
values of different tenants cannot
be compared with each other

tenant-specific E_role_id, R.role_id

Table 1: Overview on attribute comparability in MTSQL

2.2.1 CREATE TABLE Statement. The MTSQL-specific
keywords for creating (or altering) tables are GLOBAL,
SPECIFIC, COMPARABLE and CONVERTIBLE. An example
of how they can be used is shown in Listing 3. Note that
SPECIFIC can be used for tables and attributes. Moreover, using
these keywords is optional as we define that tables are global by de-
fault, attributes of tenant-specific tables default to tenant-specific
and those of global tables to compamble.2

CREATE TABLE Employees SPECIFIC (

E_emp_id INTEGER NOT NULL SPECIFIC,

E_name VARCHAR (25) NOT NULL COMPARABLE,

E_role_id INTEGER NOT NULL SPECIFIC,

E_salary VARCHAR(17) NOT NULL CONVERTIBLE
@currencyToUniversal @QcurrencyFromUniversal,

E_age INTEGER NOT NULL COMPARABLE,

CONSTRAINT pk_emp PRIMARY KEY (E_emp_id),

CONSTRAINT fk_emp FOREIGN KEY (E_role_id)
R_role_id)

REFERENCES Roles (

)i

Listing 3: Exemplary MTSQL CREATE TABLE statement,
MT-specific keywords marked in bold

2.2.2 Conversion Functions. Cross-tenant query process-
ing requires the ability to execute comparison predicates on com-
parable and convertible attribute. While comparable attributes
can be directly compared to each other, convertible attributes, as
their name indicates, have to be converted first, using conversion
functions. Each tenant has a pair of conversion functions for each
attribute to translate from and to a well-defined universal format.
More formally, a conversion function pair is defined as follows:

Definition 2.1. (toUniversal X xT - X, from-
Universal : X X T — X) is a valid MTSQL conversion function
pair for attribute A, where T is the set of tenants in the database
and X is the domain of A, if and only if:

(1) There exists a universal format for attribute A3
image(toUniversal(-,t1)) = image(toUniversal(-, t2))
= ... = image(toUniversal(-, t|1|))

(ii) Forevery tenant ¢ € T, the partial functions toUniversal(-, t)
and fromUniversal(-, t) are bijective functions.

2Global tables (shared among all tenants!) can only have comparable attributes
anyway.
3image(f) denotes the mathematical image, i.e. the range of function f.

(iii) fromUniversal is the inverse of toUniversal: ¥t € T,
x € X : fromUniversal(toUniversal(x,t),t) = x

These three properties imply the following two corollaries that
we are going to need later in this paper:

COROLLARY 1. toUniversal and fromUniversal are equality
preserving: Vt € T : toUniversal(x,t) = toUniversal(y,t) &
x =y & fromUniversal(x,t) = fromUniversal(y, t)

COROLLARY 2. Values from any tenant ¢; can be converted
into the representation of any other tenant ¢; by first applying
toUniversal(-,t;), followed by fromUniversal(-,tj) while
equality is preserved:

Vti,tj € T : x = y © fromUniversal(toUniversal(x, t;), t;)

=fromUniversal(toUniversal(y, t;), tj)

The reason why we opted for a two-step conversion through
universal format is that it allows each tenant ¢; to define her share
of the conversion function pair, i.e. toUniversal(-, t;) and from-
Universal(-, t;), individually without the need of a central author-
ity. Moreover, this design greatly reduces the overall number of
partial conversion functions as we need at most 2 - |T| partial
function definitions, compared to |T|? functions in the case where
we would define a direct conversion for every pair of tenants.

e homomorphic with respect to tenant ¢ and function h:
toUniversal(h(x1, x2,...),t) =
h(toUniversal(x1,t), toUniversal(xz, t), ...)

We will call a conversion function pair fully-order-preserving
if toUniversal and fromUniversal are order-preserving with re-
spect to all tenants. Consequently, a conversion function pair can
also be fully-h-preserving.

Listings 6 and 7 show an exemplary conversion function pair
used to convert currencies (with USD as universal format). These
functions are not only equality-preserving, but also fully-SUM-
preserving: as the currency conversion is nothing but a multipli-
cation with a constant factor® from CurrencyTransform, it
does not matter in which format we sum up individual values
(as long as they all have that same format). As we will see, such
special properties of conversion functions are another crucial in-
gredient for query optimization.

S

w

CREATE FUNCTION currencyToUniversal
RETURNS DECIMAL(15,2)
AS 'SELECT CT_to_universalx$l FROM Tenant, CurrencyTransform
WHERE T_tenant_key = $2 AND T_currency_key =
CT_currency_key; "'
LANGUAGE SQL IMMUTABLE;

(DECIMAL (15,2), INTEGER)

Listing 6: Converting a currency to universal form (USD),
PostgreSQL syntax

CREATE FUNCTION phoneToUniversal (VARCHAR(17), INTEGER) RETURNS
VARCHAR (17)
AS 'SELECT SUBSTRING($1, CHAR_LENGTH (PT_prefix)+1l) FROM

Tenant, PhoneTransform WHERE T_tenant_key = $2 AND
T_phone_prefix_key = PT_phone_prefix_key; "

LANGUAGE SQL IMMUTABLE;

w

CREATE FUNCTION currencyFromUniversal
RETURNS DECIMAL(15,2)

AS '"SELECT CT_from_universal+«$l FROM Tenant,
CurrencyTransform WHERE T_tenant_key =
T_currency_key = CT_currency_key;"'

LANGUAGE SQL IMMUTABLE;

(DECIMAL (15,2), INTEGER)

$2 AND

Listing 4: Converting a phone number to universal form
(without prefix), PostgreSQL syntax

CREATE FUNCTION phoneFromUniversal (VARCHAR(17), INTEGER)
RETURNS VARCHAR(17)
AS 'SELECT CONCAT (PT_prefix, $1) FROM Tenant, PhoneTransform
WHERE T_tenant_key = $2 AND T_phone_prefix_key =
PT_phone_prefix_key;
LANGUAGE SQL IMMUTABLE;

Listing 5: Converting to a specific phone number format,
PostgreSQL syntax

Listings 4 and 5 show an example of such a conversion func-
tion pair. These functions are used to convert phone numbers with
different prefixes, like “+”, “00” or any other specific county exit
code?, and the universal format is a phone number without pre-
fix. In this example, converting phone numbers simply means to
lookup the tenant’s prefix and then either prepend or remove it, de-
pending whether we convert from or to the universal format. Note
that the exemplary code also contains the keyword IMMUTABLE
to state that for a specific input the function always returns the
same output, which is an important hint for the query optimizer.
While this keyword is PostgreSQL-specific, some other vendors,
but by far not all, offer a similar syntax.

It is important to mention that the equality-preserving property
as mentioned in Corollary 1 is a minimal requirement for conver-
sion functions to make sense in terms of producing coherent query
results among different clients. There are, however conversion
functions that exhibit additional properties, for example:

e order-preserving with respect to tenant ¢:
x <y & toUniversal(x,t) < toUniversal(y, t)

4The country exit code is a sequence of digits that you have to dial in order to inform
the telco system that you want to call a number abroad. A full list of country exit
codes can be found on http://www.howtocallabroad.com/codes.html.

16

Listing 7: Converting from USD to a specific currency,
PostgreSQL syntax

The conversion function examples shown in Listings 4 to 7
assume the existence of tables holding additional conversion infor-
mation (CurrencyTransmform and PhoneTransform) as
well as a table with references into these tables (named Tenants
table). The way how a tenant can define her portion of the con-
version functions is then simply to choose a specific currency and
phone format as part of an initial setup procedure. However, this
is only one possible implementation. MTSQL does not make any
assumptions or restrictions on the implementation of conversion
function pairs themselves, as long as they satisfy the properties
given in Definition 2.1.

MTSQL is not the first work that talks about conversion func-
tions. In fact, there is an entire line of work that deals with data
integration and in particular with schema mapping techniques
[11, 23, 25]. These works mention and take into account conver-
sion functions, like for example a multiplication or a division by a
constant. More complex conversion functions, including regular-
expression-based substitutions and other arithmetic operations,
can be found in Potter’s Wheel [41] where conversion is referred
to as value translation. All these different conversion functions
can potentially also be used in MTSQL which is, to the best of our
knowledge, the first work that formally defines and categorizes
conversion functions according to their properties.

2.2.3 Integrity Constraints. MTSQL allows for global in-
tegrity constraints that every tenant has to adhere to (with respect
to the entirety of her data) as well as tenant-specific integrity
constraints (that tenants can additionally impose on their own

>We are aware of the fact that currency conversion is not at all constant, but depends
on rapidly changing exchange rates. However, we want to keep the examples as
simple as possible in order to illustrate the underlying concepts. However, the general
ideas of this paper also apply to temporal databases.

data). An example of a global referential integrity constraint is
shown in the end of Listing 3. This constraint means that for
every tenant, for each entry of E_role_id, a corresponding
entry R_role_id has to exist in Roles and must be owned
by that same tenant. Consider for example employee John with
R_role_id 0. The constraint implies that their must be a role 0
owned by tenant 0, which in that case is PhD student. If the con-
straint were only fenant-specific for tenant 1, John would not link
to roles and E_role_id O would just be an arbitrary numer-
ical value. In order to differentiate global from tenant-specific
constraints, the scope is used.®

2.2.4 Other DDL Statements. CREATE VIEW statements
look the same as in plain SQL. As for the other DDL statements,
anyone with the necessary privilege can define global views on
global and tenant-specific tables. Tenants are allowed to create
their own, tenant-specific views (using the default scope). The
selected data has to be presented in universal format if it is a
global view and in the tenant-specific format otherwise. DROP
VIEW, DROP TABLE and ALTER TABLE work the same way
as in plain SQL.

2.3 Data Control Language
Let us have a look at the MTSQL GRANT statement:

GRANT <privileges> ON <database|table> TO <ttid>;

Listing 8: MTSQL GRANT syntax

As in plain SQL, this grants some set of access privileges
(READ, INSERT, UPDATE and/or DELETE) to the tenant iden-
tified by ttid. In the context of MTSQL, however, this means
that the privileges are granted with respect to C. Consider the
following statement:

GRANT READ ON Employees TO 42;

Listing 9: Example of an MTSQL GRANT statement

Inthe private table layout,if Cis 0, then this would
grant tenant 42 read access to Employees_0, butif Cis 1, tenant
42 would get read access to Employees_1 instead. If a grant
statement grants to ALL, then the grant semantics also depend
on D, more concretely if D = {7, 11, 15} the privileges would be
granted to tenants 7, 11 and 15.

By default, a new tenant that joins an MTSQL system is granted
the following privileges: READ access to global tables, READ,
INSERT, UPDATE, DELETE, GRANT and REVOKE on his own
instances of tenant-specific tables. In our example, this means that
anew tenant 111 can read and modify data in Employees_111
and Roles_111. Next, a tenant can start asking around to get
privileges on other tenants’ tables or also on global tables. The
REVOKE statement, as in plain SQL, simply revokes privileges
that were granted with GRANT.

2.4 Query Language

Just as in FlexScheme [11, 12], queries themselves are written
in plain SQL and have to be filtered according to D. Whereas in
FlexScheme D always equals {C} (a tenant can only query her
own data), MTSQL allows cross-tenant query processing, which
means that the data set can include other tenants than C and can
in particular contain more than one element. As mentioned in the

6Remembering that an empty IN list refers all tenants, this is exactly what is used to
indicate a global constraint. Additionally, all constraints created as part of a CREATE
TABLE statement are global as well.

17

introduction, this creates some new challenges that have to be
handled with special care.

2.4.1 Client Presentation. As soon as tenants can query
other tenants’ data, the MTSQL engine has to be make sure to
deliver results in the proper format. For instance, looking again at
Figure 2, if tenant O queries the average salary of all employees of
tenant 1, then this should be presented in USD because tenant 0
stores her own data in USD and expects other data to be in USD
as well. Consequently, if tenant 1 would ask that same query, the
result would be returned as is, namely in EUR.

2.4.2 Comparisons. Consider a join of Roles and
Employees on role_id. As long as the dataset size is only
one, such a join query has the same semantics as in plain SQL (or
FlexScheme). However, as soon as tenant 1, for instance, asks this
query with D = {0, 1}, the join has to take the #fids into account.
The reason for this is that role_id is a tenant-specific attribute
and should hence only be joined within the same tenant in order
to prevent semantically wrong results like John being an intern
(although tenant O does not have such a role) or Nancy being
a professor (despite the fact that tenant 1 only has roles intern,
researcher and executive).

Comparison or join predicates containing comparable and con-
vertible attributes, on the other hand, just have to make sure that
all data is brought into universal format before being compared.
For instance, if tenant O wants to get the list of all employees (of
both tenants) that earn more than 100K USD, all employee salaries
have to be converted to USD before executing the comparison.

Finally, MTSQL does not allow to compare tenant-specific
with other attributes. For instance, we see no way how it could
make sense to compare E_role_id to something like E_age or
E_salary.

2.5 Data Manipulation Language

MTSQL DML works the same way as in FlexScheme [11, 12]
if D = {C}. Otherwise, if D # {C}, the semantics of a DML
statement are defined such that it is applied to each tenant in
D separately. Constants, WHERE clauses and sub-queries are in-
terpreted with respect to C, exactly the same way as for queries
(c.f. Section 2.4). This implies that executing UPDATE or INSERT
statements might involve value conversion to the proper tenant
format(s).

3 MTBASE

Based on the concepts described in the previous section, we imple-
mented MTBase, an open-source MTSQL engine [1]. As shown
in Figure 3, the basic building block of MTBase is an MTSQL-to-
SQL translation middleware sitting between a traditional DBMS
and the client. In fact, as it communicates to the DBMS (and to
the client) by the means of pure SQL, MTBase works in conjunc-
tion with any off-the-shelve DBMS. For performance reasons,
the proxy maintains a cache of MT-specific meta data, which
is persisted in the DBMS along with the actual user data. Con-
version functions are implemented as UDFs that might involve
additional meta tables, both of which are also persisted in the
DBMS. MTBase implements the basic data layout, which means
that data ownership is implemented as an additional (meta) ttid
column in each tenant-specific table as illustrated in Figure 2).
There are some dedicated meta tables: Tenant stores each te-
nant’s privileges and conversion information and Schema stores
information about table and attribute comparability. Additional

Client A

o
” ' MT-SQL
o

REWRITE
MODULE

Conversion
Functions

ClientC
Client B

CLIENTS

MTBASE

Figure 3: MTBase architecture

meta tables can (but do not have to) be used to implement conver-
sion function pairs, as for example CurrencyTransform and
PhoneTransform shown in Listings 4 to 7.

While the rewrite module was implemented in Haskell and
compiled with GHC [6], the connection handling and the meta
data cache maintenance was written in Python (and run with the
Python2 interpreter) [4]. Haskell is handy because we can make
full use of pattern matching and additive data types to imple-
ment the rewrite algorithm in a quick and easy-to-verify way, but
any other functional language, like e.g. Scala [5], would also do
the job. Likewise, there is nothing fundamental in using Python,
any other framework that has a good-enough abstraction of SQL
connections, e.g. JDBC [7], could be used.

Upon opening a connection at the middleware, the client’s ¢tid,
C, is derived from the connection string and used throughout
the entire lifetime of that connection. Whenever a client sends
a MTSQL statement s, first if the current scope is complex, a
SQL query gs is derived from this scope and evaluated at the
DBMS in order to determine the relevant dataset D. After that, D
is compared against privileges of C in the Tenant table and ttids
in D without the corresponding privilege are pruned, resulting in
D’. Next, C, D’ and s are input into the rewrite algorithm which
produces a rewritten SQL statement s” which is then sent to the
DBMS before relaying the result back to the client. Note that in
order to guarantee correctness in the presence of updates, g5 and
s’ have to be executed within the same transaction and with a
consistency level at least repeatable-read [13] (even if the client
does not impose any transactional guarantees). If s is a DDL
statement, the middleware also updates the MT-Specific meta
information in the DBMS and the cache.

The rest of this section explains the MTSQL-to-SQL rewrite
algorithm in its canonical form and proves its correctness with
respect to Section 2.4, while Section 4 shows how to optimize the
rewritten queries such that they can be run on the DBMS with
reasonable performance.

3.1 Canonical Query Rewrite Algorithm

Our proposed canonical MTSQL-to-SQL rewrite algorithm works
top-down, starting with the outer-most SQL query and recursively
rewriting sub-queries as they come along. For each sub-query,
the SQL clauses are rewritten one-by-one. The algorithm makes
sure that for each sub-query the following invariant holds: the
result of the sub-query is filtered according to D’ and presented
in the format required by C. Note that this invariant also helps to
formally prove the correctness of the rewrite algorithm as we will
show in Section 3.2.

The pseudo code of the general rewrite algorithm for rewriting
a (sub-) query is shown in Algorithm 1. Note that FROM, GROUP
BY, ORDER BY and HAVING clause can be rewritten without any

additional context while SELECT and WHERE need the whole
query as an input because they might need to check the FROM
for additional information, for instance they must know to which
original tables certain attributes belong.

1: Input: C: ttid, D: set of ttids, Q: MTSQL query

2: Output: SQL query

3: function REWRITEQUERY(C, D, Q)

4: new-select « rewriteSelect(C,D,Q)

new- from « rewriteFrom(C,D,Q.from())

new-where « rewriteWhere(C,D,Q)

new-group-by « rewriteGroupBy(C,D,Q.groupBy())

new-order-by « rewriteOrderBy(C,D,Q.orderBy())

new-having « rewriteHaving(C,D,Q.having())

10: return new Query (new-select, new- from, new-where,
new-group-by, new-order-by, new-having)

o A

Algorithm 1: Canonical Query Rewrite Algorithm

In the following, we will look at the rewrite functions for the
different SQL clauses. Because of space constraints, we only pro-
vide the high-level ideas and illustrate them with suitable minimal
examples. However, we strongly encourage the interested reader
to check-out the Haskell code [2] which in fact almost reads like
a mathematical definition of the rewrite algorithm.

SELECT The rewritten SELECT clause has to present every
attribute a in C’s format, which, if a is convertible, is achieved by
two calls to the conversion function pair of a as can be seen in the
examples of Listing 10 where — —> simply denotes rewriting. If a
is part of compound expression (as in line 6), it has to be converted
before the functions (in that case AVG) are applied. Note that in
order to make a potential super-query work correctly, we also
rename the result of the conversion, either by the new name that it
got anyway (as in line 6) or by the name that it had before (as in
line 3). Rewriting a star expression (line 9) in the uppermost query
also needs special attention, in order not to provide the client with
confusing information, like ttids which should stay invisible.

w o

RTINS

© ®

-— Rewriting a simple

SELECT E_salary FROM Employees; ——>

SELECT currencyFromUniversal (currencyToUniversal (E_salary, ttid)
, C) as salary FROM Employees;

- iC".’J‘(‘WTWr\g an

select expression:

aggregated select expression
SELECT AVG(E_salary) as avg_sal FROM Employees; ——>
SELECT AVG (currencyFromUniversal (currencyToUniversal (E_salary,
ttid), C)) as avg_sal FROM Employees;
Rewriting star expression, hiding irrelevant info
SELECT * FROM Employees;

SELECT E_name, E_salary, E_age FROM Employees;

Listing 10: Examples for Rewriting SELECT clause

WHERE There are essentially three steps that the algorithm has
to perform in order to create a correctly rewritten WHERE clause
(as shown in Listing 11). First, conversion functions have to be

added to each convertible attribute in each predicate in order make
sure that comparisons are executed in the correct (client) format
(lines 2 to 6). This happens the same way as for a SELECT clause.
Notably, all constants are always in C’s format because it is C
who asks the query. Second, for every predicate involving two or
more tenant-specific attributes, additional predicates on
ttid have to be added (line 9), unless if the attributes are part of
the same table, which means they are owned by the same tenant
anyway. Predicates that contain tenant-specific together
with other attributes cause the entire query to be rejected as was
required in Section 2.4.2. Last, but not least, for every base table in
the FROM clause, a so-called D-filter has to be added to the WHERE
clause (line 12). This filter makes sure that only the relevant data
(data that is owned by a tenant in D’) gets processed.

warning stating that grouping by a comparable attribute a is am-
biguous because the way we rewrite a in the WHERE clause and
rename it back to a, we could actually group by the original or by
the converted attribute a. However, the SQL standard clearly says
that in such a case, the result should be grouped by the outer-more
expression, which is exactly what we need. ORDER-BY clauses
need not be rewritten at all.

SET SCOPE Simple scopes do not have to be rewritten at all.
The FROM and WHERE clause of a complex scope are rewritten
the same way as in a sub-query. In order to make it a valid SQL
query, the rewrite algorithm adds a SELECT clause that projects
on the respective ttids as shown in Listing 12.

10

12 .

Comparison with a constant:
. FROM Employees WHERE E_salary > 50K >
. WHERE currencyFromUniversal (currencyToUniversal (E_salary,ttid
),C) > 50K) ..
General comparison:
. FROM Employees El, Employees E2 WHERE El.E_salary > E2.
E_salary ——>
. WHERE currencyFromUniversal (currencyToUniversal (E1.E_salary,
El.ttid),C) > currencyFromUniversal (currencyToUniversal (El.
E_salary,El.ttid),C) ..
—— Extend with predicate on ttid
. FROM Employees, Roles WHERE E_role_id
. FROM Employees, Roles WHERE E_role_id
Employees.ttid = Roles.ttid ..
—- Adding D-filters for D' = {3,7}
. FROM Employees E, Roles R .. ——>
WHERE E.ttid IN (3,7) AND R.ttid IN

R_role_id -—>
R_role_id AND

(3,7) ..

o -

SET SCOPE = "FROM Employees WHERE E_salary > 180K"; -->
SELECT ttid FROM Employees WHERE currencyFromUniversal (
currencyToUniversal (E_salary,ttid),C) > 180K;

Listing 11: Examples for Rewriting WHERE clause

FROM All tables referred by the FROM clause are either base
tables or temporary tables derived from a sub-query. Rewriting the
FROM clause simply means to call the rewrite algorithm on each
referenced sub-query as shown in Algorithm 2. A FROM table
might also contain a JOIN of two tables (sub-queries). In that
case, the two sub-queries are rewritten and then the join predicate
is rewritten in the exact same way like any WHERE.

Notably, this algorithm preserves the desired invariant for
(sub-) queries: the result of each sub-query is in client format and
filtered according to D’, and, due to the rewrite of the SELECT
and the WHERE clause of the current query, base tables, as well as
joins, are also presented in client format and filtered by D. We con-
clude that the result of the current query therefore also preserves
the invariant.

1: Input: C: ttid, D: set of ttids,

2: FromClause: MTSQL FROM clause

3: Output: SQL FROM clause

4: function REWRITEFROM(C, D, FromClause)

5: res < extractBaseTables (FromClause)

6 for all g € extractSubQueries (FromClause) do

7 res < res U { rewriteQuery (C, D, q)}

8 for all (g1, q2, cond) € extractJoins (FromClause) do
9 q; < rewriteQuery (C,D, q1)

10: q; « rewriteQuery (C, D, q2)

11: cond’ « rewriteWhere (C, D, cond)

12: res « res U { createJoin (q, g5, cond’))}
return res

Algorithm 2: Rewrite Algorithm for FROM clause

GROUP-BY, ORDER-BY and HAVING HAVING and
GROUP-BY clauses are basically rewritten the same way like the
expressions in the SELECT clause. Some DBMSs might throw a

19

Listing 12: Rewriting a complex SCOPE expression

3.2 Algorithm Correctness

PROOF. We prove the correctness of the canonical rewrite algo-
rithm with respect to Section 2.4 by induction over the composable
structure of SQL queries and by showing that the desired invariant
(the result of each sub-query is filtered according to D’ and pre-
sented in the format required by C) holds: First, as a base, we state
that adding the D-filters in the WHERE clause and transforming
the SELECT clause to client format for every base table in each
lowest-level sub-query ensures that the invariant holds. Next, as
an induction step, we state that the way how we rewrite the FROM
clause, as it was described earlier, preserves that property. The
top-most SQL query is nothing but a composition of sub-queries
(and base tables) for which the invariant holds. This means that
the invariant holds for the entire query, which is hence guaranteed
to deliver the correct result.]

3.3 Rewriting DDL and DML Statements

Rewriting DDL and DML statements is very similar to rewriting
queries, in fact, predicates are rewritten in exactly the same way.
The remaining questions are how to rewrite tenant-specific refe-
rential integrity constraints (using check constraints) and how to
apply DML statements to a dataset D # {C} (by executing the
proper value transformations separately for each client). While
the semantics and the intuition how to implement them should be
clear, we refer again to the extended version of this paper [15] for
further examples and explanations.

4 OPTIMIZATIONS

As we have seen, there is a canonical rewrite algorithm that cor-
rectly rewrites MTSQL to SQL. However, we will show in Sec-
tion 5 that the rewritten queries often execute very slowly on the
underlying DBMS. The main reason for this is that the pure rewrit-
ten queries call two conversion functions on every transformable
attribute of every record that is processed, which is extremely
expensive. Luckily, the execution costs can be reduced dramati-
cally when applying the optimization passes that we describe in
this section. As we assume the underlying DBMS to optimize
query execution anyway, we focus on optimizations that a DBMS
query optimizer cannot do (because it needs MT-specific context)
or does not do (because an optimization is not frequent enough
outside the context of MTBase). We differentiate between seman-
tic optimizations, which are always applied because they never

make a query slower and cost-based optimizations which are only
applied if the predicted costs are smaller than in the original query.

woR W —

o

o«

©

D is the empty scope:
(1,2); —>

—— dropping D-filter if

SELECT E_age FROM Employees WHERE E_ttid IN

SELECT E_age FROM Employees;

—— dropping ttid from join predicate if |D| = 1

SELECT E_age, R_name FROM Employees, Roles WHERE E_role_id =
R_role_id AND E_ttid = R_ttid AND E_ttid IN (2) AND R_ttid
IN (2); >

SELECT E_age, R_name FROM Employees
R_role_id AND E_ttid IN (2) AND R_ttid IN

dropping conversion functions if D = {C}:

SELECT currencyFromUniversal (currencyToUniversal (E_salary,
E_ttid),0) AS E_salary FROM Employees;

SELECT E_salary FROM Employees;

Roles WHERE E_role_id =
(2);

Listing 13: Examples for trivial semantic optimizations

4.1 Trivial Semantic Optimizations

There are a couple of special cases for C and D that allow to save
conversion function calls, join predicates and/or D-filters. First, if
D includes all tenants, that means that we want to query all data
and hence D-filters are no longer required as shown in line 3 of
Listing13. Second, as shown in line 6, if |D| = 1, we know that all
data is from the same tenant, which means that including ttid in
the join predicate is no longer necessary. Last, if we know that a
client queries her own data, i.e. D = {C} corresponds to the default
scope, we know that even convertible attributes are already in the
correct format and can hence remove the conversion function calls
(line 9).

4.2 Other Semantic Optimizations

There are a couple of other semantic optimizations that can be
applied to rewritten queries. While client presentation push-up
and conversion push-up minimize the number of conversions by
delaying conversion to the latest possible moment, aggregation
distribution takes into account specific properties of conversion
functions (as mentioned in Section 2.2.2). If conversion functions
are UDFs written in SQL it is also possible to inline them. This
typically gives queries an additional speed up.

more filtered and therefore the overall number of (expensive) con-
version function calls becomes smaller (or, in the worst case, stays
the same). Naturally, if we delay conversion, this also means that
we have to propagate the necessary ftids to the outer-more queries
and keep track of the current data format.

Listing 14 shows a query that ranks employees according to the
fact how many salaries of other employees their own salary domi-
nates. With client presentation push-up, salaries are compared in
universal instead of client format, which is correct because of the
equality-preserving property (c.f. Corollary 1) and saves half of
the function calls in the sub-query.

Conversion push-up, as shown in Listing 15, reduces the num-
ber of function calls dramatically: First, as it only converts salaries
in the end, salaries of employees aged less than 45 do not have
to be considered at all. Second, the WHERE clause converts the
constant (100K) instead of the attribute (E_salary). As the
outcome of conversion functions is immutable (c.f. Section 2.2.2)
and C is also constant, the conversion functions have to be called
only once per tenant and are then cached by the DBMS for the
rest of the query execution, which becomes much faster as we will
see in Section 5.

[FRFS W -

< o

©

—- before optimization
SELECT AVG(X.sal) FROM (
SELECT currencyFromUniversal (currencyToUniversal (E_salary,
E_ttid), C) as sal
FROM Employees WHERE E_age >= 45 AND
currencyFromUniversal (currencyToUniversal (E_salary, E_ttid), C
) > 100K) as X;
—- after optimization
SELECT AVG (currencyFromUniversal (currencyToUniversal (X.sal, X.
sal_ttid),C)) FROM (
SELECT E_salary as sal, E_ttid as sal_ttid
FROM Employees WHERE E_age >= 45 AND
E_salary > currencyFromUniversal (currencyToUniversal (100K,
E_ttid), C) as X);

w o

[FANS

© o =

S

11
12

before optimization
SELECT Dom.namel, Dom.sall as sal, COUNT (%) as cnt FROM (
SELECT El.name as namel, currencyFromUniversal (
currencyToUniversal (E1.E_salary, El.E_ttid), C)
FROM Employees El, Employees E2
WHERE currencyFromUniversal (currencyToUniversal (E1.E_salary,
E1.E_ttid), C) >
currencyFromUniversal (currencyToUniversal (E2.E_salary,
E_ttid), C)
) as Dom GROUP BY Dom.namel, sal, cnt ORDER BY cnt;
—— after optmimization
SELECT Dom.namel, currencyFromUniversal (Dom.sall, C)
COUNT (%) as cnt FROM (
SELECT El.name as namel, currencyToUniversal(El.E_salary, El.
E_ttid) as sall
FROM Employees El, Employees E2
WHERE currencyToUniversal (E1.E_salary, El1.E_ttid) >
currencyToUniversal (E2.E_salary, E2.E_ttid)
) as Dom GROUP BY Dom.namel, sal, cnt ORDER BY cnt;

as sall

E2.

as sal,

Listing 14: Example for client presentation push-up

4.2.1 Client Presentation and Conversion Push-Up. As
conversion function pairs are equality-preserving, it is possible
in some cases to defer conversions to later, for example to the
outermost query in the case of nested queries. While client presen-
tation push-up converts everything to universal format and defers
conversion to client format to the outermost SELECT clause, con-
version push-up pushes this idea even more by also delaying the
conversion to universal format as much as possible. Both optimiza-
tions are beneficial if the delaying of conversions allows the query
execution engine to evaluate other (less expensive) predicates first.
This means that, once the data has to be converted, it is already

20

Listing 15: Example for conversion push-up

4.2.2 Aggregation Distribution. Many analytical queries
contain aggregation functions, some of which aggregate on con-
vertible attributes. The idea of aggregation distribution is to aggre-
gate in two steps: First, aggregate per tenant in that specific tenant
format (requires no conversion) and second, convert intermediary
results to universal (one conversion per tenant), aggregate those
and convert the final result to client format (one additional conver-
sion). This simple idea reduces the number of conversion function
calls for N records and T different data owners of these records
from (2N) to (T + 1). This is significant because T is typically
much smaller than N (and cannot be greater).

Compared to pure conversion push-up, which works for any
conversion function pair, the applicability of aggregation distri-
bution depends on further algebraic properties of these functions.
Gray et al. [24] categorize numerical aggregation functions into
three categories with regard to their ability to distribute: distribu-
tive functions, like COUNT, SUM, MIN and MAX distribute with
functions F (for partial) and G (for total aggregation). For COUNT
for instance, F is COUNT and G is SUM as the total count is the
sum of all partial counts. There are also algebraic aggregation
functions, e.g. AVG, where the partial results are not scalar values,
but tuples. In the case of AVG, this would be the pairs of a partial
sums and partial counts because the total average can be computed
from the sum of all sums, divided by the sum of all counts. Finally,
holistic aggregation functions cannot be distributed at all.

We would like to extend the notion of Gray et al. [24] and
define the distributability of an aggregation function a with respect
to a conversion function pair (from,to). Table 2 shows some
examples for different aggregation and conversion functions. First

to(x)=c-x|to(x)=a-x+b t0 = order- to= equzflity-
preserving preserving
COUNT 7 7 = Z
MIN 7 7 Z =
MAX 7 7 = =
SUM 7 7 ¢ =
AVG 7 7 = =
Holistic X X X %

Table 2: Distributability of different aggregation functions
over different categories of conversion functions

of all, we want to state that, as all conversion functions have
scalar values as input and output, they are always fully-COUNT-
preserving, which means that COUNT can be distributed over all
sorts of conversion functions. Next, we observe that all order-
preserving functions preserve the minimum and the maximum
of a given set of numbers, which is why MIN and MAX distribute
over the first three categories of conversion functions displayed
in Table 2. We further notice that if to (and consequently also
from) is a multiplication with a constant (first column of Table 2),
to is fully- MIN-, fully-MAX- and fully-SUM-preserving, which is
why these aggregation functions distribute. As SUM and COUNT
distribute, AVG, an algebraic function, distributes as well.

Finally looking at the second column of Table 2, we see that
even linear functions are SUM- and AVG-preserving. To see why,
we can think about computing the average over all tenants as a
weighted average of partial (per-tenant) averages for AVG and mul-
tiply these partial averages with the partial counts to reconstruct
the total sum [15, Appendix B].

)

I

before optimization

SELECT SUM(currencyFromUniversal (currencyToUniversal (E_salary,
E_ttid), C)) as sum_sal FROM Employees

-- after optimization

SELECT currencyFromUniversal (SUM(t.E_partial_salary), C) as
sum_sal FROM (SELECT currencyToUniversal (SUM(E_salary),
E_ttid) as E_partial_salary FROM Employees GROUP BY E_ttid)

as t;

Listing 16: Example for conversion function distribution

We conclude this subsection by observing that the conversion
function pair for phone format (c.f. Listings 4 and 5) is not even
order-preserving and does therefore not distribute while the pair
for currency format (c.f. Listings 6 and 7) distributes over all
standard SQL aggregation functions. An example of how this can
be used is shown in Listing 16.

—— before optimization

SELECT currencyFromUniversal (currencyToUniversal (E_salary,
E_ttid), C)) as E_salary FROM Employees

—— after optimization

SELECT (Cl.CT_from_universal x C2.CT_to_universal x E_salary) as
E_salary

FROM Employees, Tenant T1l, Tenant T2,
CurrencyTransform2

WHERE T1.T_tenant_key = C AND Tl.T_currency_key =
CurrencyTransforml.CT_currency_key AND

T2.T_tenant_key = E_ttid AND T2.T_currency_key =
CurrencyTransform2.CT_currency_key

CurrencyTransforml,

Listing 17: Example for function inlining

4.2.3 Function Inlining. As explained in Section 2.2.2, there
are several ways how to define conversion functions. However, if
they are defined as a SQL statement (potentially including lookups
into meta tables), they can be directly inlined into the rewritten
query in order to save calls to UDFs. Function inlining typical-
ly also enables the query optimizer of the underlying DBMS to
optimize much more aggressively. In WHERE clauses, conversion
functions could simply be inlined as sub-queries, which, however
often results in sub-optimal performance as calling a sub-query on
each conversion is not much cheaper than calling the correspond-
ing UDF. For SELECT clauses, the SQL standard does anyway
not allow to inline as a sub-query as this can result in attributes

21

not being contained neither in an aggregate function nor in the
GROUP BY clause, which is why most commercial DBMS reject
such queries (while PostgreSQL, for instance executes them any-
way). This is why the proper way to inline functions is by using
a join as shown in Listing 17. Our results in Section 5 suggest
that function inlining, though producing complex-looking SQL
queries, results in very good query execution performance.

It is important to mention that function inlining should only
happen after the other semantic optimization passes because these
other passes are able to reduce the number of required UDF calls,
while function inlining can only make a UDF call faster. Further-
more, it is important to understand that, while some clever query
optimizers do indeed inline UDF calls already, none of the query
optimizers that we looked at seems to perform client presentation
and conversion push-up, let alone aggregation distribution, de-
spite the fact that the foundation for these transformations [24, 28]
have been established already more than 20 years ago.

5 EXPERIMENTS AND RESULTS

This section presents the evaluation of MTBase using an extension
from the well-known TPC-H benchmark [43], called MT-H [15].
We first evaluated the benefits of different optimization steps from
Section 4 and found that the combination of all of these steps
brings the biggest benefit. Second, we analyzed how MTBase
scales with an increasing number of tenants. With all optimizations
applied and for a dataset of 100 GB on a single machine, MTBase
scales up to thousands of tenants with very little overhead. We
also validated result correctness as explained in Section 5.1 and
can report only positive results.

5.1 MT-H Benchmark

MT-H uses the same database schema as TPC-H, but considers the
Customer, Order, and Lineitem tables tenant-specific and
the remaining tables global. Attributes C_acctbal,
O_totalprice,and L_extendedprice are considered con-
vertible with respect to the conversion functions of Listings 6
and 7 and C_phone with respect to Listings 4 and 5. While
C_custkey, O_orderkey, O_custkey,L,_orderkey are
tenant-specific, all remaining attributes are comparable. A de-
tailed description on this benchmark, including the validation of
query results, can be found in our technical report [15].

5.2 Setup

In our experiments, we used the following two setups: The first set-
up is a PostgreSQL 9.6 Beta installation, running on Debian Linux
4.1.12 on a 4x16 Core AMD Opteron 6174 processor with 256
GB of main memory. The second installation runs a commercial
database (which we will call System C) on a commercial operating
system and on the same processor with 512 GB of main memory.
Although both machines have enough secondary storage capacity
available, we decided to configure both database management
systems to use in-memory backed files in order to achieve the best
performance possible. Moreover, we configured the systems to
use all available threads, which enabled intra-query parallelism.

5.3 Workload and Methodology

As the MT-H benchmark has a lot of parameters and in order to
make things more concrete, we worked with the following two
scenarios: Scenario 1 handles the data of a business alliance of
a couple of small to mid-sized enterprises, which means there
are 10 tenants with sf = 1 and each of them owns more or less

[Level

[Q01 Q02 [Q03 [Q04 [Q05 | Q06 | Q07 | Q08 [Q09 [Q10 | Q11 [Q12] QI3[Q14 Q15[Q16| Q17 [QI8 [Q19 Q20 [Q21 [Q22 |

tpch-0.1G | 2.6 | 0.11 | 0.27 | 0.35] 0.15 [0.29 | 0.18 | 0.14 | 0.59 | 0.36 | 0.081 | 0.37 | 0.26 | 0.27 | 0.77 | 0.12 | 0.081 | 0.89 | 0.12 | 0.13 | 0.57 | 0.081
canonical | 84 1.0 [0.55]0.65(032] 1.0 [029]036]| 49 [091] 037 | 055|0.63 098 | 3.1 121049 | 1.7 | 03 | 28 | 0.66 | 2.0
ol 27 110 | 043]0.61 |022]043]023|0.56| 3.8 |0.76| 037 [0.55]0.92]0.56]091| 1.2 | 048 | 1.6 | 0.3 | 2.8 | 0.66 | 0.085
02 2.7 1 1.0 | 042 |0.61]0.22 043 |0.22]0.57| 39 [0.76 | 0.38 | 0.55]0.89 | 0.56] 0.96 | 1.2 0.5 1.7 1 03 | 2.8 | 0.67 | 0.085
03 27 | 1.0 [043]0.61 [022]043|023|056| 39 [0.76 | 037 |0.55]092|056]091| 1.2 | 048 | 1.6 | 0.3 | 2.8 | 0.66 | 0.085
o4 27| 1.0 [043]0.62|022]043|023|0.61| 41 |0.78] 039 [0.56| 09 [057| 1.0 | 1.2 | 0.51 1.7 1031] 3.1 | 0.67 | 0.085
inl-only 2.7 | 1.0 [042]0.65]0.22 043]0.22]0.57| 38 [0.76 | 0.37 [0.55[0.92]0.56]092] 1.2 | 048 | 1.6 [0.3 | 2.8 | 0.66 | 0.085

Table 3: Response times [sec] of 22 TPC-H queries

for MTBase-on-PostgreSQL with, sf = 1, T = 10, p = uniform, C = 1,

D = {1}, for different levels of optimizations, versus TPC-H with sf = 0.1

Level [Q01 [Q02 [Q03 [Q04 [Q05 [Q06 [Q07 [Q08 [Q09 [Q10 [Q11 [Q12 [Q13 [Q14 [Q15 [Q16 [Q17 [Q18 [Q19 [Q20 [Q21 [Q22]
tpch-0.1G | 2.6 | 0.11 | 0.27 | 0.35] 0.15 [0.29 | 0.18 | 0.14 | 0.59 | 0.36 | 0.081 | 0.37 | 0.26 | 0.27 | 0.77 | 0.12 | 0.081 | 0.89 | 0.12 | 0.13 | 0.57 | 0.081
canonical | 87 1.0 | 05] 06 [028 | 1.0 [026] 037 [49 [089] 037 [0.56[0.65] 1.0 | 3.2 | 1.2 | 049 | 1.6 | 031 | 2.8 [0.66 | 2.0
ol 87 1.0 [051069 (033] 1.0 [027]038] 52 | 09] 039 |056|092| 1.0 | 3.1 1.2 | 051 1.6 [032] 3.1 [0.68] 2.0
02 87 1.0 | 0.5]061[028] 1.0 [027]038] 52 | 09] 039 |057|091| 1.0 | 3.1 1.2] 051 1.6 {032] 3.1 [0.67] 1.3
03 32 1.0 [0.45]0.63 028 044 024|037] 43 [083] 038 |0.56|091] 1.1 1.9 1 1.3 | 0.51 1.6 [032] 31 [0.67 | 1.3
o4 14 1.0 {048 0.62]0.221044 023057 | 39 [093] 038 [056 (089|073 1.3 | 12 [049 | 1.6 | 03 | 2.8 | 0.66 | 0.27
inl-only 45 1.0 [047]0.61|0.27 | 0.64 | 024 | 058 | 42 [094 | 037 [055(091 073 22 | 12 | 048 | 1.7 | 0.3 | 2.8 | 0.66 | 0.27

Table 4: Response times [sec] of 22 TPC-H queries for MTBase-on-PostgreSQL with, sf = 1, T = 10, p = uniform, C = 1,
D = {2}, for different levels of optimizations, versus TPC-H with sf = 0.1

[Level [Q01 Q02T Q03T Q04 Q05] Q06 Q07 [Q08] Q09 Q10 [Q11 [QI2[QI3[QI4[QI5] Q16 Q17 [Q18 Q19 Q20 [Q21 [Q22
tpch-1G 26 12145 |14 |15 (29 |37 [13]95]22[038] 39 |84 |27 59| 12]054| 10 | 03 |24 | 48 |047
canonical | 870 | 1.1 | 6.5 | 15 | 34 | 87 | 3.7 | 1.7 19 11 [036] 41 | 49 | 73 | 28 1.2 1057 12 {032 2.6 | 58 | 20
ol 80 [1.1 [65 | 15|34 |87 |37] 17 19 11 1036 | 41 | 49 | 73 | 28 12 1062 12 1033] 2.7 | 59 | 20
02 870 | 1.1 | 65 | 1.5 | 34 | 86 | 3.7 | 1.7 19 11 [035] 41 | 49 | 72 | 28 1.2 1057 12 032 2.6 | 58 13
03 310 | 1.1 [S5 | 1.5 | 3.1 | 3.1 | 34 | 1.6 11 10 {036 41 | 49 | 7.3 12 12 1055| 12 1032 | 2.6 | 59 13
o4 130 | 1.1 | 3.7 | 1.5 | 1.7 | 3.1 | 34 | 1.4 11 46 | 038 | 41 | 49 | 44 | 9.1 1.2 1059 12 [032] 26 | 5.7 | 22
inl-only 450 | 1.1 4 1.6 | 1.8 | 51 [35| 14 14 [49 [039] 41 | 48 | 44 19 1.2 1055] 12 [032] 26 [5.8 | 23

Table 5: Response times [sec] of 22 TPC-H queries for MTBase-on-PostgreSQL with sf = 1, T = 10, p = uniform, C = 1,
D = {1, 2,...10}, for different levels of optimizations, versus TPC-H with sf = 1

the same amount of data (p =uniform). Scenario 2 simulates the
HDC use case [27] and hence needs to be is a huge database
(sf = 100) of medical records coming from thousands of tenants,
like hospitals and private practices. Some of these institutions
have vast amounts of data while others only handle a couple of
patients (p=zipf). A research institution wants to query the entire
database (D={1,2....,T}) in order to gather new insights for the
development of a new treatment. We looked at this scenario for
different numbers of T.

In order to evaluate the overhead of cross-tenant query process-
ing in MTBase compared to single-tenant query processing, we
also measured the standard TPC-H queries with different scaling
factors. When D was set to all tenants, we compared to TPC-H
with the same scaling factor as MT-H. For the cases where D had
only one tenant (out of ten), we compared with TPC-H with a
scaling factor ten times smaller.

Every query run was repeated three times in order to ensure
stable results. We noticed that three runs are needed for the re-
sponse times to converge (within 2%). Thus we always report the
last measured response time for each query with two significant
digits.

All experiments were executed with both setups (PostgreSQL
and System C). Whereas the major findings were the same on
both systems, PostgreSQL optimizes conversion functions (UDFs)
much better by caching their results. System C, on the other hand
does not allow UDFs to be defined as deterministic and hence
cannot cache conversion results. This eliminates the effect of con-
version push-up when applied to comparison predicates where we
convert the constant instead of the attribute (c.f. Listing 15). This
being said, the rest of this section only reports results on Post-
greSQL while we encourage the interested reader to also consult
our additional results [15] to confirm that the main conclusions
drawn from the PostgreSQL experiments generalize.

22

[opt level [optimization passes
canonical none
ol trivial optimizations
02 ol + client presentation push-up
+ conversion push-up
o3 02 + conversion function distribution
o4 03 + conversion function inlining
inl-only ol + conversion function inlining

Table 6: Different optimization levels for evaluation

5.4 Benefit of Optimizations

In order to test the benefit of the different combinations of opti-
mizations applied, we tested Scenario 1 with different optimiza-
tion levels as shown in Table 6. From o/ to 04 we added optimiza-
tions incrementally, while the last optimization level (inl-only)
only applied trivial optimizations and function inlining in order to
test whether the other optimizations are useful at all.

Table 3 shows the MT-H queries for different optimization lev-
els and Scenario I (sf = 1,T = 10) where client 1 queries her own
data. As we can see, in that case, applying trivial optimizations
in ol is enough because these already eliminate all conversion
functions and joins and only the D-filters remain. Executing these
filters seems to be very inexpensive because most response times
of the optimized queries are close to the baseline, TPC-H with
sf = 0.1. Queries 2, 11 and 16 however, take roughly ten times
longer than the baseline. This is not surprising when taken into
account that these queries only operate on shared tables which
have ten times more data than in TPC-H. The same effect can be
observed in Q09 where a significant part of the joined tables are
shared.

Table 4 shows similar results, but for D = 2, which means
that now conversion functions can no longer be optimized away.

©TPC-H #MT-Ho04 «MT-H inl-only #TPC-H #MT-Ho4 #MT-H inl-only ©TPC-H #MT-Ho04 =MT-H inl-only
2.3 ~1.15 ~4.5
5 ‘ ‘ ’ ’ ’ | @ 5110 I | ‘ ‘ ‘ © X35 |
Q18 | —1 EQL™ | \ \ \ EQ
P! | | [3 =105 3525
c+~13 | + + + :‘-’100 ::;15
ge ™l 1] g el g2l
880s L 1 1 1 88095 g805 L ' i .)
£ 1 10 100 1000 10000 100 000 £ 1 10 100 1000 10000 100 000 £ 1 10 100 1000 10000 100 000
number of tenants number of tenants number of tenants
(a) MT-H Query 1 (b) MT-H Query 6 (c) MT-H Query 22

Figure 4: Response times (relative to TPC-H) of o4 and inlining-only optimization levels for selected MT-H queries, s f = 100,
T scaling from 1 to 100,000 on a log-scale, MTBase-on-PostgreSQL

While most of the queries show a similar behaviour than in the
previous experiment, for the ones that involve a lot of conversion
functions (i.e. queries 1, 6 and 22), we see how the performance
becomes better with each optimization pass added. We also notice
that while function inlining is very beneficial in general, it is even
more so when combined with the other optimizations.

Finally, Table 5 shows the results where we query all data, i.e.
D = {1, 2, ...,10}. This experiment involves even more conversion
functions from all the different tenant formats into universal. In
particular, when looking again at queries 1, 6 and 22, we observe
the great benefit of conversion function distribution (added with
optimization level 03), which, in turn, only works as great in
conjunction with client and conversion function push-up because
aggregation typically happens in the outermost query while con-
version happens in the sub-queries. Overall, 04, which contains
all optimization passes that MTBase offers, is the clear winner.

5.5 Cross-Tenant Query Processing at Large

In our final experiment, we evaluated the cost of cross-tenant
query processing up to thousands of tenants. More concretely, we
measured the response time of conversion-intensive MT-H queries
(queries 1, 6 and 22) for a varying number of tenants between 1
and 100,000, for a large dataset where s f = 100 and for the best
optimization level (04) as well as for inlining-only. The obtained
results were then compared to plain TPC-H with sf = 100, as
shown in Figure 4. First of all, we notice that the cost overhead
compared to single-tenant query-processing (TPC-H) stays below
a factor of 2 and in general increases very moderately with the
number of tenants. An interesting artifact can be observed for
query 22 where MT-H for one tenant executes faster than plain
TPC-H. The reason for this is a sub-optimal optimization decision
in PostgreSQL: one of the most expensive parts of query 22,
namely to find customers with a specific country code, is executed
with a parallel scan in MT-H while no parallelism is used in the
case of TPC-H.

6 RELATED WORK

MTBase builds heavily on and extends a lot of related work. This
section gives a brief summary of the most prominent lines of work
that influenced our design.

Data Integration Data integration (DI) is generally about find-
ing schema and data mappings between the original schemas of
different data sources and a target schema specified by the client
application [23, 25, 41]. As such, DI techniques are applicable
to the entire spectrum of multi-tenant databases because even if
tenants use different schemas or databases, these techniques can
identify correlations and hence extract useful information. Our
work embraces and builds on top of the latest DI work, solving

23

the DI problem very efficiently for a specific case (SS and ST).
More concretely, we automatically determine join predicates from
schema meta data and optimize conversion functions similar to
those used in DI by thoroughly analyzing and exploiting their
algebraic properties. In addition, instead of translating data into a
specific client format (and update periodically), we convert it to
any required client format efficiently and just-in-time.

Database Federation: DI is often combined with database federa-
tion [26, 31], which means that there exist small program modules
(called integrators, mediators or simply wrappers) to map data
from different sources (possibly not all of them SQL databases)
into one common format. While data federation generalizes well
across the entire spectrum of multi-tenant databases, maintaining
such wrapper architectures is expensive, both in terms of code
maintenance and update processing. Conversely, MTSQL enables
cross-tenant query processing in a more efficient and flexible way
in the context of SS and ST databases.

Data Warehousing: Another approach how data integration can
happen is during extract-transform-load (ETL) operations from
different (OLTP) databases into a data warchouse [29]. Data
warehouses have the well-known drawbacks that there are costly
to maintain and that the data is possibly outdated [10, 14, 37].
Meanwhile, MTBase was specifically designed to work well in
the context of integrated OLTP/OLAP systems, also known as
hybrid transaction-analytical processing (HTAP) systems, and
could therefore be advocated as in-situ or just-in-time data inte-
gration. Another interesting approach to just-in-time, respectively
on-demand data integration, are lenses [45] which allow to speed
up ETL processes by lowering the result accuracy to the specific
level required by the application.

Shared-resources (SR) systems: In related work, this approach
is also often called database virtualization or database as a ser-
vice (DaaS) when it is used in the cloud context. Important lines of
work in this domain include (but are not limited to) Sq/VM/Azure
SQOL DB [20, 36], RelationalCloud [35], SAP-HANA [42], Snowflake
[18] and Oracle’s multitenant container database (CDB) [40],
most of which is well summarized in [22]. MTBase complements
these systems by providing a platform that can accommodate
more, but typically smaller tenants.

Shared-databases (SD) systems: This approach, while appear-
ing in the spectrum of multi-tenant databases by Chong et al. [17],
is rare in practice. Sql Azure DB [20] seems to be the only product
that has an implementation of this approach. However, even Mi-
crosoft strongly advises against using SD and instead recommends
to either use SR or ST [34].

Shared-tables (ST) systems: Work in that area includes Sales-
force [44], Apache Phoenix [9], FlexScheme [11, 12] and Azure
SQL Database [34]. Their common idea, as in MTSQL, is to use
an invisible tenant identifier to identify which records belong to
which tenant and rewrite SQL queries in order to include filters
on this ttid. MTSQL extends these systems by providing the
necessary features for cross-tenant query processing.

Privacy/Confidentiality: Clearly, cross-tenant query processing
almost immediately raises the question of data confidentiality. In
the case of the HDC, for instance, patients might consent to their
data being used in aggregated analytics, but they most certainly
would not want sensitive, personal information, like their social
security number, to appear in any report. While it is out of the
scope of this paper to thoroughly discuss data confidentiality in a
multi-tenant system, this work establishes proper syntax and se-
mantics for cross-tenant query processing, which lays the ground
for building appropriate encryption mechanisms [16, 21] atop as
is sketched in our technical report [15].

UDFs and Complex Expressions: Oracle MLE [39] is a system
that allows for highly-optimized execution of user-defined func-
tions, which makes it a promising candidate to further investigate
optimization of conversion functions. For instance, we would like
to look at optimizing complex expressions, containing several
nested user-defined function calls, as a whole.

7 CONCLUSION

This paper presented MTSQL, a new language to address cross-
tenant query processing in multi-tenant databases. MTSQL ex-
tends SQL with multi-tenancy-aware syntax and semantics, which
allows to efficiently optimize and execute cross-tenant queries
in MTBase. MTBase is an open-source system that implements
MTSQL. At its core, it is an MTSQL-to-SQL rewrite middleware
sitting between a client and any multi-tenant DBMS of choice. The
performance evaluation with a benchmark adapted from TPC-H
showed that MTBase (on top of PostgeSQL) can scale to thousands
of tenants at very low overhead and that our proposed optimiza-
tions to cross-tenant queries are highly effective.

In the future, we plan to further analyze the interplay between
the MTBase query optimizer and its counter-part in the DBMS
execution engine in order to assess the potential of cost-based
optimizations. We also want to study conversion functions that
vary over time and investigate how MTSQL can be extended to
temporal databases. Moreover, we would like to look more into
the privacy issues of multi-tenant databases, in particular how to
enable cross-tenant query processing if data is encrypted.

REFERENCES

(1]
(2]

2017. MTBase project page. https://github.com/mtbase/overview. (2017).
2017. MTBase Rewrite Algorithm. https://github.com/mtbase/mt-rewrite.
(2017).

2017. Oracle Virtual Private Database. http://www.oracle.com/technetwork/d
atabase/security/index-088277.html. (2017).

2017. Python 2.7.2 Release. https://www.python.org/download/releases/2.7.2.
(2017).

2017. Scala Language. http://www.scala-lang.org. (2017).

2017. The Glasgow Haskell Compiler. https://www.haskell.org/ghc. (2017).
2017. The Java Database Connectivity (JDBC). http://www.oracle.com/techn
etwork/java/javase/jdbc/index.html. (2017).

Amazon Webservices. 2017. Amazon Relational Database Service (RDS).
https://aws.amazon.com/rds. (2017).

Apache Foundation. 2017. Apache Phoenix: High performance relational
database layer over HBase for low latency applicationsn - Multi-Tenancy
Feature. http://phoenix.apache.org/multi-tenancy.html. (2017).

Joy Arulraj et al. 2016. Bridging the Archipelago between Row-Stores and
Column-Stores for Hybrid Workloads. In Proceedings of the 2016 ACM SIG-
MOD International Conference on Management of Data, Vol. 19. 57-63.

3

=

[4

(5]
)
(7

[8

[

[9

[10]

24

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[43]
[44]

[45]

Stefan Aulbach et al. 2008. Multi-tenant databases for software as a service:
schema-mapping techniques. In Proceedings of the 2008 ACM SIGMOD inter-
national conference on Management of data. ACM, 1195-1206.

Stefan Aulbach et al. 2011. Extensibility and data sharing in evolving multi-
tenant databases. In Data engineering (icde), 2011 ieee 27th international
conference on. IEEE, 99-110.

Hal Berenson et al. 1995. A Critique of ANSI SQL Isolation Levels. SIGMOD
Rec. 24,2 (1995), 1-10. http://doi.acm.org/10.1145/568271.223785

Lucas Braun et al. 2015. Analytics in Motion: High Performance Event-
Processing AND Real-Time Analytics in the Same Database. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data.
ACM, 251-264.

Lucas Braun et al. 2017. MTBase: Optimizing Cross-Tenant Database Queries.
arXiv preprint arXiv:1703.04290 (2017).

Jose M Alcaraz Calero et al. 2010. Toward a Multi-Tenancy Authorization
System for Cloud Services. IEEE Security & Privacy 8, 6 (2010), 48-55.
Frederick Chong et al. 2006. Multi-tenant data architecture. MSDN Library,
Microsoft Corporation (2006), 14-30.

Benoit Dageville et al. 2016. The Snowflake Elastic Data Warehouse. In
Proceedings of the 2016 International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016.
215-226. http://doi.acm.org/10.1145/2882903.2903741

Sudipto Das et al. 2013. ElasTraS: An elastic, scalable, and self-managing
transactional database for the cloud. ACM Transactions on Database Systems
(TODS) 38, 1 (2013), 5.

Sudipto Das et al. 2016. Automated Demand-driven Resource Scaling in
Relational Database-as-a-Service. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Fran-
cisco, CA, USA, June 26 - July 01, 2016. 1923—-1934. http://doi.acm.org/10.
1145/2882903.2903733

Sabrina De Capitani Di Vimercati et al. 2007. Over-encryption: management
of access control evolution on outsourced data. In Proceedings of the 33rd in-
ternational conference on Very large data bases. VLDB endowment, 123-134.
Aaron J Elmore et al. 2013. Towards database virtualization for database as a
service. Proceedings of the VLDB Endowment 6, 11 (2013), 1194-1195.
Ronald Fagin et al. 2009. Clio: Schema mapping creation and data exchange.
In Conceptual Modeling: Foundations and Applications. Springer, 198-236.
Jim Gray et al. 1997. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data mining and knowledge discovery 1, 1
(1997), 29-53.

L M Haas et al. 1999. Transforming heterogeneous data with database middle-
ware: Beyond integration. Data Engineering (1999), 31.

Laura M Haas et al. 2002. Data integration through database federation. /BM
Systems Journal 41, 4 (2002), 578-596.

E Hafen et al. 2014. Health data cooperativescitizen empowerment. Methods
Inf Med 53, 2 (2014), 82-86.

Joseph M Hellerstein et al. 1993. Predicate migration: Optimizing queries with
expensive predicates. Vol. 22. ACM.

Ralph Kimball et al. 2002. The data warehouse toolkit: the complete guide to
dimensional modelling. Nachdr.]. New York [ua]: Wiley (2002), 1-447.

SPT Krishnan et al. 2015. Google App Engine. In Building Your Next Big
Thing with Google Cloud Platform. Springer, 83—122.

Alon Levy. 1998. The information manifold approach to data integration. JEEE
Intelligent Systems 13, 5 (1998), 12-16.

Simon Manfred Loesing. 2015. Architectures for elastic database services.
Ph.D. Dissertation. ETH Ziirich, Diss. Nr. 22441.

Microsoft Corporation. 2017. Microsoft Azure Multi-Tenant Architecture.
https://msdn.microsoft.com/en- gb/library/hh534480.aspx. (2017).

Microsoft Corporation. 2017. Microsoft Azure SQL Database. https://azure.mi
crosoft.com/en-us/services/sql-database. (2017).

Barzan Mozafari et al. 2013. DBSeer: Resource and Performance Prediction
for Building a Next Generation Database Cloud.. In CIDR.

Vivek R Narasayya et al. 2013. SQLVM: Performance Isolation in Multi-Tenant
Relational Database-as-a-Service.. In CIDR.

Thomas Neumann et al. 2015. Fast serializable multi-version concurrency
control for main-memory database systems. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM, 677-689.
Oracle Corporation. 2017. ORACLE Cloud. https://cloud.oracle.com/database.
(2017).

Oracle Corporation. 2017. ORACLE Multilingual Engine. http://www.oracle.c
om/technetwork/database/multilingual-engine. (2017).

Oracle Corporation. 2017. ORACLE Multitenant. http://www.oracle.com/tec
hnetwork/database/multitenant. (2017).

Vijayshankar Raman et al. 2001. Potter’s wheel: An interactive data cleaning
system. In VLDB, Vol. 1. 381-390.

SAP, November 2014. 2017. SAP HANA SPS 09 - What’s New?
https://hcp.sap.com/content/dam/website/saphana/en_us/Technology %20Doc
uments/SPS09/SAP%20HANA %20SPS %2009%20- %20Multitenant%20Dat
abase%20Cont.pdf. (2017).

Trasaction Processing Council. 2017. TPC-H. http://www.tpc.org/tpch. (2017).
Craig D Weissman et al. 2009. The design of the force. com multitenant internet
application development platform.. In SIGMOD Conference. 889-896.

Ying Yang et al. 2015. Lenses: An on-demand approach to etl. Proceedings of
the VLDB Endowment 8, 12 (2015), 1578-1589.

O

proceedings

Extending In-Memory Relational Database Engines with
Native Graph Support

Mohamed S. Hassan
Purdue University
West Lafayette, IN

msaberab@cs.purdue.edu

Walid G. Aref
Purdue University
West Lafayette, IN

aref@cs.purdue.edu

ABSTRACT

The plethora of graphs and relational data give rise to many inter-
esting graph-relational queries in various domains, e.g., finding
related proteins retrieved by a relational subquery in a biologi-
cal network. The maturity of RDBMSs motivated academia and
industry to invest efforts in leveraging RDBMSs for graph process-
ing, where efficiency is proven for vital graph queries. However,
none of these efforts process graphs natively inside the RDBMS,
which is particularly challenging due to the impedance mismatch
between the relational and the graph models. In this paper, we
propose to manage graphs as first-class citizens inside the rela-
tional engine. We realize our approach inside VoltDB [6], an open-
source in-memory relational database, and name this realization
GRFusion. The SQL and query engine of GRFusion are empow-
ered to declaratively define graphs and execute cross-data-model
query plans acting on graphs and relations, resulting in up to four
orders-of-magnitude in query-time speedup w.r.t. state-of-the-art
approaches.

1 INTRODUCTION

Graphs are ubiquitous in various application domains, e.g., social
networks, road networks, biological networks, and communication
networks [3, 8, 9, 12]. The data of these applications can be
viewed as graphs, where the vertexes and the edges have relational
attributes [46], or as traditional relational data with latent graph
structures [S1]. Applications would issue queries that consult the
topology of the graphs along with the data associated with the
vertexes and the edges or other data sources (e.g., relational tables
in an RDBMS). For instance, a user may be interested to find the
shortest path over a road network while restricting the search to
certain types of roads, e.g., avoiding toll roads.

In an RDBMS, the filtering predicates can be expressed as
relational predicates, and they may reference relational tables that
have indirect relation with the queried graphs. We refer to these
queries as graph-relational queries (or G+R queries, for short).
G+R queries have two main ingredients: 1) graph operations,
e.g., shortest-path computation, and 2) relational predicates or
relational sub-queries. For example, selecting specific users from
relational tables to find the nearest hospitals using shortest-path
evaluation on top of a road-network.

As RDBMSs are pervasive and mature, various approaches for
using an RDBMS to manage graph data have been proposed, e.g.,

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Tatiana Kuznetsova
Purdue University
West Lafayette, IN

tkuznets @cs.purdue.edu

25

Hyun Chai Jeong
Purdue University
West Lafayette, IN

jeong3 @cs.purdue.edu

Mohammad Sadoghi
University of California
Davis, CA
msadoghi @ucdavis.edu

Grail [25] and Aster [45]. The literature has two main approaches
that share the idea of building an application on top of an RDBMS
to support graphs without modifying the internals of the RDBMS.
We refer to these approaches as Native Relational-Core and Native
Graph-Core. In this paper, we propose and investigate a hybrid
approach that we term Native G+R Core that exploits the strengths
of the former two approaches, and we realize our approach inside
VoltDB [7, 10].

The Native Relational-Core approach (e.g., as in SQLGraph [46]
and Grail [25]) embeds a graph inside of relational tables of
specific schema. Then, an application on top of the RDBMS is
built to translate specific types of graph queries into SQL state-
ments for the RDBMS to execute. For example, Grail can translate
shortest-path queries to procedural SQL [25], while SQLGraph
translates Gremlin queries with some restrictions [5] into SQL
queries [46]. Figure 1(a) illustrates the general architecture of the
Native Relational-Core approach. Although many graph queries
and algorithms are hard to translate into SQL statements, tools can
be developed to automate the translation. However, the main issue
of the Native Relational-Core approach is that the graph operations
are evaluated by a sequence of relational operations (e.g., self-
joins) that may be more expensive than traversing a native graph
representation. Moreover, the Native Relational-Core approach
does not guarantee an easy-to-comprehend relational schema of
the embedded graphs in an RDBMS, e.g., the storage-optimized re-
lational schema generated automatically by SQLGraph is hard for
users to understand and write ad-hoc graph-relational queries [46].

The second approach, namely Native Graph-Core (e.g., as in
Ringo [38], GraphGen [51, 52]), assumes that graphs are already
stored in an RDBMS, where an application on top of the RDBMS
is built to extract these graphs to analyze them outside the realm of
the RDBMS. This approach follows the same philosophy as that
of specialized graph databases, where an RDBMS has nothing to
do with query execution. Figure 1(b) illustrates the general archi-
tecture of the Native Graph-Core approach. Notice that a graph
in the Native Graph-Core requires re-extraction if the relational
tables storing the graph in the RDBMS are updated. Moreover,
users cannot issue declarative graph-relational queries that refer-
ence both the extracted graphs and any other relational data in
the RDBMS. One solution to allow graph-relational queries in
the Native Graph-Core approach is to build another layer that
queries both the RDBMS and the extracted graph. This solution
is similar to that of Teradata Aster [45], where a data movement
fabric and two different query executors (i.e., a relational execu-
tor and a graph executor) are used in processing graph-relational
queries. However, integrating the results from the graph and the
relational executors imposes additional overhead. In summary, the

10.5441/002/edbt .2018.04

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.04

Graph
Database

1

Results

Graph Queries

Results
Results
Graph-Relational Queries (SQL)
Graph Queries

{

Graph Extraction and Materialization Engine

Graph and
Relational Operators

m
1
1

4 in the Same QEP

Relational Queries

(sQL)

SQL Translation Layer Graph Extraction

|—| Queries (SQL)

Extracted Graphs

L0 GraphOp

-,

~
ﬂ Relational Data

~
~
Graph \7iews (Topology

Relational Data

=

Relational Database

Graph Encoded into
Relational Tables

=

Relational Database

—0
W \

In-Memory Relational Database

(a) Native Relational-Core

(b) Native Graph-Core

(c) Native G+R Core

Figure 1: Various approaches for leveraging relational databases in support of graph processing.

[“ Native Relational-Core

Native Graph-Core ~ Native G+R Core]

Hybrid QEPs X X 4

Native Graph Processing X v v

No Query-Translation Overhead X v v

No Graph Reconstruction/Re-embedding on Updates X X v

Table 1: Contrasting various approaches for graph support in RDBMSs.

Native Relational-Core and the Native Graph-Core approaches
use a vanilla RDBMS, where graphs are not natively recognized
by the RDBMS. However, if the necessary layers of the RDBMS
are modified to manage graphs as first-class citizens, processing
and managing graphs will be more efficient.

In this paper, we investigate a third approach, namely Native
G+R Core, where graphs are recognized as first-class citizens
inside an RDBMS. We address the impedance mismatch between
the graph and the relational model, and we realize the Native G+R
Core approach in a centralized version of VoltDB [7, 10], the
open-source implementation of the H-Store in-memory relational
DBMS [32]. In-memory data management witnessed early aca-
demic and industrial contributions, where the current affordability
of large main-memory hardware motivated several and diverse
research efforts [14, 15, 23, 30, 33, 35, 36, 38, 39, 44, 49-51, 53].

We refer to our realization of this approach as GRFusion. The
main idea of GRFusion is to natively process graphs inside an
RDBMS by combining the Native Relational-Core and the Na-
tive Graph-Core approaches under the same umbrella. GRFusion
realizes this idea by separating the graph topology from the re-
lational data associated with the vertexes and the edges, and by
proposing graph operators to process the graph topology inside
the RDBMS, where the graph operators seamlessly co-exist with
other relational operators in the same query execution pipeline
(or QEP, for short). A graph topology in GRFusion is realized as
a native graph structure, where each vertex or edge has pointers
to the relational tuples describing their attributes. Hence, a graph
topology in GRFusion can be viewed as a traversal index of the
relational tuples of the vertexes and the edges. In short, GRFusion
presents cross-data-model QEPs, where the inputs to the QEPs
can be either relational data or native graph structures.

Figure 1(c) illustrates the general idea of the Native G+R Core
approach. First, the end-user provides a declarative statement to
create graph views that are initialized from relational data, where
a graph view is materialized as a new database object. Second,
the user is allowed to query the graph views as well as other
relational tables or views in the same query. Table 1 contrasts
the Native Relational-Core, Native Graph-Core, and Native G+R

26

Core approaches. The objective of this paper is not to replace the
specialized graph systems. However, the main objective is to em-
power the pervasive relational databases to support graph traversal
queries natively and efficiently. Consequently, the relational-data
owners can process important class of graph queries through their
RDBMS systems without the cost and the overhead of migrating
their data and manage it in a separate graph system. The contribu-
tions of this paper are as follows:

o Introducing graphs as native objects inside a relational
database system, namely VoltDB (Section 3), where online
graph updates are supported (Section 3.3).

e Allowing users to seamlessly query and operate on graphs
and relations simultaneously and declaratively without leav-
ing the realm of the relational database system (Section 4).

e Introducing graph operators for graph traversals (Sec-
tion 5.1), and showing their ability to seamlessly co-exist
with the relational operators to construct cross-data-model
query execution pipelines (Section 5.2).

e Addressing the impedance mismatch between the graph
model and the relational model (Section 5.3).

e Conducting an extensive performance study of GRFusion
w.r.t. state-of-the-art systems, and reasoning about the bene-
fits of processing graphs in a graph-native representation in-
side an RDBMS. We compare to SQLGraph, Grail, Neo4;j,
and Titan, where GRFusion achieves up to four orders-of-
magnitude query-time speedup (Section 7).

2 OVERVIEW OF GRFUSION

In GRFusion, graphs are assumed to be initially stored in relations.
In the simplest case, a relational table may have a row for each
vertex, and another table may have a row for each edge. Also, the
vertexes or the edges data can be obtained through a relational
materialized view that joins or filters multiple relational tables.
To allow flexibility, GRFusion provides the user with a declarative
language to define and query graphs (see Figure 2). A graph is
defined in GRFusion by what we term graph views. A graph view
identifies the relational tables or the relational views that store

the attributes of the vertexes and edges, namely, the vertexes
relational-source, and the edges relational-source, respectively.
Graph views define a view of the relational data in the graph
model and materializes the graph topology in main-memory in
native graph data structures. The materialized graph topology
has a native graph representation that holds pointers (e.g., tuple
identifiers) to the relational data that describe the vertexes and
the edges. The main idea behind materializing the graph topology
is to empower the relational database engine with the ability to
realize complex graph algorithms. Thus, GRFusion helps fill the
gap between the relational model and the massive body of research
that assumes a graph model. Listing 1 shows how a graph view
is created in GRFusion from the relational sources of Figure 3,
which is detailed in Section 3.1.

Once a graph view is defined, GRFusion allows the user to write
pure graph queries, pure relational queries, or queries that mix
both graph and relational operations. GRFusion’s query engine
views the relational data in either the relational or the graph model
according to the incoming query. In particular, the graph clauses in
a query are mapped to graph operators in the QEP, where a graph
operator accepts only graph representations as input. GRFusion
allows the graph operators and the relational operators to co-exist
in the same QEP, where the operator type determines the data
model of viewing the data (i.e., graph views for the graph model,
and relations for the relational model).

Declarative Graph-Relational Queries

4 | ™\

| Query Optimizer |

Query Parser |

| Plan Executor |

__ Graph-Relational Query Engine /

Relational Data Graph Views
p—— .’—0-—./.
=i A
— [ZZZZFEZ. |

In-Memory Relational Database

Figure 2: GRFusion’s architecture allows the query engine to
process data in both the relational and the graph models.

3 GRAPHS AS DATABASE OBJECTS

As users can create tables in relational databases, they can also
create materialized graph views in GRFusion as database objects.
A graph view is created once as a singleton object, and can be
referenced by multiple users and queries. In Section 3.1, we high-
light how graph views are defined declaratively in GRFusion.
Section 3.2 illustrates how the topology of a graph in GRFusion is
decoupled from the graph data, and how they can be inter-linked.
Because dynamic graphs are essential in many applications, the
support for graph updates is addressed in Section 3.3.

3.1 Creating Graph Views

GRFusion has a declarative Create Graph View statement to create
graph views initialized from relational data. The statement has
four main objectives: (1) Identifying the name of the graph view
to create, (2) Identifying and extracting the graph’s set of vertexes

27

Users

1 Edy Smith 09-25-1971
2 Jones Parker 11-21-1980
3 Bill Patrick 02-01-1976

Relationships
1 1 3 01-10-2009 true

2 2 3 12-31-2008 false

Figure 3: A sample social-network in the relational model.

from the underlying relational sources, (3) Identifying and ex-
tracting the graph’s set of edges from the underlying relational
sources, and (4) Materializing a native graph data structure in
memory that reflects the graph topology based on adjacency-list
structures. Notice that graph traversal operations can be performed
efficiently over this native graph representation and is linked back
to the corresponding relational data tuples that describe it. Notice
further that the relational source can either be a table or a mate-
rialized relational-view because the graph data attributes for the
edges and/or the vertexes can be constructed from multiple data
sources.

Figure 3 illustrates how a graph view is created in GRFusion.
Assume that the data of a social network is stored in the relational
tables as in the figure. Tables Users and Relationships represent
the vertexes and the edges of the social network, respectively. Each
vertex or edge has an identifier in the relational tables. To illustrate,
consider Listing 1 that shows an example of creating a graph view,
namely the SocialNetwork graph view, in GRFusion from the rela-
tional sources in Figure 3. A vertex in the SocialNetwork graph
has its Id from Users.uld and has the two attributes IName and
birthdate that get their values from Users.IName and Users.dob,
respectively. Similarly, Table Relationships defines the edges of
the SocialNetwork graph, where the edge Id comes from Rela-
tionships.relld, the endpoints come from Relationships.uld1 and
Relationships.uld2, and the two edge attributes sDate, relative
refer to Attributes startDate, isRelative of Table Relationships,
respectively. For the graph view defined by the Create Graph
View statement, if the set of vertexes is V, and the set of edges is E,
then, the endpoints of an edge in E are constrained to be included
inV.

Listing 1: A Social Network Graph View Example

CREATE UNDIRECTED GRAPH VIEW SocialNetwork

VERTEXES (ID = uld, lstName = lName,
< birthdate = dob) FROM Users

EDGES (ID = rellId, FROM = uIdl, TO =
— sDate = startDate, relative =
~— isRelative) FROM Relationships

uldz,

3.2 Decoupling the Graph Topology and the
Graph Data

The Create Graph View statement updates the system catalog of
GRFusion to store the definition of the graph view. Creating a
graph view results in the materialization of the graph topology
as a native graph structure in the main-memory managed by GR-
Fusion (as a singleton object that multiple users and queries can
reference). However, the attributes of the vertexes and the edges
stored in the relational sources are not replicated in the native
graph structure, and main-memory tuple pointers are used to link

Materialized Vertexld = 1
Graph-View OutEdges = {100, 200}
Topology InEdges = {}
Edgeld = 100 Edgeld = 200

Start=1,End =2 Start=1,End =K

Tuple Pointer

Graph-View »
3 .
Relational Sources K s
N
~ 1
......... v *100 1
2 200 '

Vertexes’ Attributes

Edges’ Attributes

Figure 4: A graph view materializes the topology and holds
pointers to the relational data of the vertexes and the edges.

the graph topology to the relational sources. To illustrate, Figure 4
demonstrates how the graph topology is separated from the graph
data (i.e., the relational attributes of the vertexes and the edges).
As in Figure 4, each vertex or edge has a main-memory tuple
pointer that points to the corresponding relational tuple storing
the attributes of this vertex or edge. Notice that the design of
GRFusion allows a vertex or edge in a graph topology to store
multiple tuple-pointers if the relational sources are vertically parti-
tioned (e.g., to support semistructured RDF data, where not all the
vertexes or edges share the same set of attributes). Without loss
of generality, we assume a single tuple pointer per vertex or edge
as the focus is to explore the benefits of empowering an RDBMS
with native graph-processing.

The graph topology follows the graph model, where the topol-
ogy is represented physically as a graph data-structure based on
adjacency-lists. The key idea behind this native graph represen-
tation is to allow for the efficient execution of graph traversals,
where relational joins can be mitigated when traversing a graph.
The reason is that materializing the topology of a graph view can
be thought of as a traversal index, where each vertex, say V, is
associated with the identifiers of both the outgoing edges and the
incoming edges of V. Given a graph view, say GV, its topology
can be constructed using a single pass over the relational sources
defining the vertexes and the edges of GV.

Notice that there is a bi-directional linkage between the graph
topology and the graph’s corresponding relational data. To illus-
trate, let T be a relational tuple containing the attribute values of
Vertex V. Using the VertexId attribute of T, GRFusion can locate
Vertex V in the graph representation in O(1) time using the hash
map of the native graph structure. Also, using the tuple pointer as-
sociated with Vertex V in the graph data-structure, Tuple T can be
located in O(1) time. The benefit of separating the graph topology
from the graph data is two-fold. First, the size of the graph view
is not affected by the size of the graph data that can be very large
in some cases. Second, the attributes of the vertexes and the edges
in the relational sources can be easily updated without affecting
the native graph representation.

3.3 Graph Updates

GRFusion supports serializable graph updates that affect the topol-
ogy or the attributes stored in the relational sources. The topology
is affected only when vertexes/edges are added or deleted. GR-
Fusion relies on the design and the implementation of VoltDB to
maintain pointers to the relational tuples on memory reallocations.

28

3.3.1 Graph-Data Updates. Updating the attribute data of
an edge or vertex is straightforward as the attributes are stored
in relations outside the native graph representation. Hence, these
relational attributes can be updated directly. However, updating the
Vertexld and the Edgeld attributes need special handling because
these attributes are used for navigating from the relational store to
the native graph structure (e.g., to probe path-traversal operators in
a QEP as in Section 5). Although updating the identifiers are not
common, GRFusion maintains the consistency of the identifiers
in the graph representation when updating their corresponding
attributes in the relational sources. Also, GRFusion maintains the
referential integrity of the edges relational-source when updating
a vertex identifier in the vertexes relational-source.

3.3.2 Graph-Topology Updates. GRFusion allows topo-
logical updates when the relational sources are either relational
tables or a relational views selecting from a single table. GRFusion
associates each relational source, say R, with the identifiers of the
graph views that reference R. When inserting a new tuple into R,
the transaction of the insertion statement updates the graph-view
topology as part of the transaction (i.e., adding a new vertex or
adding a new edge in the graph representation). Similarly, when
deleting a vertex or edge, the deletion statement detects the graph
views associated with R and updates the affected graph views
accordingly as part of the deletion transaction. For example, if R
is an edges relational-source for a graph view, say GV, the edge
in GV corresponding to a deleted tuple is removed from GV'.

4 THE PATHS QUERY CONSTRUCT

As graph traversal queries form a massive body of graph queries
(e.g., reachability and shortest path queries [19, 24, 26, 42, 43,
47]), GRFusion extends the SQL language to declaratively find
paths in graph views. GRFusion introduces the PATHS construct
to query its graph views. For a graph view, say GV, GRFusion
recognizes GV.PATHS in the From clause of a select statement (as
it is treated conceptually as a set of paths). Conceptually, this al-
lows GRFusion to traverse and retrieve simple paths from GV that
satisfy a path criteria (e.g., predicates on the attributes of the edges
forming the path). In addition to GV.PATHS, GRFusion recognizes
GV.VERTEXES, and GV.EDGES, to reference the vertexes, and the
edges of GV, respectively. We focus on the GV.PATHS construct
as the other constructs are straightforward.

GRFusion models a path as an ordered list of edges, where
each edge has a start and end vertexes. The edges and the vertexes
of a path, say PS, can be indexed and referenced by relational
predicates as follows:

o PS.Edges[StartIndex..EndIndex].EdgeAttribute: Ref-
erences an attribute of the edges starting from StartIndex
until EndIndex. A value of “*’ for the EndVertex place-
holder indicates that all the edges starting from StartIndex
should satisfy the relational predicate.

o PS.Vertexes[StartIndex..EndIndex].VertexAttribute:
References an attribute of the vertexes starting from
StartIndex until EndIndex. A value of ‘*° for the
EndVertex placeholder indicates that all the vertexes
starting from StartIndex should satisfy the relational
predicate.

Observe that the aforementioned EdgeAttribute, and the Verterx-
Attribute placeholders can refer to any attribute of the edges or the
vertexes that have been defined at the time of creating Graph-view
GV. In addition, each vertex in Path PS has two additional inte-
gral attributes, namely Fanln and FanOut. Also, Path PS allows

accessing to some path-specific properties, e.g., PS.StartVertexld
and PS.Length refer to the identifier of the start vertex and the
length of Path PS, respectively.

To illustrate how paths can be queried in GRFusion, consider
Query Q, in Listing 2. The From clause of Q,, specifies that the
paths are being traversed from the SocialNetwork graph view,
where the vertexes relational-source of the SocialNetwork graph
is Relation Users. The query displays the last names of the friends
of friends of all the users with Job = ‘Lawyer’. Conceptually,
Qp is evaluated by selecting the sub-graph, say G,,;,, containing
edges with start dates after ‘1/1/2000°. Using Sub-graph Gg,p,
GRFusion explores paths consisting of two edges that originate
from the vertexes corresponding to lawyers in the social network.
Notice that Listing 2 could use SocialNetwork.VERTEXES instead
of Users. However, Listing 2 uses the Users relation to show
how relational tables can be joined with the paths of a graph
view. Notice that the details of the extended query language of
GRFusion are not the main focus of this paper. However, we
provide sample code snippets that are relevant to illustrating the
evaluation of the graph-relational queries supported by GRFusion.

Listing 2: Friends-of-Friends Path Query O,

SELECT PS.EndVertex.lstName
FROM Users U, SocialNetwork.Paths PS

WHERE U.Job = 'Lawyer' AND PS.StartVertex.
< Id = U.uId AND PS.Length = 2 AND PS.
< Edges[0..*].StartDate > '1/1/2000"

Listing 3 presents a reachability query Q, that queries a protein-
interaction network represented by the BioNetwork graph view,
and checks if Protein X interacts directly (i.e., by an edge) or
indirectly (i.e., by a path) with Protein Y through either a cova-
lent or stable interaction types. PS.PathString corresponds to the
string representation of Path PS. Notice that many paths can exist
between the vertexes corresponding to the specified proteins. So,
Query Q, uses the LIMIT I clause because retrieving one path is
sufficient to decide on reachability.

Listing 3: Reachability Query O,

SELECT PS.PathString

FROM Proteins Prl, Proteins Pr2, BioNetwork
<~ .Paths PS
WHERE Prl.Name = 'Protein X' AND Pr2.Name =

<— 'Protein Y' AND PS.StartVertex.Id =
< Prl.Id AND PS.EndVertex.Id = Pr2.Id
<~ AND PS.Edges[0..*].Type IN ('

— covalent', 'stable') LIMIT 1

In addition to the ability of referencing the attributes of the
edges or vertexes forming a path, say PS, GRFusion allows ag-
gregation functions on the attributes of the vertexes or the edges
of PS. The aggregate functions on the attributes of paths have the
same usage and constraints as those on relational attributes. For
example, if the edges of PS have an attribute, say Weight, a query
can compute the sum of the weight values across all the edges of
PS, i.e., sum(PS.Edges.Weight) can appear in the select-clause of
a query to compute the sum of the weights associated with the
edges of Path PS.

The PATHS construct can also retrieve sub-graphs based on
specific patterns (e.g., the topology of the sub-graph, attributes
of the vertexes/edges of the subgraph). For instance, finding tri-
angular structures with specific edge properties, and counting
these triangles are important primitives for Machine-Learning,

29

T['bmhdate, fanOut

9

VertexScan

_____ | —
SocialNetwork : MemGraph E

Figure 5: QEP for Query Q.

Vertexes.IstName = ‘Smith’

e.g., [48], where a triangle structure can be viewed as a loop of
three edges. Listing 4 presents Query Q; that counts the number
of triangles, where the edges have specific values for their Label
attribute. Notice the use of the Path.Length property, where it is
necessary to retrieve only triangles (as the sub-graph of interest
has only three edges).

Listing 4: Subgraph Pattern Query to Find Triangles Q;

SELECT Count (P)

FROM MLGraph.Paths P Where P.Length = 3 AND
P.Edges[0] .Label = 'A' AND P.Edges

[1].Label = 'B' AND P.Edges([2].Label
= 'C' AND P.Edges[2].EndVertex = P.
Edges[0].StartVertex

rrel

More interestingly, paths can be joined to query more complex
sub-graph patterns. Similar to relational engines that can perform
self-joins for a relational table, GRFusion allows self-joins of the
paths of a given graph view. This is possible as the vertexes and
the edges of the paths to join can be referenced by relational join
predicates.

S GRAPH-RELATIONAL QUERY
PROCESSING

In this section, we explain how GRFusion evaluates graph-
relational queries. Section 5.1 introduces the primitive graph op-
erators of GRFusion, while Section 5.2 illustrates how the graph
operators integrate with typical relational operators in a cross-
data-model QEP, where the graph operators appear in the leaf
level of the QEP. Then, Section 5.3 discusses the conceptual query
evaluation of graph-relational queries in GRFusion.

5.1 Graph Operators

GRFusion defines three primitive operators to evaluate the graph
constructs of graph-relational queries. In particular, GRFusion
defines the VertexScan, EdgeScan, and PathScan operators that
iterate over a graph view’s vertexes, edges, and paths, respectively.
The PathScan operator is a lazy operator following the iterator
model [28] to avoid eager generation of paths that might not be
required by parent operators. The reason of this design decision is
that many queries (e.g, reachability) limit the number of paths to
be retrieved, and consequently generating all/multiple paths may
be expensive and unnecessary.

5.1.1 Vertex Scan and Edge Scan Operators. Operators
VertexScan and EdgeScan allow GRFusion to iterate over the ver-
texes and edges of a given graph view, respectively. For example,
the VertexScan operator provides an alternative access method
for accessing the vertexes of a graph view, where the fan-in and
fan-out properties of any vertex can be efficiently retrieved in
constant time. To illustrate, consider Query Q, in Listing 5. Q,
selects from the set of vertexes of the SocialNetwork graph view,
and then applies some relational operators afterwards. To evaluate
Qu, GRFusion constructs the query execution pipeline, say QEP,,,

as in Figure 5. Operator VertexScan scans the vertexes of the graph
defined by the SocialNetwork graph view from the in-memory
graph structure (represented as MemGraph in Figure 5, that refer-
ences the singleton graph structure of the graph view). Vertexes
with last name ‘Smith’ are selected and a relational projection
operation selects only the birth date and the fan-out properties.

Listing 5: Vertexes Selection Query

SELECT VS.birthdate, VS.fanOut
FROM SocialNetwork.Vertexes VS
WHERE VS.lstName = 'Smith'

5.1.2 The PathScan Operator. In GRFusion, the PathScan
operator is responsible for traversing a graph view to construct
simple paths identified by a graph query. PathScan is a logical op-
erator that has three physical operators with three corresponding
graph-traversal algorithms. All the physical operators explore a
traversed vertex only once to avoid loops, i.e., the paths in GRFu-
sion are simple paths. In particular, the query optimizer maps a
logical PathScan operator into DFScan, BFScan, or SPScan, cor-
responding to depth-first search, breadth-first search, or shortest-
path search physical operators, respectively. In this section, we
focus on the logical semantics of the path scan operator. We defer
the discussion of the physical operators to Section 6.

As alogical operation, the paths-discovery process in GRFu-
sion starts from a set of start vertexes to avoid materializing all
possible paths. These start vertexes are either stated explicitly in
the query (e.g., PS.StartVertex.Id = Value) or are generated by
other operators during query evaluation (e.g., PS.StartVertex.Id
= VS.Id as in Listing 2). In the latter scenario, the start vertexes
selected by some operators (e.g., TableScan, relational sub-query),
are used to probe the PathScan traversal operator. If the start ver-
texes of a path selection are not defined, all the vertexes of the
corresponding graph view will be used as starting vertexes. No-
tice that the paths in GRFusion are not eagerly materialized by a
PathScan operator, rather they are lazily generated.

To illustrate how paths are explored in GRFusion, consider
Query Q) in Listing 2. Qp explicitly states that the path discovery
process starts from the vertexes corresponding to lawyers in the so-
cial network. Figure 6 demonstrates the query evaluation pipeline
QEP,, that evaluates Query Q), where MemGraph refers to the
singleton materialized graph structure of the graph view. In par-
ticular, Q starts the traversal process from each qualified vertex.
Notice that the qualified vertexes are retrieved using a relational
operator (e.g., by a TableScan or IndexScan operators) in Figure 6.
The reason is that using a relational access method with filtering
predicates on the vertexes relational-source is more efficient than
using the tuple pointers in the graph view to filter all the vertexes
on the fly. Because of the seamless integration of the relational
and graph models in GRFusion, this optimization alternative is
feasible. While traversing the graph view, only the edges with start
dates after ‘1/1/2000” are considered. Also, QEP), explores paths
of length two only (i.e., consisting of two edges) that originate
from a given start vertex. As an effective optimization, GRFusion
pushes predicates, e.g., path-length predicates, to be considered
during the traversal process. This optimization allows GRFusion
to apply early pruning of paths, and to reduce the size of the inter-
mediate results flowing through the query pipeline. Consequently,
the performance of the query evaluation process is boosted w.r.t.
the processing time as well as the temporary memory used for the
intermediate results.

30

L8
|

Id = StartVertexid

endVertex.IstName

TableScan,, - «yyer PathScan;, engin - 2 anp

| il E.StartDate > ‘1/1/2000"
P e A

i
i MemGraph !
Vertex [;
Relational
Source SocialNetwork

Figure 6: GRFusion joins a relational table with a graph-view
traversal-operator for Query Q).

5.2 Cross-Model Query-Execution-Pipelines

A query in GRFusion can reference relations or relational views
with graph views simultaneously. A pure relational engine has a
main structure (i.e., tuple) that is passed among the relational op-
erators in a query evaluation pipeline (QEP). GRFusion allows its
query engine to view data by two different data models, namely,
the relational model and the graph model. GRFusion allows a
single QEP to have two main categories of operators that interact
seamlessly in a QEP. The first category contains the relational
operators (e.g., select, project, relational join) that can interact
directly with relational tables. The second category contains graph
operators that can operate on graph views. GRFusion integrates
both categories of operators by allowing a relational operator to
operate on the result of a graph operator. In particular, GRFusion
unifies the interface of the output of both the relational and the
graph operators. Specifically, the query engine of GRFusion ab-
stracts graph processing by using three data types that extend the
Tuple data type, namely the Vertex, Edge, and Path data types,
where each has a schema that depends on the queried graph-view,
as explained below.

In GRFusion, a vertex, say V, is represented in a QEP by a
tuple, say T, where each attribute of V becomes an attribute in T.
For example, a graph vertex in Listing 1 is represented by a tuple
with attributes: (uld, [stName, birthdate). In addition, Vertex V
has the following properties:

o FanOut: Contains the number of V’s outgoing edges.
o Fanln: Contains the number of V’s incident edges.

An edge E is represented by a tuple with attributes corresponding
to E’s attributes in addition to the following attributes:

e From: Contains the start vertex of Edge E.

o To: Contains the end vertex of Edge E.

GRFusion defines the Path data type, where a path, say P, is

a sequence of identifiers of the edges that form P. In particular,
P is an extended tuple with the following attributes defining its
schema:

e Length: Is the number of edges in P.

o StartVertex: Is the start vertex of P.

¢ EndVertex: Is the end vertex of P.

e Vertexes: Is the list of vertexes forming P.

o Edges: Is the list of edges forming P.

5.3 Conceptual Evaluation of Graph-Relational
Queries in GRFusion

GRFusion addresses the impedance mismatch between the graph

model and the relational model by unifying the type of the ele-

ments that move among the relational and the graph operators

within a QEP. To illustrate, we list below the high-level steps

that describe GRFusion’s conceptual evaluation of declarative
graph-relational queries, i.e., ones that reference relation(s) and
graph-view(s):

o The relational tables and views are joined together using
all the relational predicates in the WHERE clause of the
query. This step yields a single resultant relation, say R.

e Each graph operator operates on a graph view, say GV,
using its in-memory singleton graph-structure, say Memgy .
In case of using different aliases on the same graph view,
each alias is assigned an independent pointer to Memgy .

o When querying a combination of relations, relational views,
vertexes, edges, or paths, all the graph operators operate
only on graph views. Observe that the output of each graph
operator is an extended type of the relational Tuple type.
Hence, the output of the graph operators can be ingested
by the relational operators (e.g., the joins) in the same QEP
seamlessly, where a relational join outer tuple can be used
to probe a graph operator in the inner (e.g., see Figure 6).

o The predicates in the WHERE clause of the query that have
not been consumed in producing R are used to join R with
all the vertexes, edges, and paths referenced by the query.

e The SELECT list is used to perform projection.

6 QUERY OPTIMIZATION

GRFusion optimizes graph-traversal queries with two objectives
in mind: (1) pruning undesired paths as early as possible to opti-
mize the runtime, and (2) favoring traversal algorithms with less-
memory requirements. The second goal is vital as memory should
be consumed discreetly in an in-memory system. Optimization
techniques for early pruning are discussed in Sections 6.1 and 6.2.
In Section 6.3, we address the traversal-algorithm selection.

6.1 Path Length Inference

The query optimizer of GRFusion infers the allowed length of
the paths described by the queries. The main objective is to make
sure that a path returned from the PathScan operator is unlikely
to be rejected by a parent operator (e.g., a join operator) due to a
predicate referencing the path length. For instance, if a query has
the filter "PS.Edges[5..x].Att1 = Value", then PathScan infers
that the minimum path length to return is 6 (indexing is zero-
based). Hence, PathScan will not return a path of length 5 or less.
Many real-world queries specify the length of the desired paths,
e.g., triangle-counting queries [48] specify a path length of three,
the popular friends-of-friends queries restrict a path length to two,
and many reachability queries put a cap on the maximum length
of the path connecting the queried endpoints.

For each collection of paths, say PS, that is referenced in the
From-clause, the query optimizer analyzes the predicates ref-
erencing the length of PS explicitly (e.g., PS.Length = value),
or implicitly (e.g., by analyzing the logical operators as in
PS.Edges|[5..*¥].Att]l = X AND PS.Edges[7..9].Att2 =), to pre-
dict the range of allowed lengths of the paths to return. Then, the
inferred path length is considered by PathScan while traversing
the graph (e.g., an inferred maximum path length of 8 will prune
any path of length > 9).

6.2 Pushing Filters Ahead of Path Scans

To prune paths early, all the filters related to discovering the
paths of a graph view are pushed ahead of the PathScan op-
erator. For instance, for a graph view’s paths, say PS, Predi-
cate "PS.Edges[0..x].Cost < 10" is pushed so that PathScan

31

can prune any potential path explored with an edge of cost
> 10. Similarly, predicates that refer to aggregates on a path’s
attributes will be computed and checked during the PathScan eval-
uation. For example, consider a query, say Q, with the predicate
"Sum(PS.Edges.Cost) < 100". When PathScan explores Path P
while evaluating Q, PathScan will accumulate the cost-attribute
of the edges of P during the traversal. If the accumulated cost
exceeds 100, P will be dropped and will not flow to the operators
next in the QEP.

6.3 Logical to Physical Operator Mapping

Recall from Section 5.1.2 that the PathScan operator is a logical
operator that is mapped into one of three physical traversal opera-
tors for execution, namely, depth-first search, breadth-first search,
and shortest-path search based on Dijkstra’s algorithm [24].

The shortest-path physical operator, namely SPScan, is very
useful in top-k shortest path queries. Listing 6 illustrates how
the user can instruct the optimizer to use SPScan. Given a non-
negative numerical edge attribute, SPScan traverses the graph us-
ing Dijkstra’s algorithm [24], and returns the next shortest-path as
requested (i.e., pulled) by the parent operator in the QEP. SPScan
is useful in many applications, e.g., recommendation systems and
route discovery, to avoid the costly straightforward plan, i.e., avoid
enumerating all paths, then filtering, sorting, and then returning
the top ones.

For general graph-traversals where shortest paths are not de-
fined, GRFusion can use either a depth-first search (i.e., a DFScan
operator), or a breadth-first search (i.e., a BFScan operator). The
user can give a query hint to decide on depth-first or breadth-first
evaluations. To illustrate how GRFusion decides on the physical
operator to perform a general graph traversal in the absence of an
explicit query-hint, assume that a query, say Q, searches for Path
P of Length L. Assume further that Query Q targets a graph view
where the average fan-out is F. Following an analysis similar to
that in [41], a depth-first search can contain on average F * L
vertexes in its stack data structure. In contrast, a breadth-first
search can contain FL vertexes in its queue data structure. Hence,
GRFusion uses BFS if F < “V/L to optimize for memory. This
optimization is applicable if the path length can be inferred and
by maintaining the average fan-out statistic for each graph view
in the system catalog. Otherwise, GRFusion uses the default scan
operator that the user can set based on the expected workload
(e.g., BFS can still be better if the underlying graph has a large
diameter and frequent queries find the desired paths after one or
two hops). GRFusion has a configuration to store the average
fan-out of graph views as a statistics object. If this configuration
is enabled, GRFusion runs a thread in the backend to compute the
average fan-out using the compact graph-view structures.

Listing 6: Declarative Shortest-Path Query

SELECT TOP 2 PS
FROM RoadNetwork.Paths PS HINT (SHORTESTPATH
— (Distance)), RoadNetwork.Vertexes
~— Src, RoadNetwork.Vertexes Dest
WHERE PS.StartVertex.Id = Src.Id AND PS.
<~ EndVertex.Id = Dest.Id AND Src.
<~ Address = "Address 1" AND Dest.
- Address = "Address 2"

7 EXPERIMENTAL EVALUATION

We experimentally evaluate the performance of GRFusion, a re-
alization of the proposed Native G+R Core approach inside a
centralized version of VoltDB. We compare GRFusion to the state
of the art of the Native Relational-Core approach, namely SQL-
Graph [46], and we compare to Grail [25]. Although Grail uses
a different computational model than GRFusion, they both have
the common ground of executing queries through an RDBMS.
We also compare GRFusion to two popular specialized graph sys-
tems, Neo4;j [4] and Titan [11]. The reason for comparing with
specialized graph systems, which follow the Native Graph-Core
approach, is to show that graph-traversal queries can be efficiently
handled by GRFusion.

Mitigating the disk IO cost from the baselines: As GRFusion
is an in-memory system, the experiments are designed to mitigate
the disk cost of all the baselines we compare to. We implemented
SQLGraph and Grail as described in [46], and [25], respectively,
on top of the in-memory VoltDB system. We configured Titan to
use the in-memory storage configuration, and we set Neo4j to run
and execute over a RAM disk on Linux.

We consider two important categories of graph queries, namely,
traversal-based queries and pattern-matching queries, where the
queries can take additional filtering predicates. For traversal-based
queries, we evaluate reachability queries (e.g., Listing 3). We
also evaluate shortest-path queries to compare with Grail [25].
For pattern-matching queries, we evaluate the triangle-counting
query using filtering predicates on the edges while varying selec-
tivity. The triangle-counting query is a primitive operator in many
machine-learning and knowledge-discovery techniques, e.g., [48].
Experiments are conducted on a machine running Linux ker-
nel 3.17.7 on 32 cores of Intel Xeon 2.90 GHz with 384 GB
of main-memory.

7.1 Datasets

We use real graph datasets that represent four different application
domains, namely, road networks, biological networks, authorship
networks, and social networks. For the road networks, we use
the continental-sized Tiger dataset [9] that covers the entire U.S.,
where the edges represent road segments, and the vertexes rep-
resent road intersections. For the biological networks, we use
the String protein-interaction dataset [8], where the vertexes rep-
resent proteins, and the edges represent interactions among the
proteins. We use the DBLP [1] dataset for the authorship networks,
where the vertexes represent authors, and the edges represent co-
authorship relations. We use the Twitter dataset [3] for the social-
network application, where the dataset represents the follower
graph of Twitter. The vertexes in Twitter represent users, where an
edge from User A to User B denotes that User A follows User B.
Table 2 summarizes the properties of these datasets.

Controlling sub-graph selectivity: We study the effect of select-
ing a subgraph from an underlying graph before performing a
graph operation (e.g., selecting a sub-graph containing 10% of the
edges of the entire graph before executing a shortest-path query or
a topological pattern-matching query on the selected sub-graph).
For each dataset, we vary the selectivity of the queries from 5%
to 50%.

Evaluating the effect of graph-views in the Native G+R Core
approach: To accurately study the performance gains due to the
graph-views of the Native G+R Core w.r.t. the Native Relational-
Core approach, we use breadth-firth search instead of depth-first
search, and we do not push the predicates ahead of the path scan
operator in GRFusion for all the reachability-queries experiments.

32

7.2 Unconstrained Reachability Queries

We contrast the performance of GRFusion with that of SQLGraph,
Neo4j, and Titan, when processing reachability queries without
filtering predicates on the graph edges. Given two nodes, say A
and B, a reachability query returns true if a path exists from Node
A to Node B. The query-processing time of a reachability query is
affected by the path length of the query result. The reason is that
the increase in the number of edges traversed directly corresponds
to the number of relational joins in the Native Relational-Core
approach (e.g., SQLGraph).

For each dataset in Table 2, we generate random reachability
queries with different path lengths that make the query endpoints
connected. We vary the path length from 2 to 20. For each path
length, say I, we generate 10,000 random queries, say Q;. We
run Q; and measure the average query-processing time using
GRFusion, SQLGraph, Neo4j, and Titan.

Figure 7 shows the average query-processing time of running
the queries using all four systems, where the x-axis and the y-
axis give the path-length of the query answers and the query-
processing time in milliseconds, respectively. GRFusion achieves
up to four orders-of-magnitude speedup in query-processing time
compared to SQLGraph, where the speedup increases as the graph
size increases. For instance, the speedup reaches 599x for the
DBLP graph, and 2483x for the larger String graph. The reason
is that GRFusion uses the compact graph view that captures the
graph topology, where the graph views act as navigational in-
dexes. Hence, GRFusion does not perform any relational join on
the relational sources to traverse the graphs. In contrast, SQL-
Graph performs a relational join for each edge traversal during
the path discovery process. Consequently, the query-processing
time in SQLGraph increases as the path length of the query result
increases. Moreover, the SQLGraph approach may not scale in
main-memory RDBMSs when the graph size is very big due to the
size of the intermediate results of the relational joins. To illustrate,
in Figure 7(d), in the Twitter dataset, the Native Relational-Core
represented by SQLGraph does not execute if the query evaluation
requires more than four relational joins. The reason is that the in-
termediate temporary-memory of the join operators exceeds 6 GB,
which is 60 times the 100-MB recommended limit in VoltDB. To
allow room for query-evaluation pipelining to reduce the interme-
diate results, and to mitigate the limits of the main-memory, we
execute the Twitter queries on a popular disk-based commercial
RDBMS. The queries on the Twitter graph time-out after 5 hours
of execution when the traversal depth of the queries exceeds four.
In contrast, the systems following the Native Graph-Core repre-
sented by Neo4j and Titan scale for deep graph-traversal queries
on large graphs as the overhead of the relational joins does not
exist, where a deep graph-traversal query is a query that explores
paths of long lengths, i.e., many edges, which corresponds to
many joins in the Native Relational-Core. However, GRFusion
that realizes the proposed Native G+R Core approach is able to
scale for deep graph-traversal queries with better performance
than those of the native graph systems.

Comparing GRFusion to the specialized graph databases Neo4;j
and Titan, GRFusion has a query-time speedup that exceeds three
orders-of-magnitude for the String graph (see Figure 7(c)). We at-
tribute these performance gains of GRFusion over the specialized
graph databases to implementation factors and not to a funda-
mental change in the computational model. The reason is that
GRFusion is based on VoltDB that has a low-overhead concur-
rency model (e.g., no lock overhead as in the specialized graph

Dataset Number of Vertexes | Number of Edges || Construction Time | Memory Size (GB)
Tiger Road Network 24,412,259 58,698,439 2.08 Min 0.88
DBLP Co-Author Network 1,007,047 6,592,656 1.59 Sec 0.09
String Protein Network 1,520,673 348,473,440 3.81 Min 4.17
Twitter Follower Network 41,652,230 1,468,365,182 10.87 Min 17.81

Table 2: The graph views in GRFusion are fast to construct with low memory overhead for the datasets of the evaluation.

databases). Moreover, VoltDB has an optimized memory manager
written in C++ that is significantly more efficient than the JAVA
memory managers of both Neo4j and Titan. Theoretically, if we
remove all the implementation-specific factors, the performance
of GRFusion should be comparable to that of the specialized graph
systems as both are processing native graph representations. In
Section 7.3, we present the performance of GRFusion when evalu-
ating queries that do not only consult the graph topology, but also
the edges’ attributes stored in the relational sources.

7.3 Reachability Queries with Filtering
Predicates

We evaluate the performance of reachability queries in GRFusion
and compare it to the baselines when the queries are associated
with a filtering predicate. To study the effect of sub-graph se-
lectivity (i.e., selecting the sub-graph to perform the query on),
we generate reachability queries similar to the ones described
in Section 7.2 with varying selectivities. We vary the selectivity
parameter from 5% to 50% using synthesized edge attributes to
control the selectivity. We limit the path length of the results of the
generated queries to 20 to emphasize the effect of the selectivity
of the sub-graph to operate on.

Figure 8 shows the average query-processing time for execut-
ing the reachability queries with filtering predicates using all 4
systems and datasets, where the x-axis and the y-axis are the
edge-selectivity of the queries, and the query-processing time in
milliseconds, respectively. Observe that, for the relatively-small
DBLP graph in Figure 8(a), SQLGraph outperforms Neo4j and
Titan as the relational engine can execute joins and apply filtering
predicates efficiently on relations of small cardinalities. GRFusion
outperforms both SQLGraph and the specialized graph engines.
There are two main reasons behind GRFusion’s performance gains.
First, GRFusion uses a compact graph data structure to perform
the traversal and avoids relational joins completely to explore
the underlying graph. Second, GRFusion relies on the relational
engine to evaluate the filtering predicates on the edges. Recall that
GRFusion has a direct pointer to an edge’s tuple that is accessed
in O(1) time to evaluate the query filtering-predicate using the ef-
ficient logic of the relational engine. Hence, GRFusion combines
the strengths of both the graph systems and the relational systems
to achieve the best-of-both-worlds in terms of performance. How-
ever, the efficient evaluation of the filtering predicates and the cost
of the relational joins in SQLGraph do not pay off when the size of
the relations increase. To illustrate, refer to Figure 8(b), where the
performance of SQLGraph degrades as more edges are selected.
For the String dataset in Figure 8(c), SQLGraph exceeds the tem-
porary memory limits of VoltDB after selecting a subgraph of size
larger than 25% of the queried graph for the reasons illustrated in
Section 7.2. For the largest Twitter dataset, SQLGraph is not able
to perform even on a subgraph of a 5% selectivity. The reason
is that the cost of 20 relational joins on the large Twitter table
exceeds the temporary-memory limits of VoltDB, and time-out

33

the queries on a commercial disk-based RDBMS after 5 hours of
execution. Also, as the number of self-joins increases in the Native
Relational-Core approach, the relational optimizer may not be
able to select the best join algorithm due to inaccurate cardinality
estimations of the intermediate results (see [27] for details).

The relational engine is efficient in performing filtering predi-
cates. This set of experiments demonstrates the power of extending
the relational engine with a native graph-core processor that is
optimized for graph traversals and that uses efficient memory
representation. Figure 8 demonstrates the scalability and the effi-
ciency of GRFusion in contrast to the baselines in handling graph
queries with filtering predicates. Notice that increasing the edge-
selectivity factor of the queries has less impact on Neo4;j, Titan,
and GRFusion than on SQLGraph w.r.t. query-processing time.
The reason is that these queries are evaluated on a graph structure
by performing the filtering predicates on the fly as the graph is
being traversed. The selectivity affects the query performance of
all the approaches. However, it is more impactful in the case of
pure-relational evaluation. For example, in Figure 8(b), the pro-
cessing time of SQLGraph increases by 138x when changing the
selectivity from 5% to 50%, in contrast to an increase of 1.72x in
GRFusion on the same setup.

7.4 Sub-Graph Pattern Matching

We evaluate the performance of the triangle-counting query. Given
a graph, say G, a triangle-counting query, say Qrc., counts all the
sub-graphs of a triangle pattern (e.g, see Listing 4). Notice that
the Native Relational-Core approach, e.g., SQLGraph, can scale
for this specific pattern query as only two relational joins are
needed for query evaluation. This is the reason for choosing this
pattern query besides its importance as a primitive in many applica-
tions [48]. Figure 9 gives the performance of evaluating triangles
queries on the DBLP, Tiger, and String graph datasets, where the
x-axis and the y-axis are the edge-selectivity of the queries and
the query-processing time in milliseconds, respectively.

Notice that in Figure 9, the SQLGraph approach outperforms
both Neo4;j and Titan when the selected sub-graph size is small,
e.g., up to a selectivity of 10% for the DBLP dataset as in Fig-
ure 9(a). Also, notice that SQLGraph is more sensitive to the
selectivity parameter than all the other approaches including GR-
Fusion. Although only two joins are required by SQLGraph in this
type of queries, increasing the number of tuples to join increases
the query processing time, which results in better performance by
Neo4j and Titan when increasing the selectivity parameter. For
instance, Neo4j and Titan are more efficient than SQLGraph for
the String dataset in Figure 9(c) for a selectivity parameter greater
than 20%.

Figure 9 illustrates that GRFusion outperforms SQLGraph,
Neo4j, and Titan by up to one order of magnitude in query perfor-
mance. We attribute this performance advantage by GRFusion to
the same reasons reported in Section 7.2.

-~ GRFusion -=SQLGraph -=Neo4j -Titan -+‘GRFusion -=SQLGraph -»Neo4j -+Titan
10000 100000
o) n
@ = e % 10000
£ 1000 M//(H*/"’ £
o o
g £ 1000
£ 100 =
s § 10
3 — 3
i 10 . Ty 2 10 D e
> >
w w
1 1
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Path Length Path Length

Execution Time (msec)

-+GRFusion -=-SQLGraph -+ Neo4j -+-Titan +GRFusion -=SQLGraph -+ Neo4j -Titan
100000 1000000
M
1
10000 £ 100000
1000 g
£ 10000 —
100 H
10 [3 1000
PRSP @
w
1 100
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 1012 14 16 18 20
Path Length Path Length

(a) DBLP Dataset (b) Tiger Dataset

(c) String Dataset (d) Twitter Dataset

Figure 7: GRFusion achieves up to 4 orders-of-magnitude query-time speedup for unconstrained reachability queries.

-~ GRFusion -=SQLGraph -+ Neo4j —Titan -+-GRFusion -=-SQLGraph -+ Neo4j -Titan
10000 100000
S N
& faegea g googogo-g & 10000
£ 1000 E
2 B’Q//M 2 1000
£ 100 [
5 E 100
El E
g 1w 3 10
< R o ST e -
& PO, il
1 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Edge Selectivity (%) Edge Selectivity (%)

Execution Time (msec)

-~GRFusion =SQLGraph -+ Neo4j Titan -~GRFusion --Neo4j ~Titan
100000 100000
g e
10000 b [PPN
E [
1000 e 10000 S
= =g g
100 -
2 1000
5
100 e]
3
]
! 100
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Edge Selectivity () Edge Selectivity (%)

(a) DBLP Dataset (b) Tiger Dataset

(c) String Dataset (d) Twitter Dataset

Figure 8: GRFusion achieves up to 4 orders-of-magnitude query-time speedup for reachability queries with filtering predicates.

+GRFusion -SQLGraph -+ Neo4j —Titan -~ GRFusion -=SQLGraph -=Neodj -=Titan -+‘GRFusion -=-SQLGraph -+ Neo4j -Titan
100000 100000 10000000
E A E
@ @ 7]
£ L0000 g g 1000000
10000
g g £ 100000
= = =
s S 5 10000
£ 1000 2 1000 2
El 5 5
g 3 2 1000
> > x
w w w
100 100 100
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Edge Selectivity (%) Edge Selectivity (%) Edge Selectivity (%)

(a) DBLP Dataset

(b) Tiger Dataset

(c) String Dataset

Figure 9: GRFusion finds all the triangles with filtering predicates with a query-time speedup of one order-of-magnitude.

7.5 Shortest-Path Queries with Filtering
Predicates

We conduct an experiment using the Tiger road network to as-
sess the performance of GRFusion in evaluating the single-source
shortest-path query (or SSSP, for short) in contrast to Grail [25].
The purpose of this experiment is to show that a simple algo-
rithm, e.g., Dijkstra’s algorithm [24], executing inside a relational
database system can achieve significant performance gains over
a pure-relational approach, e.g., as in Grail [25], when evaluat-
ing SSSP queries, or more generally, intensive traversal queries.
Notice that the computational model of Grail is based on the
vertex-centric computational approach that is different from the
graph-traversal model of GRFusion. However, both approaches
have a common ground due to using an RDBMS in the evaluation.
We implement the SSSP query of Grail as reported in Listing 3 in
Grail’s paper [25]. Our Grail implementation is an in-memory im-
plementation on top of VoltDB to mitigate the disk IO cost, and we
allow Grail to filter the edges while processing to report the effect
of sub-graph selections on the query-execution performance.

We generate 1000 random sources from which we execute an
SSSP query to all the other vertexes, and we report the average
query execution time for various sub-graph selectivity factors.

34

-+-GRFusion -=-Grail (In-Memory)

[

100000

10000

1000

100

10

Execution Time (msec)

1
0 5 10 15 20 25 30 35 40 45 50
Edge Selectivity (%)

Figure 10: GRFusion executes SSSP queries natively inside
an RDBMS few-thousand times faster than Grail.

Figure 10 gives the performance of evaluating SSSP queries on
the Tiger road network, where the x-axis and the y-axis are the
edge-selectivity of the queries and the query-processing time in
milliseconds, respectively. GRFusion achieves more than three
orders-of-magnitude query-time speedup w.r.t. Grail. Notice that
we do not use an advanced SSSP evaluation method. Instead, we
use a straightforward Dijkstra’s algorithm that utilizes efficient
filtering-predicates of the relational database engine. This empha-
sizes the point that having a native and an efficient graph represen-
tation inside an RDBMS can fill the gap between the RDBMSs and

the graph algorithms that are designed for native graph structures,
where these graph algorithms can achieve significant performance
gains when compared to equivalent pure-relational query evalua-
tion approaches.

7.6 The Overhead of Graph Views

As graph views are materialized in GRFusion, we report the con-
struction time as well as the consumed memory space for each
dataset. Table 2 illustrates that the construction time ranges from
two seconds to 10 minutes according to the size of the graph. The
reason is that the construction process passes only once by the
vertexes relational-source as well as the edges relational-source.
Similarly, Table 2 shows the memory size due to the materializa-
tion of the topology of every graph. The consumed memory is of
acceptable overhead because only the graph topology is material-
ized, where each vertex and edge holds pointers to the relational
data instead of replicating the relational data inside the graph
views. For example, only 0.88 GB is needed to construct a graph
view for the continental-sized US road network. Moreover, the
overhead of updating the graph views is low. On average, it takes
0.04 milliseconds to add a new edge into an existing graph view,
i.e., the total time to insert a tuple in the relational source as well
as updating the topology of the corresponding graph view. For
both the deletions and insertions of vertexes and edges, GRFusion
incurs 5%-11% additional overhead to the time of manipulating
the relational sources. The reason for this low overhead is that the
logic of manipulating the graph views is linear in time w.r.t. the
number of affected vertexes or edges as illustrated in Section 3.3.

8 RELATED WORK

Graphs Integration with Relational Databases: There is a
plethora of database systems that adopt the graph data model
(e.g., Neodj [4] and Titan [11]). These systems have powerful
graph querying features. However, it has been shown that for
many graph queries, the performance of these systems can be
achieved or exceeded by a vanilla relational database [25, 46].
For graph-relational queries, a graph database is useful if it is
feasible to: a) import all the relational data into the graph database,
or b) develop a custom layer where results from the graph data-
base and the relational database are integrated to form the final
results. In contrast, GRFusion allows efficient execution of graph-
relational queries with neither the overhead of importing data nor
the overhead of integrating query results from different systems.
Commercial systems, e.g., Oracle Graph and Aster [45], follow
the architecture of processing graph-relational queries using dif-
ferent run-time systems, where the results are combined at the end.
For example, Aster allows defining graph functions that can be
referenced in the FROM-Clause of a SQL statement. During query
execution, the graph function is extracted and evaluated using a
graph runtime system. Eventually, the result from the external
graph-runtime is transformed into a relational table that can be
integrated with the parent SQL query. Similarly, G-SPARQL [40]
is a SPARQL-like language for querying attributed graphs, where
a graph is represented and processed using a hybrid Memory/Disk
model, and the query-execution is split between the RDBMS and a
memory-based layer outside the RDBMS. In contrast, GRFusion
executes the graph operations as well as the relational operations
of a query through a cross-data-model QEP without leaving the
realm of the RDBMS.

Several graph libraries and systems target graph analytics, e.g.,
CRAY Graph Engine [13], Pregel [34] and its open source version

35

Giraph [2], GraphLab, GraphFrames [22]. For graph analytics,
it may be acceptable to import data from relational databases
for analytical purposes. In contrast, GRFusion also serves OLTP
scenarios. This is possible as the relational data in GRFusion is not
deeply copied into the graph views. Moreover, the updates to the
relational data that affect the topology of the defined graph views
incur little overhead to update the in-memory graph structures in
GRFusion.

Relational Databases with Modified Layers for Graph Pro-
cessing: In this category, the internals of an RDBMS are mod-
ified to some extent, but not to a level that executes a graph-
relational query through the same QEP as in GRFusion. For exam-
ple, SAP HANA Graph and GRAPHITE [37] allow graph opera-
tions to directly execute on the relational data in a column-store
without replication. However, two different runtime components
execute the graph-relational queries. In contrast, GRFusion uses a
single runtime leading to better performance. In [18], an access
method is proposed to process graphs stored on disk under certain
locality assumptions. In contrast, GRFusion is a main-memory
system that traverses a graph by realizing a light-weight structure
describing the graph topology.

Extracting Graphs from Relational Databases: In this cate-
gory, graphs stored in relational tables are extracted from the data-
base system to be under the control of an independent application.
This independent application allows for querying the extracted
graphs using graph APIs. Ringo [38] and GraphGen[51, 52] are
representatives of this approach. In contrast, GRFusion processes
graphs inside the relational database and does not extract the
graphs outside the realm of the database engine. Additionally,
GRFusion supports dynamic graphs, where online updates are
possible. Notice that to support graph-relational queries, e.g., in
Ringo or GraphGen, the relational part of the query should be
processed by the relational database, and the graph operations
should be processed by Ringo or GraphGen, where another exter-
nal layer will be responsible for integrating the graph results and
the relational results into the final query result.

Encoding Graphs in Relational Databases: In this line of
work (e.g., SQLGraph [46], Grail [25]), graphs are stored in re-
lational tables with schema optimized for specific graph queries.
After encoding graphs in a vanilla relational database, a transla-
tion layer is designed to translate the supported graph queries into
complex SQL statements for the relational database to execute.
Although the query performance of this approach is comparable
to specialized graph databases for specific queries, these systems
make it difficult for users to write declarative graph-relational
queries. In particular, the schema of the relations storing the graph
data may not be suitable for users to query directly and join with
other relational data. The reason is that the schema is usually auto-
generated based on the input graph for optimization purposes.

Tailored Operators for Specific Graph Operations: In this
category, several research efforts (e.g., [17, 20, 21]) have been con-
ducted since the 1980s and until recently (e.g., [16, 26]). However,
most of these efforts target specific query types (e.g., transitive
closure, shortest paths). Unlike GRFusion, these approaches also
do not support a unified/cross-model declarative language to query
both graph and relational objects simultaneously. In [17, 20], Re-
lational Algebra is extended with operators to allow for recursive
queries. Although the proposed recursive algebra helps execute
some graph traversal queries, query execution is not efficient be-
cause the graph operators execute over relational tables and not
over native graph representations. For instance, several iterations
with insertions into temporary tables are needed to keep track

of the traversal state. Similarly, Vertica [31] presents optimiza-
tions for graph-relational queries. However, the graph operations
execute over pure relational structures and not on graph represen-
tations. Thus, costly relational joins are mandatory in many cases
to traverse graphs. In contrast, GRFusion’s graph operators pro-
cess native graph structures in main-memory without performing
costly joins and without manipulating temporary tables to traverse
a graph topology. Dar et al. [21] use relational operators repeti-
tively to compute the transitive closure of a graph represented in
a predefined relational schema. Gao et al. [26] present specific
optimizations to process shortest-path queries over graphs stored
in a relational database. GRFusion is more general and can join
graph views with relational tables in the same query. Moreover,
GRFusion addresses the impedance mismatch between the graph
model and the relational model. In EmptyHeaded [16], graphs in
a relational storage are queried using a datalog-like language [29].
The core idea of EmptyHeaded is to leverage join algorithms with
strong theoretical guarantees in addition to using advanced query-
compilation techniques. In contrast, GRFusion avoids relational
joins completely when traversing the topology of a graph view.

9 CONCLUSION

We introduce the notions of in-memory materialized graph views,
graph operators that seamlessly integrate with relational oper-
ators in query evaluation pipelines, memory management, and
query optimization techniques for optimizing graph-relational
queries. GRFusion is a realization of the proposed Native G+R
Core approach inside VoltDB. The key idea behind GRFusion is
to show the effect of extending an RDBMS to handle natively and
seamlessly graph and relational data through cross-data-model
QEPs. We introduce the PATH construct, and the extended SQL
language of GRFusion to declaratively express graph-relational
queries. GRFusion constructs in-memory graph structures to cap-
ture the graph topology and exploits the relational engine’s power
in evaluating the relational constructs of the queries. Consequently,
GRPFusion efficiently handles deep graph-traversal queries with-
out any relational joins to explore the connectives of the vertexes
of a graph. We evaluate GRFusion using various graph queries
w.r.t specialized graph engines and systems following the Native
Relational-Core approach, where GRFusion achieves up to four
orders-of-magnitude query-time speedup.

REFERENCES

[1] http://dblp.uni-trier.de/xml/.
[2] http://giraph.apache.org/.
[3] http://konect.uni-koblenz.de/networks/twitter.
[4] http://neodj.com/.
[5]1 https://github.com/tinkerpop/gremlin/wiki.
[6] https://github.com/voltdb/voltdb/.
[7] https://github.com/voltdb/voltdb/.
[8] http://string-db.org/.
[9] https://www.census.gov/geo/maps-data/data/tiger.html.
[10] https://www.voltdb.com/.
[11] http://thinkaurelius.github.io/titan/.
[12] http://www.caida.org/data/passive/.
[13] http://www.cray.com/products/analytics/cray-graph-engine.
[14] Oracle timesten: http://www.oracle.com/us/products/database/timesten.
[15] soliddb: https://teamblue.unicomsi.com/products/soliddb.
[16] C.R. Aberger, S. Tu, K. Olukotun, and C. Ré. Emptyheaded: A relational
engine for graph processing. In SIGMOD ’16.
R. Agrawal. Alpha: An extension of relational algebra to express a class of
recursive queries. [EEE Trans. Softw. Eng., July 1988.
R. Chen. Managing massive graphs in relational dbms. In BIG DATA ’13.
T. Chondrogiannis, P. Bouros, J. Gamper, and U. Leser. Alternative routing:
K-shortest paths with limited overlap. In SIGSPATIAL ’15.

[17]

[18]
[19]

36

[20]
[21]

[22]

(23]

[24]
[25]

[26]

[27]
[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
(48]
[49]
[50]
[51]
[52]

[53]

L. S. Colby. A recursive algebra and query optimization for nested relations.
In SIGMOD °89.

S. Dar, R. Agrawal, and H. V. Jagadish. Optimization of generalized transitive
closure queries. In ICDE ’91.

A. Dave, A. Jindal, L. E. Li, R. Xin, J. Gonzalez, and M. Zaharia. Graphframes:
An integrated api for mixing graph and relational queries. In Proc. of the 4th Int.
Workshop on Graph Data Management Experiences and Systems, GRADES
’16.

C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher,
N. Verma, and M. Zwilling. Hekaton: Sql server’s memory-optimized oltp
engine. In SIGMOD ’13.

E. W. Dijkstra. A note on two problems in connection with graphs. Numerical
Mathematics, 1, 1959.

J. Fan, A. G. S. Raj, and J. M. Patel. The case against specialized graph
analytics engines. In CIDR ’15.

J. Gao, R. Jin, J. Zhou, J. X. Yu, X. Jiang, and T. Wang. Relational approach
for shortest path discovery over large graphs. Proc. VLDB Endow., 5(4), Dec.
2011.

A. Ghazal, D. Seid, A. Crolotte, and M. Al-Kateb. Adaptive optimizations of
recursive queries in teradata. In SIGMOD ’12.

G. Graefe. Query evaluation techniques for large databases. ACM Comput.
Surv., 25(2), June 1993.

T.J. Green, S. S. Huang, B. T. Loo, and W. Zhou. Datalog and recursive query
processing. Found. Trends databases, 5(2):105-195, Nov. 2013.

M. S. Hassan, W. G. Aref, and A. M. Aly. Graph indexing for shortest-path
finding over dynamic sub-graphs. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD 16, pages 1183-1197, 2016.
A. Jindal, S. Madden, M. Castellanos, and M. Hsu. Graph analytics using
vertica relational database. In BIG DATA ’15.

R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C.
Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-store:
A high-performance, distributed main memory transaction processing system.
Proc. VLDB Endow., Aug. 2008.

D. Kernert, F. Kohler, and W. Lehner. Slacid - sparse linear algebra in a
column-oriented in-memory database system. In SSDBM ’14.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: A system for large-scale graph processing. In SIGMOD
'10.

K. Molka and G. Casale. Contention-aware workload placement for in-memory
databases in cloud environments. ACM Trans. Model. Perform. Eval. Comput.
Syst., 2(1), Nov. 2016.

H. Montaner, F. Silla, H. Froning, and J. Duato. Memscale: In-cluster-memory
databases. In CIKM ’11.

M. Paradies, W. Lehner, and C. Bornhévd. Graphite: An extensible graph
traversal framework for relational database management systems. In SSDBM
’15.

Y. Perez, R. Sosi¢, A. Banerjee, R. Puttagunta, M. Raison, P. Shah, and
J. Leskovec. Ringo: Interactive graph analytics on big-memory machines.
In SIGMOD ’15.

M. Sadoghi, S. Bhattacherjee, B. Bhattacharjee, and M. Canim. L-Store: A
real-time OLTP and OLAP system. In EDBT ’18.

S. Sakr, S. Elnikety, and Y. He. Hybrid query execution engine for large
attributed graphs. Inf. Syst., 41:45-73, May 2014.

A.D. Sarma, H. Lee, H. Gonzalez, J. Madhavan, and A. Halevy. Consistent
thinning of large geographical data for map visualization. ACM Trans. Database
Syst., 38(4), Dec. 2013.

M. Sarwat, S. Elnikety, Y. He, and G. Kliot. Horton: Online query execution
engine for large distributed graphs. In ICDE ’12.

M. Sarwat, S. Elnikety, Y. He, and M. F. Mokbel. Horton+: A distributed
system for processing declarative reachability queries over partitioned graphs.
Proc. VLDB Endow., 6(14), Sept. 2013.

A. Shahvarani and H.-A. Jacobsen. A hybrid b+-tree as solution for in-memory
indexing on cpu-gpu heterogeneous computing platforms. In SIGMOD ’16.
D. Simmen, K. Schnaitter, J. Davis, Y. He, S. Lohariwala, A. Mysore, V. Shenoi,
M. Tan, and Y. Xiao. Large-scale graph analytics in aster 6: Bringing context
to big data discovery. Proc. VLDB Endow., 7(13), Aug. 2014.

W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and G. Xie. Sql-
graph: An efficient relational-based property graph store. In SIGMOD ’15.

J. R. Thomsen, M. L. Yiu, and C. S. Jensen. Effective caching of shortest paths
for location-based services. In SIGMOD ’12.

C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. Doulion: Counting
triangles in massive graphs with a coin. In KDD ’09.

L. Wang, M. Zhou, Z. Zhang, Y. Yang, A. Zhou, and D. Bitton. Elastic
pipelining in an in-memory database cluster. In SIGMOD ’16.

Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li. Scaling multicore databases
via constrained parallel execution. In SIGMOD ’16.

K. Xirogiannopoulos and A. Deshpande. Extracting and analyzing hidden
graphs from relational databases. In SIGMOD ’17.

K. Xirogiannopoulos, U. Khurana, and A. Deshpande. Graphgen: Exploring
interesting graphs in relational data. Proc. VLDB Endow., 8(12), Aug. 2015.
C. Yao, D. Agrawal, G. Chen, B. C. Ooi, and S. Wu. Adaptive logging:
Optimizing logging and recovery costs in distributed in-memory databases. In
SIGMOD ’16.

O

proceedings

Sequenced Route Query with Semantic Hierarchy

Yuya Sasaki', Yoshiharu Ishikawa?*, Yasuhiro Fujiwara ¥ Makoto Onizuka'
tGraduate School of Information Science and Technology, Osaka University, Osaka, Japan
tGraduate School of Information Science, Nagoya University, Nagoya, Japan
§NTT Software Innovation Center, Tokyo, Japan
sasaki@ist.osaka-u.ac.jp,ishikawa@i.nagoya-u.ac.jp,fujiwara.yasuhiro@lab.ntt.co.jp,onizuka@ist.osaka-u.ac.jp

ABSTRACT

The trip planning query searches for preferred routes starting
from a given point through multiple Point-of-Interests (Pol) that
match user requirements. Although previous studies have in-
vestigated trip planning queries, they lack flexibility for finding
routes because all of them output routes that strictly match user
requirements. We study trip planning queries that output multi-
ple routes in a flexible manner. We propose a new type of query
called skyline sequenced route (SkySR) query, which searches for
all preferred sequenced routes to users by extending the shortest
route search with the semantic similarity of Pols in the route.
Flexibility is achieved by the semantic hierarchy of the Pol cat-
egory. We propose an efficient algorithm for the SkySR query,
bulk SkySR algorithm that simultaneously searches for sequenced
routes and prunes unnecessary routes effectively. Experimental
evaluations show that the proposed approach significantly out-
performs the existing approaches in terms of response time (up
to four orders of magnitude). Moreover, we develop a prototype
service that uses the SkySR query, and conduct a user test to
evaluate its usefulness.

1 INTRODUCTION

Recently, technological advances in various devices, such as smart
phones and automobile navigation systems, have allowed users
to obtain real-time location information easily. This has triggered
the development of location-based services such as Foursquare,
which exploit rich location information to improve service qual-
ity. The users of the location-based services often want to find
short routes that pass through multiple Points-of-Interest (Pols);
consequently, developing trip planning queries that can find the
shortest routes that passes through user-specified categories has
attracted considerable attention [4, 10]. If multiple Pol categories,
e.g., restaurant and shopping mall, are in an ordered list (i.e., a cat-
egory sequence), the trip planning query searches for a sequenced
route that passes Pols that match the user-specified categories in
order.

Example 1.1. Figure 1 shows a road network with the following
Pols: “Asian restaurant”, “Italian restaurant”, “Gift shop”, “Hobby
shop”, and “Arts&Entertainment (A&E)”. Assume that a user
wants to go to an Asian restaurant, an A&E place, and a gift
shop in this order from start point vgq. The sequenced route
query outputs route R1 because it is the shortest route from vq
that satisfied the user requirements (Asian restaurant, A&E, gift

shop).

Existing approaches find the shortest route based on the user
query. However, such approaches may find an unexpectedly long

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

37

& User-location
(O Food

@ Asian Restaurant

(D Ttalian Restaurant
I:‘ Shop & Service

Gift Shop

Hobby Shop
<> Arts & Entertainment

Figure 2: Examples of category trees in Foursquare

route because the found Pols may be distant from the start point.
A major problem with the existing approaches is that they only
output routes that perfectly match the given categories [5, 14, 16].
To overcome this problem, we introduce flexible similarity match-
ing based on Pol category classification to find shorter routes in
a flexible manner. In the real-world, category classification often
forms a semantic hierarchy, which we refer to as a category tree.
For example, in Foursquare!, the “Food” category tree includes
“Asian restaurant,” “Italian restaurant,” and “Bakery” as subcat-
egories, and the “Shop &Service” category includes “Gift shop,”
“Hobby shop,” and “Clothing store” as subcategories (Figure 2).
We employ this semantic hierarchy to evaluate routes in terms of
two aspects, i.e., route length and the semantic similarity between
the categories of the Pols in the route and those specified in the
user query. As a result, we can find effective sequenced routes
that semantically match the user requirement based on the se-
mantic hierarchy. For example, in Figure 1, route R2 satisfies the
user requirement because it semantically matches the category
sequence because Italian and Asian restaurants are in the same
category tree. However, this approach may find a significantly
large number of sequenced routes because the number of Pols
that flexibly match the given categories increases significantly.
To reduce the number of routes to be output, we employ the
skyline concept [2], i.e., we restrict ourselves to searching for
the routes that are not worse than any other routes in terms of
their scores (i.e., numerical values to evaluate the routes). Based
on this concept, we propose the skyline sequenced route (SkySR)
query, which applies the skyline concept to the route length and
semantic similarity (i.e., we consider route length and semantic
similarity as route scores). Given a start point and a sequence

!https://developer.foursquare.com/categorytree

10.5441/002/edbt .2018.05

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.05

Table 1: Example routes in New York city

[Approach [Distance [Sequenced route]
f:(ésnﬁ%]) 3239 meters | Cupcake Shop — Art Museum — Jazz Club
3239 meters | Cupcake Shop — Art Museum — Jazz Club
Proposed 1858 meters | Dessert Shop — Art Museum — Jazz Club
P 1392 meters | Dessert Shop — Museum — Jazz Club
823 meters Dessert Shop — Museum — Music Venue

of Pol categories, a SkySR query searches for sequenced routes
that are no worse than any other routes in terms of length and
semantic similarity.

Example 1.2. Table 1 shows real-world examples of sequenced
routes in New York city where a user plans to go to a cupcake
shop, an art museum, and then a jazz club in this order. The
existing approaches output a single route that matches the user’s
requirement perfectly. The proposed approach can output three
additional routes that are shorter than the route found by the
existing approach. Note that the additional routes also satisfy the
user query semantically. The user can select a preferred route
among all the four routes depending on how far he/she does not
want to walk or their available time.

The SkySR query can provide effective trip plans; however,
it incurs significant computational cost because a large num-
ber of routes can match the user requirement. Therefore, the
SkySR query requires an efficient algorithm. The challenge is to
search for SkySRs efficiently by reducing the search space with-
out sacrificing the exactness of the result. We propose bulk SkySR
algorithm (BSSR for short) that finds exact SkySRs efficiently.
Recall that a feature of SkySRs is that their scores are no worse
than those of other sequenced routes. BSSR exploits the branch-
and-bound algorithm [9], which effectively prunes unnecessary
routes based on the upper and lower bounds of route scores. In
addition, to improve efficiency more, we employ four techniques
to optimize BSSR. (1) First, we initially find sequenced routes
to calculate the upper bound. (2) We tighten the upper bound
by arranging the priority queue and (3) tighten the lower bound
by introducing minimum distances. (4) we keep intermediate
results for later processing, which refer to as on-the-fly caching.
Our approach significantly outperforms existing approaches in
terms of response time (up to four orders of magnitude) with-
out increasing memory usage or sacrificing the exactness of the
result.

The main contributions of this paper are as follows.

e We introduce a semantic hierarchy to the route search
query, which allows us to search for routes flexibly.

o We propose the skyline sequenced route (SkySR) query,

which finds all preferred routes related to a specified cate-

gory sequence with a semantic hierarchy (Section 4).

We propose an exact and efficient algorithm and its op-

timization techniques to process SkySR queries (Section

5).

We discuss variations and extensions of the SkySR query.

The SkySR query can be applied to various user require-

ments and environments (Section 6).

o We demonstrate that the proposed approach works well in

terms of response time and memory usage by performing

extensive experiments. (Section 7).

We develop a prototype service that employs the SkySR

query and conduct a user test to evaluate usefulness of

the SkySR query. (Section 8).

38

The remainder of this paper is organized as follows. Section 2
introduces related work. Section 3 describes the problem formu-
lation, and Section 4 defines the SkySR query. Section 5 presents
the proposed algorithm. In Section 6, we discuss variations and
extensions of the SkySR query. Sections 7 and 8 present experi-
ment and user test results, respectively, and Section 9 concludes
the paper.

2 RELATED WORK

First, we review trip planning query studies related to the SkySR
query. Then, we review some studies related to the skyline op-
erator. To the best of our knowledge, no study has considered
a skyline sequenced route; thus, our problem cannot be solved
efficiently using existing approaches.

Trip planning: We categorize trip planning queries in Table
2. Note that all existing trip planning queries only output routes
that perfectly match the user-specified category sequences. More-
over, since most trip planning queries assume Euclidean distance,
they cannot find SkySRs, in which road network distance is as-
sumed. Dai et al. [4] proposed a personalized sequenced route
and assumed that Pols have ratings as well as categories and that
users assign weighting factors as preferences. Although this per-
sonalized sequenced route considers route lengths and ratings, it
only outputs the route that perfectly matches the given categories
and has the best score based on lengths, ratings, and preferences.
Only the optimal sequenced route (OSR) is applicable to find
SkySRs without modification because the OSR and SkySR are
based on the same settings (except for scoring). Sharifzadeh et al.
[16] proposed two algorithms to find OSRs in road networks: the
Dijkstra-based solution and the Progressive Neighbor Exploration
(PNE) approach. The main difference between these algorithms is
that the Dijkstra-based solution employs the Dijkstra algorithm
to search for Pols and the PNE approach employs the nearest
neighbor search. It has been reported that these algorithms are
comparable in terms of performance [16]. Thus, we consider both
algorithms to verify the performance of the proposed approach.

Skyline: The skyline operator was proposed previously [2].
Few studies have considered the skyline concept for route searches.
Recently, the skyline route (or skyline path) has received consid-
erable attention [1, 6, 8, 13, 17, 18, 20]. A skyline route assumes
that edges on road networks are associated with multiple costs,
such as distance, travel time, and tolls. Here, the objective is to
find skyline routes from a start point to a destination considering
these multiple costs. However, since we specify a category se-
quence rather than a destination, we cannot apply conventional
algorithms to find SkySRs. The continuous skyline query in road
networks (e.g., [7]) searches for the skyline Pols for a moving
object considering both the Pol category and the distances to the
moving object. Because continuous skyline queries search for a
single Pol category, these solutions are not applicable to SkySR
queries, which obtain routes that pass through multiple Pols.

3 PRELIMINARIES

Table 3 summarizes the notations used in this paper. We assume
a connected graph G = (VU P, E), where V, P, and E C (VU
P) x (V U P) represent the sets of vertices, Pol vertices, and
edges, respectively. This graph corresponds to a road network
that contains Pols. The numbers of vertices, Pol vertices, and
edges are denoted | V|, |P|, and |E|, respectively. Pol vertex p € P
is associated with category ¢ € C, where C is the set of categories.
We denote the category of Pol vertex p as cp, and assume that

Table 2: Types of trip planning queries.

Type Distance metrics | Order | Destination Result Scores
SkySR (proposed) Network Total Yes or No Exact | Length and semantic
Optimal sequenced route (OSR) [16] Euclidean or Network Total Yes or No Exact Length
Sequenced route [5, 14] Network Total Yes Exact Length
Personalized sequenced route [4] Euclidean Total No | Approximate Length and rating
Trip planning [10] Euclidean or Network Non Yes | Approximate Length
Multi rule partial sequenced route [3] Euclidean | Partial No | Approximate Length
Multi rule partial sequenced route [11] Euclidean | Partial No Exact Length
Multi-type nearest neighbor [12] Euclidean Non No Exact Length

Table 3: Notations

Symbol | Meaning

v Set of vertices

P Set of Pol vertices

E Set of edges

P Pol vertex

C Set of categories

c Category

t Category tree

cp Category of Pol vertex p

te Category tree of ¢

P. Set of Pol vertices associated with ¢
P Set of Pol vertices associated with ¢
S Category sequence (sequence of categories)
R Route (sequence of Pol vertices)

Sr Sequential Pol categories in R

I(R) Length score of R

s(R) Semantic score of R

R Set of routes

E(R) Set of super-routes of R

S Minimal set of sequenced routes

Sq Category sequence specified by user
vg Start point specified by user

each Pol is associated with a single category. Each category is
associated with category tree t, and we denote the category tree
of category c as t.. We denote the set of Pol vertices associated
with ¢ and the set of Pol vertices associated with the category
tree t as P, and P;, respectively. If a Pol vertex is associated
with category c, it is also associated with all ancestor categories
of ¢ in t.. Each edge e(u;, u;) in E is associated with a weight
w(u;, uj) (= 0). The weight can represent either travel duration
or distance. Next, we define several terms required to introduce
the skyline sequenced route (SkySR).

Definition 3.1. (Category sequence) A category sequence S =
(es[1],es[2], .. .,cs[ISI]) is a sequence of categories, where |S|
is the size of S. cg[i] € C denotes the i-th category in S. A super-
category sequence of S is a category sequence where each i-th
category is either cs[i] or an ancestor of cg[i] (1 < i < |S]) in the
category tree.

Definition 3.2. (Route) A routeR = (pg[1],...,pr[IR[])isa
sequence of Pol vertices in a road network, where pg[i] € P and
|R| denote the i-th Pol vertex in R and the size of R, respectively.
Sgr denotes the category sequence of R (i.e., {cp,[1]> - - - » Cpr[[RI])-
In addition, we define a super-route of R as an extended route
of R, such as (R, p;, pj, . . .). In other words, a super-route of R is
obtained by adding a sequence of Pol vertices to the end of R. R
and E(R) denote a set of routes and a set of super-routes of R,
respectively. Moreover, given a route R = (pr[1],...,pr[IRI])
and a Pol vertex p, we define R@® p = (pr[1],....pr[IRI]. p).

Definition 3.3. (Category similarity) Given two categories
¢ and ¢’, the similarity sim(c,c¢’) € [0,1] is calculated by an
arbitrary function such as the Wu and Palmer similarity or path

39

length [15, 19]. We assume the following relations in the similar-
ity.
e cisirrelevant to ¢’ if both exist in different category trees;
thus, we obtain sim(c, c’) = 0.
o ¢ semantically matches ¢’ if ¢ and ¢’ are in the same cate-
gory tree; thus, we obtain 0 < sim(c,c’) < 1.
o ¢ perfectly matches ¢’ if ¢ and ¢’ are the same; thus, we
obtain sim(c,c’) = 1.

Note that a semantic match subsumes a perfect match.

We define a sequenced route using the above definitions. The
difference between our definition of sequenced route and the
previous definition [16] is that we consider category similarity.

Definition 3.4. (Sequenced route) Given category sequence
S = (cs[1],...,cs[ISI]), R = (pr[1],...,pr[IRI]) is a sequenced
route of category sequence S if and only if it satisfies (i) |IR| = [S],
(ii) cs[i] semantically matches cp ;) forall i such that 1 < i < [S],
and (iii) all Pol vertices in R differ each other.

Definition 3.5. (Route scores) Given category sequence S and
vertex v as a start point, we define two scores for route R: length
score [(R) € [0,inf] and semantic score s(R) € [0, 1]. We define
the length score I[(R) as follows:

I(R) = D(v.pr[1]) + SR Dr[ilprli + 1), (1)

where D(u;, u;) denotes the smallest weight sum of the edges
on the routes between vertices (or Pols) u; and u;. The semantic
score s(R) is calculated by an aggregation function f as follows:

s(R) = f(h1,h2,..., hR)), @)

where h; denotes sim(cs[i], cpp[i]). We assume that, if all h; = 1,
s(R) = 0, ie, if all Pol vertices in a route perfectly match the
categories, the semantic score of the given route is 0. We also
assume that s(R) is the possible minimum semantic score of R
when it is a sequenced route. Without loss of generality, preferred
routes have small length and semantic score.

4 THE SKYLINE SEQUENCED ROUTE
QUERY

Here, we define the SkySR query. Intuitively, a SkySR is a po-
tential route that may be the best route related to the user’s
requirement. A potential route is a route that is not dominated
by any other routes; the notion of dominance is used in the sky-
line operator [2]. We define dominance for sequenced routes and
SkySR query in the following.

Definition 4.1. (Dominance) Let R be the set of all sequenced
routes starting from point v for category sequence S. For two
sequenced routes R,R” € R, we say that R dominates R’ if we
have (i) I[(R) < [(R’) and s(R) < s(R’) or (ii) s(R) < s(R’) and
I(R) <I(R’). If two sequenced routes have the same length and

semantic scores, the routes are equivalent in the dominance, and
a set of sequenced routes is minimal if it has no equivalent routes.

Definition 4.2. (SkySR query) Given vertex vg as a start point
and category sequence Sq, a skyline sequenced route is a se-
quenced route not dominated by other routes. Let R be the set of
all sequenced routes from start point v for category sequence
S¢, and let S be a minimal set of the sequenced routes. The
SkySR query returns S that includes sequenced routes such that
all R € S are SkySRs and all R” € R \ S are dominated by or
equivalent to some of R € S.

An naive solution to find SkySRs is to first enumerate SkySR
candidates by iteratively executing OSR queries for any super-
category sequences of S4 and then check the dominance among
the routes. The number of super-category sequences of Sy in-
creases exponentially as the depth of the category in the category
tree and the size of S; increase. Thus, although OSR algorithms
can find a sequenced route efficiently, we must repeat many
searches. As a result, the naive solution needs significantly high
computational cost to find SkySRs.

5 PROPOSED ALGORITHM

In this section, we present the proposed approach, which we
refer to as the bulk SkySR algorithm (BSSR), that finds SkySRs ef-
ficiently. Section 5.1 presents the BSSR design policy, and Section
5.2 explains the BSSR procedure. In Section 5.3, we propose opti-
mization techniques for BSSR. We also theoretically analyze its
performance in Section 5.4. Finally, we show a running example
of BSSR in Section 5.5. In Section 5, we assume undirected graphs
in which each Pol vertex is associated with only one category
and that users give sequences of single Pol categories. However,
in a real application, the graphs would be directed graphs, each
Pol vertex would be associated with multiple categories, and
users may specify complex categories. Section 6 describes how
we handle the above conditions.

5.1 Design Policy

Our idea to improve efficiency is to find sequenced routes simul-
taneously (i.e., by searching sequenced routes in bulk) in order to
reduce the search space. We have two choice as the basis for our
approach; Dijkstra-based or nearest neighbor-based approaches
[16]. We use the Dijkstra-based approach as the basis of our al-
gorithm. Recall that a SkySR query has two scores for a route,
i.e., length and semantic scores. To find all SkySRs, we must find
routes that have small category scores even if the routes have
large length scores. However, Pols that are included in the routes
with small category scores could be distant from the start point.
Although the nearest neighbor-based approach finds the closest
Pols, it cannot efficiently find such Pols. On the other hand, the
Dijkstra-based approach searches for all Pol vertices that match
a Pol category. Therefore, the Dijkstra-based approach is more
suitable for the SkySR query than the nearest neighbor-based
approach.

Although our approach finds sequenced routes simultane-
ously, it entails a large number of executions of the Dijkstra
algorithm. This is because, since the number of Pol candidates
increases, a large number of possible routes increases. The search
space does not become small effectively. To effectively reduce
the search space, we exploit the branch-and-bound algorithm,
which uses the upper and lower bounds of a branch of the search
space to solve an optimization problem effectively. With BSSR,
each branch corresponds to each route. For the upper and lower

40

bounds, we compute the bounds during finding the set of SkySRs.
Specifically, we compute the upper bound of a route from the al-
ready found sequenced routes, and we compute the lower bound
from the current searched route (i.e., not a sequenced route yet).
With the upper and lower bounds, we can safely prune unneces-
sary routes to improve efficiency.

To further increase efficiency, we propose optimization tech-
niques for BSSR. In order to exploit the branch-and-bound algo-
rithm, it is necessary to initialize the upper bound. Thus, we first
search for a sequenced route to initialize the upper bound. How-
ever, it may take high computational cost to find a sequenced
route. Therefore, we propose a nearest neighbor-based initial
search method (NNinit) that finds sequenced routes efficiently by
greedily finding Pol vertices. In addition, to effectively update
the upper bound, we assign a priority to each route and use the
priority queue to efficiently find routes that are likely to give an
effective upper bound. To compute the lower bound, we compute
the possible minimum distance and add it to the length score of a
route to safely prune unnecessary routes. Moreover, to avoid ex-
ecuting the Dijkstra algorithm iteratively from the same vertices,
we materialize search results of the Dijkstra algorithm and reuse
them to search the Pol vertices. By using BSSR with optimization
techniques, we can perform the SkySR query efficiently.

5.2 Bulk SkySR algorithm

Bulk SkySR algorithm (BSSR) finds all SkySRs by finding simul-
taneously sequenced routes with checking dominance on de-
mand. The naive solution must execute OSR queries for all super-
category sequences of Sy one by one because it only searches
for the Pols that perfectly match the given category. In contrast,
BSSR searches for all Pols that semantically match the given
category.

The basic process of BSSR is simple as shown in Algorithm 1:
(i) start searching the Pol vertices that match the first category
from start point v4 and insert the route found into priority queue
Qp which stores all found routes (line 4), (ii) fetch a route from
Qp (line 6), (iii) search for the next Pol vertices that semantically
match the next category c4 from Pol vertex p; which is the end
of the fetched route, and insert the fetched route with each of the
found Pol vertices into Qy, (lines 7-9), and (iv) if Qp, is not empty,
return to (ii), otherwise output the minimal set of sequenced
route S (line 10). In steps (i) and (iii), we find Pol vertices from
the end of the fetched route using a Dijkstra algorithm modified
for the SkySR query as described in Section 5.2.2.

Algorithm 1: Bulk SkySR algorithm

procedure BSSR(vg, Sq)
S« ¢;
priority_queue Qp «— ¢;
mDijkstra(g, cs[1], vgq, Op, S);
while Qy, is not empty do

R < Qp.dequeue();

ca < cs[RI+1];

pa < pr[IRI];

mDijkstra(R, cq, pa, Op, S);

O X N AU A W N e

10 return S;

1

oy

end procedure

5.2.1 Branch-and-bound. We search for sequenced routes si-
multaneously to reduce the search space. Our idea to safely re-
duce the search space is to exploit the branch-and-bound algo-
rithm, which can reduce unnecessary search space. This section

describes the theoretical background of using the branch-and-
bound algorithm. We use the following three lemmas to reduce
the search space:

LEMMA 5.1. Let S be a minimum set of sequenced routes while
searching for SkySRs and S’ be the minimum set of sequenced
routes after finding SkySRs. If sequenced route R is dominated by a
sequenced route in S, R cannot be included in S’.

proof: From Definition 4.2, we search for a set of SkySRs, which
are not dominated by the other sequenced routes. If we find a
sequenced route not dominated by any sequenced routes in S,
we update S by inserting the new sequenced route and deleting
a sequenced route dominated by the new one. Therefore, any
sequenced routes in S after the update are not dominated by any
sequenced routes in S prior to the update. As a result, sequenced
routes in S’ are not dominated by any sequenced routes in S. In
other words, R is not included in S’ if we have sequenced route
R’ in S such that I(R") < I(R) and s(R) < s(R). O

LEMMA 5.2. Let E(R) be a set of super-routes of R starting from
the same start point. For any route R’ in E(R), the length and
semantic scores [(R”) and s(R”) cannot be less than [(R) and s(R),
respectively.

proof: Let R’ be a route included in E(R). Since we have
D(u;,uj) > 0, the following property holds for a route R from
Equation (1) of Definition 3.5.

D(vg, prr[1]) + =X Do [i]. pre[i+1])
= D(vg.pr[1]) + ZR'D(pg[i]. prli+1])
3 DR (i, pr[i+1])

> D(vg prI11) + Sy D(pr[il prli+11).

Therefore, we have I(R) < I(R’). s(R) is the possible minimum
semantic score of R when it becomes a sequenced route. Thus,
even if Pol vertices are added to R, we have s(R) < s(R’). Asa
result, we have [(R) < I(R") and s(R) < s(R’). a

In terms of the branch-and-bound algorithm, Lemma 5.1 and
5.2 give us the upper and lower bounds of the scores of a route,
respectively. We can prune routes according to the following
lemma.

LEmMMA 5.3. (pruning condition) If (i) R is a sequenced route
included in the set S of sequenced routes and (i) [(R) < [(R’) and
s(R) < s(R’), any routes in E(R”) cannot be included in S.

proof: If we have [(R) < I(R’) and s(R) < s(R’), R’ is not
included in S (Lemma 5.1). From Lemma 5.2, the scores of R’
cannot become less than /(R”) and s(R’) even if we expand R’.
Therefore, any routes in E(R”) cannot be included in S because
R’ is dominated by or equivalent to the sequenced route with
I(R) and s(R) . a

Lemma 5.3 gives us the length score threshold for a route, and,
if the length score of a route is greater than this threshold, we
can prune the given route. We define the length score threshold
of a route as follows:

Definition 5.4. The threshold I(R) of the length score of route
R is given by the following equation:

I(R®) = min ([R")Is(R) 2 s(R')}.

'eS ©®)

If z(R) < I(R), we can safely prune R because it cannot be
included in the result. Thus, we can reduce the search space

41

without sacrificing the exactness of the result. Equation (3) has a
small computation cost because S includes only a small number
of sequenced routes as shown in Section 7.

5.2.2 The modified Dijkstra Algorithm. We search the next Pol
vertices that semantically match the next Pol category using the
modified Dijkstra algorithm. The modified Dijkstra algorithm can
prune unnecessary routes based on Lemma 5.3. Moreover, based
on the following lemma, it terminates unnecessary traversal of
the graph and avoids inserting unnecessary routes.

LEmMA 5.5. LetR = (pr[1],...,prlil.prli + 1].pr[i + 2] ...,
prIIRI]) be a route and p;.i+1 be a Pol vertex on a path between
prli] and pr[i + 1]. Route R must be dominated by or equivalent
to another route if we have sim(cs[i + 1], ¢p,;,,) = sim(cs[i +
1], cpgi+1])-

proof:LetR" = {pg[1], ..., prlil. pi:i+1,pri+2], . . ., pr[IRI])
be a route such that the difference between R and R’ is only in
pi:i+1 and pr[i + 1]. Since the Pol vertex p;.j+1 is on the path
between pr[i] and pr[i + 1], we have I(R) > I(R’) based on
triangle inequality (i.e., D(pi:i+1, pr[i + 1]) + D(pr[i + 1], pr[i +
2]) = D(pi:i+1,pr[i + 2])). Moreover, if sim(cs[i + 1], ¢p;;,y) =
sim(cs[i + 1], ¢pg[ir1]), we have s(R) 2 s(R’). Therefore, R is
dominated by or equivalent to R’ because I(R) > I(R’) and s(R) >
s(R’). a

Lemma 5.5 gives us two properties for the SkySR query: (i)
even if we find a Pol vertex that passes through another Pol
vertex that has a better category similarity, we can ignore the
Pol vertex, and (ii) if we find a Pol vertex that perfectly matches
the given category, we do not need to traverse the graph through
the Pol vertex. As a result, using Lemma 5.3 and 5.5, we can
efficiently find the next Pol vertices.

Algorithm 2 shows the pseudocode for the modified Dijkstra
algorithm, which is used to find Pol vertices that semantically
match c¢g from py. In priority queue Q, for the modified Dijkstra
algorithm, the top vertex is the closest vertex to p;. The queue is
initialized to py4 (line 3). The closest vertex to py is dequeued from
Qg (line 5). R; is a route expanded from Ry, which is Ry with
fetched vertex u (line 7). If the length score of R; is greater than
or equal to the threshold of Ry, the modified Dijkstra algorithm
terminates the process (Lemma 5.3) (line 8). We check whether
(i) u semantically matches c; and (ii) u does not proceed through
another Pol vertex whose category similarity is greater than or
equal to that of u (line 9). If we satisfy the above conditions and
the length score of R; is less than its threshold (line 10), we insert
R; into the priority queue or the set of sequenced routes (lines
10-12). Otherwise, we skip the process to insert Ry (Lemma 5.3
and 5.5). The neighbor vertices of u are inserted into Q; unless u
perfectly matches c¢; (Lemma 5.5) (lines 13-17).

5.3 Optimization techniques

In this section, we propose four optimization techniques for BSSR.
Section 5.3.1 explains an initial search for sequenced routes and
proposes NNinit. We then explain tightening the upper and the
lower bounds in Section 5.3.2 and Section 5.3.3, respectively.
Furthermore, in Section 5.3.4 we propose an on-the-fly caching
technique to reuse previous search results of the modified Dijkstra
algorithm.

5.3.1 Initial search. We prune unnecessary routes efficiently
using the branch-and-bound algorithm. However, we cannot
calculate the threshold of R if there are no sequenced routes in
S whose semantic scores are not greater than that of s(R) based

Algorithm 2: Modified Dijkstra algorithm to find the next
Pol vertices matching c; from py

1 procedure mDijkstra(Ry, cq4, pa, Qp, S)

2 dist[u] =inf forallu € VUP, dist[py] = 0;
3 priority_queue Qg < {pa};

4 while Qg is not empty do

5 u « Qg.dequeue;
6 if u is already visited then continue;
7 R; <Ry u;

8 if I(R;) > [(Ry) then break;

ifue P'Cd and u is not through the Pol vertex whose category
similarity is higher than that of u then

10 if [(R;) < I(R;) then

11 if R; is a sequenced route then S.update(R;);

12 else Qp.enqueue(R;);

13 if u ¢]Pcd then

14 for each u’ fore(u, u’) € E do

15 if dist[u] + w(u, ') < dist[u] then

16 dist[u'] = dist[u]l + w(u, v').w;

17 L Qg.enqueue(u’);

18 end procedure

on Equation (3). Therefore, initially, we search for the sequenced
route whose semantic score is 0. However, the length score of
the sequenced route can be large if its semantic score is 0. To
tighten the threshold, we also search for sequenced routes whose
semantic scores are greater than 0 because the length scores of
them are less than that of the sequenced route with a semantic
score of 0. We initially find several sequenced routes to tighten
the upper bound.

We propose NNinit, which searches for several sequenced
routes efficiently. NNinit performs a nearest neighbor search
repeatedly to find Pol vertices that perfectly match the given cat-
egories. With this process, we can find a sequenced route whose
semantic score is 0. Moreover, NNinit can find the Pol vertex
that semantically matches the given category during the nearest
neighbor search. When we find the last visited Pol vertex, we
may find Pol vertices that semantically match the last category in
Sq- Therefore, we can obtain sequenced routes whose semantic
scores are greater than 0 and length scores are small. As a result,
NNinit can find several sequenced routes without incurring addi-
tional cost, and one of the sequenced routes has a semantic score
of 0.

We present the pseudocode for NNinit in Algorithm 3. Here,
priority queue Q is initialized to start point v4 (line 3). NNinit re-
peats the Dijkstra algorithm [S4]| times to find sequenced routes
(line 4). The Dijkstra algorithm is executed to search for the
closest Pol vertex that perfectly matches cs, [i] from the initial
vertex (the first initial vertex is vg) (lines 5-19). Here, the clos-
est vertex to the initial vertex is dequeued from Q (line 7). If
the algorithm finds a Pol vertex that perfectly matches cs, [i],
this vertex is added to R and Q is initialized to the Pol vertex
(lines 12-15). When it finds the last Pol vertex that semantically
matches cs, [ISql], it inserts the sequenced route into S (lines
9-11). Finally, we obtain a set of sequenced routes, and one of
the sequenced routes in S has a semantic score of 0.

Example 5.6. We show an example of NNinit using Example
1.1, which searches an Asian restaurant, an A&E place, and a gift
shop in this order from start point vg. NNinit executes the Dijk-
stra algorithm three times because the size of category sequence
is three. First, NNinit searches Pol vertices that perfectly match
Asian restaurant from vg. Then, it finds p; that is the closest Pol

42

Algorithm 3: Initial search for finding sequenced routes
with a small cost

1 procedure NNinit(vg, Sq)
2 S—¢,Re ¢y
3 priority_queue Q « {vg};
/% execute Dijkstra algorithm |S,| times */
4 for i:1to|Sq|do
dist[u] = inf forallu € VUP, dist[Q.top] = 0;

5
6 while Q is not empty do

7 u « Q.dequeue;

8 if u is already visited then continue;

9 if i =[Sylandu € Ptcsq[i] then

10 R «R®u;

1 L S.update(R’);

12 ifue]P"Sq[i] then

13 R—Ro®u;

14 Q «— {ul

15 break;

16 for each u’ fore(u, u’) € E do

17 if dist[u] + w(u, v’) < dist[u’] then
18 dist[u'] = dist[u] + w(u, u’);

19 L Q.enqueue(u’);

20 return S;

21 end procedure

that perfectly match Asian restaurant to vgq. Next, it searches
the closest Pol vertex that perfectly matches A&E to py and then
finds ps. From the next search, NNinit inserts sequenced routes
to S when it finds Pol vertices that semantically match gift shop.
NNinit finds p7 whose category is Shop&Service (i.e., semanti-
cally match) and thus inserts (p2, ps, p7) to S. After finding p7, it
finds pg that perfectly matches gift shop and inserts (pa, ps, ps)
to S. Finally NNinit returns S including {{p2, ps, ps), {(p2, p5, p7)}.
The length score of (p2, ps, p7) is 12, which is less than the length
score of (pz, ps, pg) of 15.

5.3.2 Tightening upper bound: Arranging routes in the priority
queue. We use the upper bound to prune unnecessary routes. The
upper bound is computed from the obtained sequenced routes.
To tighten the upper bound, it is important to efficiently find se-
quenced routes that have small length and semantic scores. BSSR
extends a route at the top of the priority queue to search for a se-
quenced route, as shown in Algorithm 1. Note that priority queues
in existing algorithms conventionally consider only distances
(i.e., a distance-based priority queue). If we use a distance-based
priority queue, BSSR preferentially extends a route with a small
length score. Although we must increase the size of a route to
IS¢! to find a sequenced route, a route that has a small length
score likely has a small size. Therefore, it is difficult to search
for sequenced routes efficiently using a distance-based priority
queue.

To search for sequenced routes efficiently, we preferentially
extend a route that has a large size. Here, since many routes in
the priority queue could have the same size, we must consider
an additional priority, which is expected to affect performance.
If multiple routes in the priority queue are the same size, we
preferentially extend the route with the smallest semantic score.
We can reduce the search space by searching for sequenced routes
in ascending order of semantic score. Moreover, if routes are the
same size and have the same semantic score, we preferentially
extend the route with the smallest length score. As a result, we
can efficiently obtain sequenced routes with small length and
semantic scores.

5.3.3 Tightening lower bound: Possible minimum length score.
As described in Section 5.2.1, we use the length scores of routes as
the lower bound, i.e., we prune a route if the length score of the
route is not less than the threshold. Note that the length score of
the route increases as the route size increases. This indicates that
it is difficult to prune routes before the route size increases. Our
approach to tighten the lower bound of the route is to estimate the
increase of the length score. However, if we carelessly estimate a
future length score, we may sacrifice the exactness of th result.

The basic idea of this estimation is to calculate the possible min-
imum distance. Here, we compute the smallest distance among
any pair of Pol vertices in sets of Pol vertices. We use the follow-
ing two minimum distances, semantic-match minimum distance
Is and perfect-match minimum distance l:

Definition 5.7. (minimum distance) The semantic-match min-
imum distance s and perfect-match minimum distance [, are

given by the following equations:

Sql-1 ~
LR =220 L [i], where L[] =__ min_D(pi,pr). ()
s i=|R| = = Pi€Py, pin€Pryy

Sql-1, .. ; i
lﬁ(R)=2L:qlllll Iplil, where [p[i]= _ min_D(pi,pi). (5)

Pi€P;, pin€Pc;y

In Equations (4) and (5), P¢;, and P¢, denote the set of Pol vertices
associated with a category tree of ¢ Sy [i] and the set of Pol vertices
whose category is cs_ [i], respectively.

We compute the semantic-match minimum distance based on
the distance to the Pol vertices that semantically match the next
category. We can safely add the semantic-match minimum dis-
tance to the current length score without restriction. However,
the semantic-match minimum distance is much less than the
threshold. Thus, it could be difficult to improve pruning perfor-
mance; thus, we use the perfect-match minimum distance to
increase pruning performance. The perfect-match minimum dis-
tance is computed based on the distance to the Pol vertices that
perfectly match the next category. We can improve pruning per-
formance using the perfect-match minimum distance compared
to the semantic-match minimum distance because the perfect-
match minimum distance is much greater than the semantic-
match minimum distance; therefore, the perfect-match minimum
distance tightens the lower bound more than the semantic-match
minimum distance. However, we can use the perfect-match mini-
mum distance only in a special case, i.e., where a route must pass
only Pols that perfectly match the given categories so as not to
be dominated. The perfect-match minimum distance works well
if the number of sequenced route in S is large because the con-
straint is usually satisfied by increasing the number of sequenced
route in S.

LEmMA 5.8. Let R’ and R” be sequenced routes in S and R
be a route such that (i) [(R) > I(R’) and s(R) < s(R’) and (ii)
I(R) < I(R”) and s(R) > s(R”). Let § be the minimum increment
of a semantic score®. We can pruneR if we have (a)[(R) > [(R) and
s(R) + 8 > s(R") and (b) I(R) + [p(R) = [(R”) and s(R) > s(R”).

proof: First, we consider case (a). If we have I[(R) > [(R’) and
s(R) + 8 > s(R’), R is dominated by or equivalent to R’ if its
semantic score increases. Therefore, R must only pass through
Pol vertices that perfectly match the given categories not to be
dominated. If R passes through only Pol vertices that perfectly
2The least increase of the semantic score is computed from the category tree.

Specifically, we can compute the least increase from the category that is most
similar (but not equal) to the next category.

43

match the given categories, the length score of R increases by
at least [, (R). For case (b), if we have I(R) + [,(R) > [(R") and
s(R) > STR, ’), Ris dominated by or equivalent_to R” if its length
score increases by I, (R). As a result, if we have two routes R’
and R”, such as (i)_l(R) > [(R’) and s(R) + § > s(R’) and (ii)
I(R) + I,(R) = I(R”) and s(R) = s(R”’), R is dominated by or
equivalent to at least one of R” and R”’. O

To compute the estimation of the lower bound, we compute
two types of possible minimum distances Is and I,. A naive ap-
proach computes all minimum distances from the Pol vertices
that semantically match csq[i] to csq[i +1]for1 <i<|[Sq|-1
by iteratively executing the Dijkstra algorithm. However, this
has a high computational cost. To reduce the cost, we execute
a multi-source multi-destination Dijkstra algorithm. In this algo-
rithm, all start points are inserted into the same priority queue.
Then, the algorithm dequeues vertices in the same manner as the
conventional Dijkstra algorithm. Here, the process is terminated
if the top of the priority queue becomes one of the destinations.
This approach only needs |Sg| — 1 times to compute the possible
minimum distance. The multi-source multi-destination Dijkstra
algorithm guarantees the minimum distance by the following
lemma:

LEMMA 5.9. The multi-source multi-destination Dijkstra algo-
rithm guarantees the minimum distance from the start points to
the destinations.

proof: We first insert multiple start points into the priority
queue, and their distances from the start points are initialized as
0. If we find a vertex, it is inserted into the queue and the distance
to the vertex is updated from the closest start point to the vertex.
The vertex with the smallest distance from the start point in the
priority queue is dequeued from the priority queue. If the top
vertex in the priority queue is one of the destinations, there are
no destinations with smaller distance than the top one. Therefore,
we can guarantee the minimum distance from the start points to
the destinations. O

Algorithm 4 shows the pseudocode to compute the semantic-
match minimum distance. The estimation of the lower bound is
executed after line 4 in Algorithm 1. Here, we initialize P; and
P11 (lines 3-4). 1($) denotes the threshold for a route whose se-
mantic score is 0. The difference between computing the semantic-
match and perfect-match minimum distances is whether the Pol
vertices in P; 1 semantically or perfectly match the given cate-

gory.

Example 5.10. We show an example to compute the semantic-
match minimum distance using Example 1.1. Py, P;, and Ps3 in-
clude {p1, p2, ps. p10. p11}, {ps. po. p12}, and {p3, p4, p7, ps, p13}, re-
spectively. First, Pol vertices in IP; are inserted to priority queue
Q, and the set of destinations is P2. By processing the Dijkstra al-
gorithm, we compute possible minimum distance /5[1] = 2 (from
pe to po). Next, we search Pol vertices that semantically match
A&E to gift shop. Then, we compute I5[2] = 1 (from pi2 to p13).
Finally, we obtain semantic-match minimum distance s = {2, 1}.
We can compute the perfect-match minimum distance in the
same way and obtain lp = {3, 1}, which is greater than l_s .

5.3.4 Reuse of the temporal result: On-the-fly caching tech-
nique. Although BSSR efficiently prunes unnecessary routes, it
may iteratively execute the modified Dijkstra algorithm at the
same vertex because, in Algorithm 1 (line 8), py could be the

Algorithm 4: Computing possible minimum distance

1 procedure EstimationLowerbound(vg, Sq)

2 for i:1t0(Sq|—1do

3 P; « {plp € Pth [and D(vg, p) < I(¢)};
Sq

i+ | Pia e {plp € Py, and D(vg, p) < U@
q

5 dist[u] = inf forallu € VUP, dist[p] =0forall p € P;;
6 priority_queue Q « {p} € P;;

7 while Q is not empty do
8

9

u « Q.dequeue;
if u is already visited then continue;
10 if u € P;;; then
1 Is[i] = dist[u];
12 L break;
13 for each u’ fore(u, u’) € E do
14 if dist[u] + w(u, ') < dist[u’] then
15 dist[u'] = dist[u] + w(u, u’);
16 L L Q.enqueue(u’);

17 return [g;

18 end procedure

same as the former executions of the modified Dijkstra algo-
rithms. Thus, we reuse the result starting at the same Pol vertex
by materializing the result of the modified Dijkstra algorithm
(i-e., keeping Pol vertices matching ¢y and distances from py to
the Pol vertices), which we refer to as on-the-fly caching.

After finding SkySRs, on-the-fly caching frees the results of
the modified Dijkstra algorithms (this is why we call it on-the-fly),
because the search space rarely overlaps across different inputs
(ie., Sq and vy differ).

5.4 Theoretical Analysis

In this section, we theoretically analyze the cost and correctness
of the proposed BSSR.

THEOREM 1. (Time complexity) Let y be a ratio of pruning
and o be a ratio of the size of a graph to find the SkySRs. The time
complexity of BSSR is O(y («|P]) ‘sqla(IEI +(IV|+1|P]) log(a(|V]+
IP1)))-

proof: The time complexity of the Dijkstra algorithm is O(|E| +
|V]log |V]) if the number of vertices is [V|. In our setting, we
have |V| + |P| vertices because we have two types of vertices. In
addition, we do not need to search the whole graph by reducing
the graph size according to the threshold. Therefore, the time
complexity of the modified Dijkstra algorithm is O(a(|E| + (|V]| +
IP|) log(ex(|V| + [P]))). The time complexity of BSSR depends on
the number of times the modified Dijkstra algorithms is executed.
The number of modified Dijkstra algorithms is equal to all the
potential routes [P ISq!_ Recall that we can prune the number of
routes using the branch-and-bound algorithm. Finally, the time
complexity of BSSR is O(y («|P|) Is‘Ilot(IJEI +(|V]+|P]) log(a(IV]+
IP1))).- 0

In our approach, y and a depend on the upper and lower
bounds. These are affected by the graph structure, the category
trees, and the ratio of Pol vertices, and the time complexity of
BSSR depends on these factors.

THEOREM 2. (Space complexity) Let y be the pruning ratio,
and a be the ratio of the size of the graph to find the SkySRs. The
space complexity of BSSR is O(|E| + [V| + [P| + y|Sq|(a|IP’|)|sq|),

proof: We store the whole graph of size O(|E| + | V| + |P]). We
also store routes into the priority queue and S, and the maximum

44

number of routes is |P| ISq!, We can prune the number of routes
using the branch-and-bound algorithm. The size of the routes is
proportional to [Sg|. Therefore, the space complexity of BSSR is
O(IE| + [V] + [B] + yISql(alP])). O

If the number of routes in the priority queue is small, the
graph size becomes the main factor related to the memory usage.
Otherwise, the number of routes in the priority queue is the main
factor.

THEOREM 3. (Correctness) BSSR guarantees the exact result.

proof: BSSR prunes routes based on the upper and lower
bounds. BSSR safely prunes routes dominated by or equivalent
to the obtained sequenced routes. As a result, BSSR does not
sacrifice the exactness of the search result. g

5.5 Running Example

We demonstrate BSSR with optimization techniques using Exam-
ple 1.1. Table 4 shows routes in priority queue Qj and sequenced
routes in S. To compute category similarity and semantic score,
we use Equations (6) and (7), respectively.

First, we process NNinit, and S initially includes {{p2, ps, ps),
{p2, p5,p7)}. 1st step: BSSR starts to find Pol vertices that seman-
tically match Asian restaurant from vg with the threshold of 15.
Then, it finds p1, p2, ps, P10, and p11. Both po’s and p1¢’s category
similarities are 1, and their lengths are 6 and 8, respectively. Thus,
p2 comes the top in Qp. 2nd step: BSSR searches Pol vertices that
semantically match Arts&Entertainment from pz, and finds ps.
Since (p2, p12) passes through ps and [({p2, p9)) is more than 15,
both routes are not inserted to Q. 3rd step: as the top route is
{p2, p5), BSSR searches Pol vertices that semantically match gift
shop from ps. BSSR does not find any routes due to the thresh-
old. 4th step: BSSR fetches (p10) from Qj, and inserts two routes
{p10, p5) and (p10, p12) to Qp. 5th step: BSSR fetches (p19, p12) and
finds sequenced route {p1g, p12, p13). Since {p19, p12,p13) domi-
nates {pz, ps, pg), (P2, ps5, ps) is deleted from S. 6th step: The top
route {p10, p5) is deleted from Qj, because its length score is not
smaller than the threshold of 13. 7th step: BSSR fetches (p1) and
inserts (p1, ps) and {p1, p9). 8th step: BSSR fetches (p1, p9) and
finds a sequenced route {p1, p9, pg). (p1, P9, ps) is inserted to S,
and (pa, ps, p7) is deleted from S. 9th step: (p1, ps) is deleted due
to the threshold. 10th step: BSSR fetches (ps) and finds a route
{p6, p9). 11th step: BSSR finds a sequenced route {pg, po, ps), and
the route dominates (p1, po, ps). 12th step: The distance from p;1
to the Pol vertices that match A&E is larger than the threshold.
Finally, BSSR returns the set of SkySRs S.

6 VARIATIONS AND EXTENSIONS

The SkySR query has a number of variations and extensions. We
discuss some of these in the following.

Directed graphs: The SkySR query can be easily applied to
directed graphs. We only need to use the Dijkstra algorithm
for directed graphs. Here, no modification of the main idea is
required.

Pol with multiple categories: To treat Pols with multiple cat-
egories, we can change the definitions of sequenced routes and
category similarity. Specifically, we change condition (ii) in Defi-
nition 3.4 to state that at least one cp, [j] (1 < j < k;) semantically
matches cg[i] for 1 < i < [S], where cp,[j] is the j-th category
of p; and k; is the number of categories associated with p;. The
category similarity is either the highest or the average value
among the category similarities.

Table 4: Example of BSSR algorithm

Op:

S:{p2. p5, ps), (P2, P5, P7)

1 Qp: (P2), (P10 (1), {P6), (P11)
S:{p2, ps, ps), (P2, P5, P7)

2 Qp: (P2, p5)s (P10), (P1)s {P6), (P11)
S:{p2, ps, ps)s (P2, P5, P7)

3 | Qp:{p10) (1) (P6), (P11)
S:{p2, p5, ps), (P2, P5, P7)

4 | Qp:{p10, p12), P10s P5)» P1)s {P6) (P11)
S:{p2, p5, Ps), (P2, P5, P7)

5 Qp: (P10, P5), {P1)> {P6)» {P11)
S:{p10, P12, P13), (P2, P5, P7)

6 | Qp:{p1) (Pe) (p11)

S:{p10, p12. p13), (P2, Ps. 1)

7 | Qp:{p1. po): (p1. P5). (P6): (P11)
S: (P10, P12, P13), (P2, P5, P7)

8 | Qp:(p1, p5), (Po), (p11)

S: (P10, P12, P13), P1. P9, P3)

9 | Qp:{pe) (P11}

S:{p10, P12, P13), {P1. P9, P3)

10 [Qp:{pe: o), (P11)

S:{p10, P12, P13): (P1. P9, P8)

11 | Qp:{p11)

S: (P10, P12, P13), {P6> P9, P3)

b:
S: (P10, P12, P13), {P6> P9, P3)

Complex category requirement: We can specify more detailed
category requirements, such as conjunction, disjunction, and nega-
tion. For example, we can specify that a Pol category is “American
restaurant” or “Mexican restaurant” (disjunction), but not “Taco
Place” (negation). If Pol vertices are associated with more than
two categories, we can specify a conjunction such as “Cafe” and
“Bakery”. Note that the time complexity of our algorithm does
not change if we specify a detailed requirement because the de-
tailed requirements are equivalent to increasing the number of
categories.

Skyline trip planning query: The proposed algorithm can be
applied to the trip planning query without category order. For
searching routes without category order, the proposed algorithm
searches Pol vertices that semantically match a category in a
given set of categories. Then, if the algorithm finds Pol vertices,
it deletes the categories that are already included in the routes
to find next Pol vertices. Note that we need to modify some
definition and scoring functions for routes without category
order. By this procedure, we can find skyline routes efficiently.
SkySR with destination: Note that we can specify the destina-
tion. The simple way to calculate a SkySR with a destination is to
add the distance from the last visited Pol vertex to the destination
to the length score after finding the sequenced route. To improve
efficiency, we traverse Pol vertices from both the destination and
the start point.

7 EXPERIMENTAL STUDY

We perform experiments to evaluate the effectiveness of the
proposed algorithm. All algorithms are implemented in C++ and
run on an Intel(R) Xeon(R) CPU E5620 @ 2.40GHz with 32 GB of
RAM.

7.1 Experimental settings

Algorithm. We compare the proposed BSSR and algorithms
that iteratively find OSRs using the Dijkstra-based solution and
the PNE approach (denoted Dij and PNE, respectively), as de-
scribed in Section 3. We evaluate performance with respect to
(i) response time, and (ii) maximum resident set size (RSS) to
represent memory usage.

45

Table 5: Summery of dataset

Dataset | Area V] |P| |E|

Tokyo Tokyo 401,893 | 174,421 499,397
NYC New York city | 1,150,744 | 451,051 1,722,350
Cal California 21,048 87,365 108,863

Dataset. We conduct experiments using various maps (Tokyo,
New York city, and California). Table 5 summarizes each dataset.
For the Tokyo and NYC datasets, the road network is extracted
from OpenStreetMap® and the Pol information is extracted from
Foursquare. Each Pol is embedded on the closest edge in the
same way as [10] and is associated with the Foursquare category
trees. Note that the number of category trees in Foursquare is 10.
For the Cal dataset, the road network and Pol information are
available online*. The number of categories in the Cal dataset
is 63°. For each dataset, we use distances based on longitude
and latitude as edge weights and treat the graphs as undirected
graphs. The graphs are implemented using adjacency lists.

For each dataset, we generate 100 searches, in which the size
of a sequence is |S4|. The start points are selected randomly from
vertices in the maps. The categories of sequences are selected
randomly from the leaf nodes in the category trees with the con-
straint that they have different category trees. Since the number
of Pol vertices associated with each category is significantly bi-
ased, we select only categories that have a large number of Pol
vertices.

Here, category similarity is calculated based on the Wu and
Palmer similarity measure [19] and the semantic score is calcu-
lated as the product of the category similarities of the sequence
members. Specifically, we calculate the category similarity and
semantic score using the following equations:

sim(c,c¢’) = maxciea(cf)%, (6)
in([R,[Sq) . .
s® = - RS s, D))

where a(c), d(c), and ¢y, denote the set of ancestor categories of
¢ (including c), the depth of ¢, and the deepest common ancestor
category of ¢ and c;, respectively.

7.2 Overview of results

First, we present an overview of the performance of all algorithms.
Figure 3 shows the response time with various category sequence
sizes, and Table 6 shows the RSS for a category sequence of size
four. Here, “BSSR w/o Opt” denotes BSSR without optimization
techniques. In Figure 3, there are missing bars for the case of size
of sequence 5, because the executions were not finished after a
month.

BSSR achieves the least response time with all datasets and
reduces the search space by exploiting the branch-and-bound
algorithm and the proposed optimization techniques. By compar-
ing BSSR and BSSR w/o Opt, we confirm that the optimization
techniques increase efficiency. When the size of the category
sequence is small, PNE finds SkySRs efficiently because it can
search for sequenced routes efficiently if the category sequence
size is small. On the other hand, as category sequence size in-
creases, the response time of PNE and Dij increases significantly.

Shttps://www.openstreetmap.org
Yhttp://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

5Since the Pols in the Cal dataset have no category tree information, we generate a
category of height three where a non-leaf node has three child nodes.

5 5 5
10 ; \ 10 w 10 ‘ ‘
SR m— SR m— SR m—
10* | BSSR w/o Opt &z] 10* b BSSR w/o Opt &2z] 104 BSSR w/o Opt &z J
PNE === PNE === PNE ===
o 3 Dlj I o 3 Dlj I o 3 Dlj I
2 10° F 4 2 10°F 4 2 10°F E
2, 2, 2
@ 5 B o o 2
£ 10°F K 1 E 10°F s s i E 10°F E
= s = B s KX =
. ° 2
o] oo] [35505 pesses pssess]] L 4
c 10 F B R c 10 o osest s K c 10 g
8 g g 8 oo s 1 8 &
=3 >] 53 7 B
2 100 F i 55 4 8 10°F B 531 4 8 100F E
pasesed Rl pesss o k< g e s
= K = o s s ke s o 5% g4
-1 5 e 1 g B ks B 1 g s
10 F k< ks E 107 FEEESA [k4 o E 107 F sl 4 5
k] g2 (1 ks ks3] 1 o s3]
102 f K 102 S5 4 S5 e 102 e 5
2 3 4 5 2 3 4 5 2 3 4 5

Size of sequence |Sq|

(a) Tokyo

Size of sequence |Sq|

(b) NYC

Size of sequence |Sq|

(c) Cal

Figure 3: Results obtained for the datasets with various [S4|

Table 6: RSS Comparison

BSSR BSSR w/o Opt | PNE Dij
Tokyo | 239.6 MB 497.5 MB | 239.8 MB 4.8 GB
NYC 658.0 MB 659.4 MB | 658.7 MB 9.7 GB
Cal 36.7 MB 53.7 MB 36.6 MB | 70.3 MB

Table 7: Effect of initial search for various [S4|

Dataset | Approach | Metrics 2 3 4 5
Weight sum 0.009 0.013 0.017 0.021
Proposed Response time [msec] 35 5.1 6.9 8.6
Tokyo # of routes 1.49 1.33 1.36 1.49
Ratio 0.74 0.79 0.82 0.86

Existing Weight sum 0.32 (regardless [Sq)
Weight sum 0.044 0.066 0.073 0.078
Proposed Response time [msec] 10.7 16.5 19.5 24.1
NYC # of routes 1.76 1.79 1.81 1.82
Ratio 0.67 0.81 0.85 0.83

Existing Weight sum 1.31 (regardless [Sq)
Weight sum 0.79 1.28 1.57 1.85
Proposed Response time [msec] 1.4 23 2.9 3.9
Cal # of routes 227 237 2.28 2.25
Ratio 0.70 0.79 0.85 0.86

Existing Weight sum 12.14 (regardless [Sq)

If the category sequence size is large, BSSR achieves better per-
formance than PNE and Dij even if we do not use optimization
techniques. By comparing Dij to PNE, it can be seen that their
performance depends on the datasets and the category sequence
size. Although the PNE approach was proposed to be a more
sophisticated algorithm than the Dijkstra-based solution [16],
PNE requires more time than Dij for the NYC and Cal datasets,
which implies that it is not effectively robust to datasets. In terms
of RSS, BSSR and PNE achieve nearly the same performance.
These two algorithms do not store many routes in the priority
queue; therefore, RSS is highly dependent on the graph size. On
the other hand, as Dij stores many routes in the priority queue,
RSS is significantly larger than those of the other algorithms.
Although we do not show the routes returned by each algorithm
due to space limitations, all algorithms output the same routes.
As a result, BSSR achieves the fastest response time with small
memory usage without sacrificing the exactness of the result.

7.3 Optimization Techniques

The optimization techniques improve the efficiency of BSSR.
Here, we evaluate each optimization technique.

Initial Search: We show the search spaces with and without
an initial search for the first modified Dijkstra algorithm to eval-
uate the effect of the initial search. Moreover, we evaluate NNinit
in terms of response time. Table 7 shows the weight sum, which

46

Table 8: Effect of priority queue for various |S4|

Dataset | Approach 2 3 4 5
Tokyo Proposed 3750 17600 | 112000 397000
Distance-based 3890 23500 | 189000 | 1760000
NYC Proposed 13800 | 108000 | 172000 637000
Distance-based | 14800 | 165000 | 444000 | 1520000
Cal Proposed 4900 24800 84900 383000
Distance-based 5300 34900 168000 899000

represents the search space, the response time of NNinit, and the
number of sequenced routes found by NNinit for various cate-
gory sequence sizes. In addition, we show the ratio of the length
score of the sequenced route with the largest semantic score
among the sequenced routes found in the initial search to the
length score of the sequenced route whose semantic score is 0 in
the initial search. The weight sum with the initial search is signif-
icantly smaller than that without the initial search. We can avoid
traversing the whole graph using the initial search; thus, this can
significantly reduce the search space of BSSR. Moreover, since
the response time of NNinit is significantly less than that of BSSR
(Figure 3), we confirm that NNinit can reduce the search space
efficiently. Note that the number of sequenced routes found by
the initial search is not large. On the other hand, the length score
of the sequenced route with the largest semantic score is much
smaller than that of the sequenced route whose semantic score
is 0. As a result, NNinit reduces the search space significantly
without increasing total response time.

Tightening Upper Bound: The priority queue aims at effi-
ciently tightening the upper bound to reduce the search space.
Here, we show the total number of vertices visited by BSSR,
which is highly related to the response time. Table 8 shows the to-
tal number of vertices visited by the proposed priority queue and
distance-based priority queue for various category sequence sizes.
The number of vertices visited by the proposed priority queue is
less than that of the distance-based priority queue. In particular,
as the size of the category sequences increases, the performance
gap increases because, as the category sequence size increases,
the distance-based priority queue cannot find sequenced routes
efficiently. Thus, the upper bound is rarely updated. On the other
hand, the proposed priority queue can update the upper bound
efficiently because the route with the largest size is dequeued
preferentially. Thus, the proposed priority queue is more suitable
than the distance-based approach for finding SkySRs.

Tightening Lower Bound: To tighten the lower bound, we
propose two types of possible minimum distances, i.e., semantic-
match and perfect-match minimum distances. If the minimum
possible distance is large, we can prune routes even if the routes

T T
Semantic-match zzzzzza

Perfect-match £=5=3

with cache mm—
w/o cache E=zzz

Ratio of weight sum
of Dijkstra
3
o

Size of sequence |S|

Figure 4: Effect of minimum (a) Tokyo

possible distances

of SkySRs
o = N W M OO N

3 4 5
Size of sequence |Sq|

N

Figure 6: Number of SkySRs for various |S4|

include a small number of Pol vertices. Figure 4 shows the ratios
of the possible minimum distances to the sum weights of the
initial search when we set the category sequence size to five. The
semantic-match and perfect-match minimum distances in the
Tokyo dataset effectively reduce the search space by tightening
the lower bound. However, different from the Tokyo dataset, the
possible minimum distances in the NYC and Cal datasets are
small. Since the Pol vertices in the two datasets are relatively
concentrated in a small area, the possible minimum distances
become small. The effect of the possible minimum distances
highly depends on the skews of locations of the Pol vertices.

On-the-fly Caching: On-the-fly caching can reuse the re-
sults of former modified Dijkstra algorithm executions; thus,
the number of executions of the Dijkstra algorithm decreases.
Figure 5 shows the numbers of executions of modified Dijkstra
algorithms by BSSR with all optimization techniques and those
except for on-the-fly caching. The number of executions of the
Dijkstra algorithms decreases using on-the-fly caching. In partic-
ular, when the category sequence size increases, the performance
gap increases because, as the category sequence size increases,
we have more opportunities to reuse former results. Thus, we
confirm that on-the-fly caching is effective to reduce the number
of executions of the Dijkstra algorithms.

7.4 Number of skyline sequenced routes

Figure 6 shows the number of SkySRs obtained with each dataset
for various [S4|. As shown, the Cal dataset returns the largest
number of SkySRs. The response time and RSS obtained with
the Tokyo and NYC datasets are much greater than the those of
the Cal dataset, which implies that the number of SkySRs does
not affect response time and RSS significantly. Moreover, if we
use a complete real-world dataset, we may not require a ranking
function because the number of SkySRs would be small.

with cache
w/o cache =zl

with cache
w/o cache Exzzza

#of Dijkstra
>
R

#of Dijkstra

Size of sequence |Sy| Size of sequence [S|

(b) NYC (c) Cal

Figure 5: Effect of on-the-fly caching for various [S4|

Table 9: Example SkySRs in Tokyo

[Distance [Sequenced route]
7451 meters
1295 meters

Beer Garden — Sushi Restaurant — Sake Bar
Bar — Sushi Restaurant — Sake Bar

restaurant @
Sake 9
Bar
Beer
Garden

First route

Figure 7: Visualization of routes in Tokyo: black circles
(with 0 and 4) denote a start point and a destination, re-
spectively. Blue and red circles denote sequences of Pols
for the first and second routes in Table 9, respectively, and
their numbers indicate the order of Pols to be visited.

7.5 Usecase

We show an example of SkySRs in Tokyo. We assume that we
plan to go to places for dinner and drinks. We want to visit
a “Beer garden”, a “Sushi restaurant”, and a “Sake bar” from
our current location and finally go to our hotel. Table 9 and
Figure 7 show two representative SkySRs from the four identified
SkySRs. Note that the other two routes are similar to either of
the representative routes. In the Foursquare category trees, “Bar”
includes “Beer Garden” and “Sake bar”, and “Japanese restaurant”
includes “Sushi restaurant”. Thus, we find routes using “Bar”
and/or “Japanese restaurant”. The second route is much shorter
than the first route that perfectly matches the user requirement,
and the difference between them is only whether they pass a
“Bar” or “Beer garden”. The best route depends on the users and
situations (e.g., weather); thus, we confirm that SkySRs are useful
to help users make decisions.

8 USER STUDY

We developed a prototype SkySR query service® using Open-
StreetMap and the Santander Open Data platform from San-
tander, Spain’. Figure 8 shows a screenshot of the prototype
system, which outputs one of the SkySR route. We performed
a test in July, 2017. To gather users for this test, the Santander
municipality arranged meetings with different groups of people

Ohttps://ss.festival.ckp.jp/OuRouteSuggestion/dispSearchRoute/index. The default

language is Spanish.
http://datos.santander.es

47

Recomendacion de rutas

Figure 8: Screenshot of the prototype system

- 1 wzzm
- 2 ==Y
L 3 —

ggf

Qi

Ratio of answers
OOOOO0OOO0OOO0O

ocLudMwrUION®©O =
T

Q2 Q3

Figure 9: Ratios of answers for each question

to present the service: municipal staff (computing, convention
and tourism municipal services), students from vocational train-
ing departments who are developing webpages and apps, and
citizens. We also provided a leaflet that shows the concept of the
SkySR query and how to use the service. In this test, users freely
used the service and answered a questionnaire (25 respondents).
The questionnaire included the following three questions.

Q1 What do you think about this service?
Answer. 1. I love it, 2. I like it, 3. I do not like it.
Q2 Would you recommend it to anyone?
Answer. 1. Yes, 2. Maybe, 3. No.
Q3 Do you think that it is a good idea for the city: citizens,
tourists, commercial sectors?
Answer. 1. Yes, 2. Maybe, 3. No.

We summarize the ratios of answers for each question in Figure
9. As shown, more than 80% of the users liked the service. In
addition, the questionnaire shows that the service is valuable for
the city. From the user experiment, we confirm that the SkySR
query is useful for users and cities.

9 CONCLUSION

In this paper, we have first introduced a semantic hierarchy for
trip planning. We then proposed the skyline sequenced route
(SkySR) query, which finds all preferred routes from a start point
according to a user’s Pol requirements. In addition, we have
proposed an efficient algorithm for the SkySR query, i.e., BSSR,
which simultaneously searches for all SkySRs by a single traver-
sal of a given graph. To optimize the performance of BSSR, we
proposed four optimization techniques. We evaluated the pro-
posed approach using real-world datasets and demonstrated that
it comprehensively outperforms naive approaches in terms of
response time without increasing memory usage or sacrificing
the exactness of the result. Moreover, we developed a SkySR

48

query service using open data, and conducted a user test, which
confirmed that SkySR queries are useful for both users and cities.

In future work, we would like to extend the proposed approach
in several directions. First, because we assume a forest structure
for the category classification in this paper, a more complex
classification may provide better granularity. Second, because we
have not used any preprocessing techniques such as indexing, we
plan to propose a suitable preprocessing method for the SkySR
query. Finally, although the SkySR query proposed in this paper
considers two scores (length and category similarity), it could be
extended to consider many attributes of a Pol (e.g., text, keywords,
and ratings) and the cost/quality of a graph (e.g., route popularity,
tolls, and the number of traffic lights).

ACKNOWLEDGEMENT

This research is partially supported by the Grant-in-Aid for Sci-
entific Research (A)(JP16H01722) and Grant-in-Aid for Young
Scientists (B)(JP15K21069).

REFERENCES

[1] Saad Aljubayrin, Zhen He, and Rui Zhang. 2015. Skyline Trips of Multiple
POIs Categories. In DASFAA. 189-206.

[2] S Bérzsény, Donald Kossmann, and Konrad Stocker. 2001. The Skyline Opera-
tor. In ICDE. 421-430.

[3] Haiquan Chen, Wei-Shinn Ku, Min-Te Sun, and Roger Zimmermann. 2008.
The Multi-rule Partial Sequenced Route Query. In ACM SIGSPATIAL GIS. 1-10.

[4] Jian Dai, Chengfei Liu, Jiajie Xu, and Zhiming Ding. 2016. On Personalized
and Sequenced Route Planning. World Wide Web 19, 4 (2016), 679-705.

[5] Jochen Eisner and Stefan Funke. 2012. Sequenced route queries: Getting things
done on the way back home. In ACM SIGSPATIAL. 502-505.

[6] Pierre Hansen. 1980. Bicriterion path problems. In Multiple criteria decision
making theory and application. 109-127.

[7] Xuegang Huang and Christian S Jensen. 2005. In-route skyline querying for
location-based services. In W2GIS. 120-135.

[8] H-P Kriegel, Matthias Renz, and Matthias Schubert. 2010. Route Skyline
Queries: A Multi-preference Path Planning Approach. In ICDE. 261-272.

[9] Eugene L Lawler and David E Wood. 1966. Branch-and-bound Methods: A

Survey. Operations research 14, 4 (1966), 699-719.

Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-

Hua Teng. 2005. On Trip Planning Queries in Spatial Databases. In SSTD.

273-290.

Jing Li, Yin David Yang, and Nikos Mamoulis. 2013. Optimal Route Queries

with Arbitrary Order Constraints. TKDE 25, 5 (2013), 1097-1110.

Xiaobin Ma, Shashi Shekhar, Hui Xiong, and Pusheng Zhang. 2006. Exploiting

a Page-level Upper Bound for Multi-type Nearest Neighbor Queries. In ACM

GIS. 179-186.

Ernesto Queiros Vieira Martins. 1984. On a multicriteria shortest path problem.

European Journal of Operational Research 16, 2 (1984), 236-245.

[14] Yutaka Ohsawa, Htoo Htoo, Noboru Sonehara, and Masao Sakauchi. 2012.

Sequenced Route Query in Road Network Distance based on Incremental

Euclidean Restriction. In DEXA. 484-491.

Philip Resnik. 1995. Using Information Content to Evaluate Semantic Similar-

ity in a Taxonomy. In IJCAI 448-453.

Mehdi Sharifzadeh, Mohammad Kolahdouzan, and Cyrus Shahabi. 2008. The

Optimal Sequenced Route Query. The VLDB Journal 17, 4 (2008), 765-787.

Michael Shekelyan, Gregor Jossé, and Matthias Schubert. 2015. Linear Path

Skylines in Multicriteria Networks. In ICDE. 459-470.

Yuan Tian, Ken CK Lee, and Wang-Chien Lee. 2009. Finding Skyline Paths in

Road Networks. In ACM SIGSPATIAL GIS. 444-447.

Zhibiao Wu and Martha Palmer. 1994. Verbs Semantics and Lexical Selection.

In ACL. 133-138.

Bin Yang, Chenjuan Guo, Christian S Jensen, Manohar Kaul, and Shuo Shang.

2014. Stochastic Skyline Route Planning under Time-varying Uncertainty. In

ICDE. 136-147.

=
s

pury
&

=
=

)
=2

O

proceedings

On Complexity and Efficiency of Mutual Information
Estimation on Static and Dynamic Data

Michael Vollmer
Karlsruhe Institute of Technology
Karlsruhe, Germany
michael.vollmer@kit.edu

ABSTRACT

Mutual Information (MI) is an established measure for the de-
pendence of two variables and is often used as a generalization
of correlation measures. Existing methods to estimate MI focus
on static data. However, dynamic data is ubiquitous as well, and
MI estimates on it are useful for stream mining and advanced
monitoring tasks. In dynamic data, small changes (e.g., insertion
or deletion of a value) may often invalidate the previous estimate.
In this article, we study how to efficiently adjust an existing MI
estimate when such a change occurs. As a first step, we focus
on the well-known nearest-neighbor based estimators for static
data and derive a tight lower bound for their computational com-
plexity, which is unknown so far. We then propose two dynamic
data structures that can update existing estimates asymptotically
faster than any approach that computes the estimates indepen-
dently, i.e., from scratch. Next, we infer a lower bound for the
computational complexity of such updates, irrespective of the
data structure and the algorithm, and present an algorithm that
is only a logarithmic factor slower than this bound. In absolute
numbers, these solutions offer fast and accurate estimates of MI
on dynamic data as well.

1 INTRODUCTION

Motivation. Finding and quantifying dependencies between
variables is an essential task in data analysis. Conventional meth-
ods to detect (in)dependent attributes, like correlation coefficients
and covariance matrices, are limited in the types of dependencies
they detect. Mutual Information (MI) in turn is a notion from
Information Theory that captures both linear and arbitrary non-
linear dependencies. However, MI is defined on the probability
density of the data. This makes exact computation impossible on
samples. Nevertheless, existing MI estimators yield good results
even for small samples [13]. In consequence, a wide range of
applications, such as Feature Selection [22], Text Analysis [7]
and Computer Vision [23], uses MI.

A popular choice are estimators based on nearest-neighbor
distances [9, 16, 17]. This is because such estimators essentially
are non-parametric and yield very good results [13, 14, 21, 29].
Nearest-neighbor based estimation of MI is often perceived as
equivalent to the concrete estimation formula by Kraskov et
al. (KSG)[17]. However, the KSG is just one estimation formula for
MI using the nearest-neighbor entropy estimator by Kozachenko
and Leonenko [16]. There exists at least one other MI estimator
using a different formula, while relying on the same entropy
estimator (3KL)[9]. In the following, the term estimator names

“This work originated while the author was affiliated with Karlsruhe Institute of
Technology.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Ignaz Rutter”
Eindhoven University of Technology
Eindhoven, The Netherlands
irutter@tue.nl

49

Klemens Bohm
Karlsruhe Institute of Technology
Karlsruhe, Germany
klemens.boehm@kit.edu

concrete formulas that estimate the MI value (e.g., KSG, 3KL), and
nearest-neighbor based estimation is the group of these estimators.

So far, algorithms to compute nearest-neighbor based MI esti-
mates and thus their practical applications focus on static data.
However, data streams are ubiquitous as well and also require
suitable analysis methods. The problem studied in this article
is nearest-neighbor based estimation of MI on dynamic data. In
this setting, an elementary task called update is the incremental
maintenance of an estimate when adding or deleting a point.

With dynamic data, scalability with the number of data points
is crucial. A good, data-independent measure is the computational
complexity of the respective algorithms. In order to evaluate the
efficiency of a new solution, it also is important to know the
complexity of the problem. That is, a lower bound for any algo-
rithm that computes such estimates, independent of the concrete
approach. So far, no lower bound for nearest-neighbor based MI
estimation is known, be it for updating an existing estimate, be
it for computing the estimate on static data.

Challenges. Designing the estimators envisioned with con-
trolled complexity is challenging. Two reasons for this are as
follows: First, while nearest-neighbor based estimation of en-
tropy depends on distances to the nearest neighbor, this does not
imply that it has the same computational complexity as nearest-
neighbor search. Put differently, it may be possible to obtain the
same results using different methodologies. Consequently, one
must prove the complexity based only on the result and not hinge
on the complexity of certain tasks that seem mandatory in the
context at first sight, such as nearest-neighbor search.

Second, to design a dynamic data structure that answers cer-
tain queries faster than any static algorithm, it is necessary to
identify expensive computations whose results are relatively easy
to maintain in the presence of updates. This means that the time
required to incrementally maintain the results after a change
must be limited in all cases. But this is not obvious here. At the
same time, availability of these results must significantly speed
up the query.

Our Contributions. Our work focuses on the time required to
maintain an estimate of MI on dynamic data. We concentrate on
the computational efficiency of nearest-neighbor based estima-
tors on static data and the implications for dynamic estimation.
We present solutions for dynamic data that maintain an estimate
with the same estimation quality as static estimators, but with
less time required. Specifically, our contributions are as follows:

Computational complexity of nearest-neighbor based estimators.
In Section 4 we provide a complexity analysis of nearest-neighbor
based MI estimators. Using a proof by reduction, we establish
a lower bound in the algebraic computation tree model for any
algorithm estimating MI using 3KL or KSG. To our knowledge, we
are the first to prove any lower bound for the time complexity of
such estimators. The lower bounds we prove are tight. This means
that there already exist algorithms that have this asymptotically

10.5441/002/edbt .2018.06

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.06

optimal running time. Additionally, we use this result to infer
lower bounds for the maintenance of KSG and 3KL estimates on
dynamic data.

Dynamic data structures. In this article, we present two dy-
namic data structures. The first one is DEMI, which estimates
nearest-neighbor based MI on a dynamic data set, see Section 5.
This data structure holds a set of data points and some interme-
diate computation results we use for the estimation. The data
structure allows insertion and deletion of data points and query-
ing the estimate using all data points stored. Both the 3KL and
the KSG estimator can use this data structure. We prove that
updating an estimate using DEMI is asymptotically faster than
the lower bound for static estimates, i.e., computing the estimate
from scratch. To our knowledge, we are first to present a way
of maintaining a KSG estimate on dynamic data that requires
asymptotically less time than static estimation and preserves the
estimate without any approximation.

Near-optimal computation time. The second data structure we
present, ADEMI, integrates existing state-of-the-art data struc-
tures and algorithms into DEMI to reduce computation time, see
Section 6. While the structure does not offer a speedup when
maintaining the KSG estimate, we can maintain the 3KL estimate
in polylogarithmic time. In particular, we are only a logarithmic
factor slower than the lower bound shown in Section 4.

Systematic experimental evaluation. Finally, we evaluate our
approaches experimentally, using a broad variety of dependency
types and noise levels, in Section 7. We show that both KSG
and 3KL converge to the true MI values with a good rate of con-
vergence. This is a stark contrast to another recently published
estimator for MI on sliding windows [3]. Additionally, we show
that our data structures perform very well when maintaining MI
estimates on large samples.

2 FUNDAMENTALS

We begin by revisiting the foundations of MI and its estimation.

Mutual Information. Introduced by Shannon [26], the notion of
entropy is a measure for the expected information from observing
the value of a random variable X, noted as H(X). The expected
information for observed values of two random variables X and Y
is the natural extension joint entropy H(X, Y). This gives way to
the notion of Mutual Information

I(X;Y) = HX) + H(Y) - H(X, Y), (1
which describes the information shared between both variables.

Using the definition of entropy for continuous random variables
in Equation 1 yields the differential definition of MI

Y) = pxy)
1Y) = /Y /xp (x-y) log (p(x)p(y)) dxdy

where p(x), p(y) and p(x, y) are the marginal and joint probability
density functions of X and Y, respectively [8]. Using the natural
logarithm, MI is then measured in the natural unit of information
(nat).

()

Nearest-Neighbor based Estimation. Kozachenko and Leonen-
ko [16] presented a nearest-neighbor based estimator for (joint)
entropies for a given sample. They used the distance to the k-th
nearest neighbor as a means to approximate the density of the
distribution for that region. They also have proven that this
method yields a consistent estimator for entropy independent of
the choice of k. ‘Consistent’ means that, with increasing sample

50

Figure 1: Illustration of the notation used for the 3KL.

size, the estimate converges towards the true entropy value. Their
method is as follows:

Let Q = {q1,...,qn} € R be a set of points in a d-dimen-
sional euclidean space, and let eé (gi) be the distance between
qi and its k-th nearest neighbor in Q using the Le-norm, also
known as maximum distance. Using the notation by Kraskov et
al. [17], the entropy estimator by Kozachenko and Leonenko [16]
is

H(Q) = yim) ~ y(k) + log2) + & Zl log(eg (g0, (3)

where ¢/ is the digamma function. That is, ¢/(x) = an_zll(#) -C,
for x > 1 with C = 0.577 being the Euler-Mascheroni-Constant.
We now say how this entropy estimator is used to estimate
ML Let P = {p1 = (x1,41), . .., pn = (xn,yn)} C R? be a sample
of a random variable with two attributes. Note that we use P for
the sample whose MI value we are interested in. This may be
the original, full data set as well as the set of the most recent
points of a data stream or any other subsample. Additionally, let
X ={x1,...,xp}and Y = {y1,...,yn} be the sets of all values
of the respective attribute in the sample. We use eff,(pi), eéc((xi)
and eg(yi) to refer to the distance of p;, x; and y; to its k-th near-
est neighbor in P, X and Y, respectively. Figure 1 illustrates an
exemplary set P, with k = 1 and p;, x; and y; marked as squares.
Inserting Equation 3 into Equation 1 yields the MI estimator

__ 1 (k) - efw)
BRL(P) = () = §(k) + — > log (X({gT;V) Y

i=1
Because this estimator estimates each of the three entropies in
Equation 1 separately with the estimator by Kozachenko and
Leonenko, we call the estimator 3KL. This estimator has also been
used by Evans [9] for MI estimation on static data. Additionally,
because each term in Equation 1 is estimated using a consistent
estimator, the 3KL also is a consistent estimator.

Varying numbers of nearest neighbors. A different approach to
use Equation 3 for MI estimation was proposed by Kraskov et
al. [17]. While the 3KL uses the same k when estimating H(X),
H(Y) and H(P) to obtain a compact formula, Kraskov et al. adjust
k for every point such that the logarithmic term is 0. The idea
is to make the distances efli(pi), e;‘((x,-) and el;(yi) of a point to
its nearest neighbors in X, Y and P identical. To achieve this,
the parameter k for eéz(xi) and el;(y,-) has to be set accordingly
and may be different for each point. Specifically, each nearest
neighbor p; of p; in P should result in x; being a nearest neighbor

Yi
6
5
4
3
2
1
0

Figure 2: Illustration of the notation used for the KSG.

of x; in X and y; being a nearest neighbor of y; in Y. To this
end, the k-th nearest neighbor distance ellg(p,-) is determined and

afterwards ky and ky for ef(x (xj) and el;y (y;) is set accordingly.
Figure 2 features an illustration of the notation that follows, using
the same exemplary set P and k as Figure 1. As before, the set
kNN of k nearest neighbors of a point p; € P using the Lo,-norm
is determined first. Let 5§(pi) = maxp;ekNN |xi — xj| be the
greatest distance between x; and any other x-value among its k
nearest neighbors. Then the marginal count CJIE (pi) is the number
of elements in X as close to x; as this distance, i.e.,

CRp) = llx e X\ {xi} s bxi = x| < X} (5)
Another marginal count Clyc (pi) is defined analogously using y;

and 5];(pi). When these marginal counts are used as k per point

in the estimator H(X) and H(Y), the distances ex (x;), ey(y;) and
ep(p;) in Equation 4 (mostly) cancel out. However, one has to
adjust the formula for using a different k, i.e., the marginal counts,
for each point. The resulting estimator, called KSG due to its
inventors Kraskov, Stogbauer and Grassberger, is

TKsG(P) = () + ¥() — 1 = = D U(CEp) +(Chp). ©
i=1

While there exist many other approaches to estimate MI, we fo-
cus on nearest-neighbor based estimation due to its performance
in comparative studies [13, 14, 21, 29]. Because these studies con-
sider only the KSG, we use the same distributions in Section 7 to
assess the estimation quality of the 3KL.

Another point is that it is generally recommended [13, 14, 17]
to use a small k, that is k < 10. The choice of k has only been
studied extensively for the KSG but not for the 3KL. However,
because Equation 3 is consistent for any k [16], the 3KL is the
sum of three consistent estimators and thus consistent for any k
as well. Consequently, we assume k < 10 in this work, i.e., k is a
constant for asymptotic considerations.

3 RELATED WORK

Data Streams. Data streams, a constantly growing form of
dynamic data, are ubiquitous. Because data streams grow over
time, and memory and storage is limited, it is impossible to store
all data points. This means that information is lost over time.

Nevertheless, there exist space-efficient estimators for entropy
of discrete distributions on streams. With Equation 1, entropy
estimators can also be used to estimate MI, but with accumulating
error. The estimator of Chakrabarti et al. [5] provides multiplica-
tive approximations of entropy on insert-only streams. In con-
trast, the estimator by Harvey et al. [10] offers multiplicative and

51

additive approximations of entropy on streams with insertions
and deletions, but requires knowledge about the maximum length
of the stream. However, both estimators are restricted to discrete
distributions. Estimating MI on discrete distributions is easier,
because their relative count of points is a good estimator for the
probability. Estimating the density of continuous distributions in
turn is not trivial.

The estimation of MI of continuous distributions on streams
has received less attention. The MISE framework [12] offers esti-
mates of MI between continuous variables for any time interval
on data streams. While both MISE and our approach offer nearest-
neighbor based MI estimation, the difference is as follows: Results
with MISE are approximations of the KSG estimate for consecu-
tive subsets of the data. We in turn provide exactly the estimates
of KSG and 3KL on a dynamic data set. Maintaining an accu-
rate KSG estimate for a dynamic set of data points, e.g., the last
1000 data points, would incur prohibitively high (and growing)
resource consumption with MISE. This is because it cannot ex-
plicitly delete points. In consequence, the target application and
the optimizations are too different to allow for a fair comparison.

Sliding Windows. A common approach to process data streams
are sliding windows. Maintaining only a fixed number of points
ensures a fixed problem size that allows for bounded resource
consumption. By construction, this technique rules out the usage
of any information outside the window, but allows for accurate
computations on data within it. There already are very good
general approaches for sliding-window aggregation [27]. How-
ever, no competitive MI estimator is known so far that can be
aggregated and thus used with this framework. Most MI estima-
tors have stronger relations to concrete items than to collective
values, e.g., distances to the nearest neighbor instead of distances
to the mean. In consequence, previous analytics tasks that use
MI estimates over a sliding window [15, 24] had to recompute
the estimate from scratch for each window.

There is little work regarding algorithmic optimization of the
computation time for such tasks. A very recent work by Boidol
and Hapfelmeier [3] has introduced an estimator that approxi-
mates the 3KL inside a sliding window. In contrast, our approach
allows for arbitrary insertions and deletions, and we provide the
exact results of the 3KL and KSG. To show the difference between
their approximation and accurate 3KL estimates, we include their
method in our experiments in Section 7.

Computational Complexity. There has been little research re-
garding the computational complexity of the KSG and 3KL. Sev-
eral proposals to compute the KSG appear in the original KSG ar-
ticle [17] with the claimed time complexity O(n) for their fastest,
so-called “box-assisted” algorithm on smooth distributions. Ve-
jmelka et al. [28] compare their own approach with the box-
assisted algorithm and cite [25] for different conditions for a
linear runtime of the box-assisted algorithm. In the end, the
best universal time complexity of their presented algorithms is
©(nlogn). The same complexity is given for the algorithm com-
puting the 3KL by Evans [9]. In the following section we prove
that this limit is not a coincidence, i.e., we prove that no algo-
rithm computing these estimators can have a time complexity
lower than O(nlogn).

4 LOWER BOUNDS

In this section we present our first contribution, the lower bounds
for computing and maintaining estimates using the KSG and 3KL.

All existing approaches to compute the 3KL and KSG follow
the original description in the sense that they first compute the
nearest neighbors of all points. In the case of the KSG, the mar-
ginal counts CK and C]J are computed afterwards. However, it is

not known if this is the only approach to compute Ixr(P) and
IE—SE(P), or if it is computationally optimal. For instance, there
could be a different formula for either of these estimators that
does not require explicit computation of the nearest neighbors.
Consequently, the complexity of computing the 3KL and KSG can
only be based on the result and not on intermediate steps such
as determining the nearest neighbors. The problems whose com-
plexities we want to study in general, i.e., without confinement
to specific algorithms, are the following ones.

Problem 1 (3KL-ESTIMATION). For a set P C R? of points, deter-
mine I3 1 (P).

Problem 2 (KSG-ESTIMATION). For a set P C R? of points, deter-
mine IxsG(P).

In the following, we show the complexity of Problem 1. By
reducing a problem with known complexity to 3KL-ESTIMATION,
we prove that it has a lower bound of Q(nlogn) in the algebraic
computation tree model [1]. For brevity, all formal proofs in
this article are available in Appendix A. We use the algebraic
computation tree model because it allows us to prove bounds
without assuming any statistical properties of the data. This is
important because we want general-purpose estimation of MI. If
knowledge regarding the data or its distribution was known, it
could be used to model the density function in Equation 2.

THEOREM 4.1. The problem 3KL-ESTIMATION has time complex-
ity Q(nlog n).

Proor. The formal proof is available in Appendix A.1. O

This lower bound matches the running time of the algorithm
presented by Evans [9] to solve 3KL-EsTimATION. Consequently,
this algorithms is already asymptotically optimal, and the lower
bound is tight.

COROLLARY 4.2. The computational complexity of 3KL-EsSTIMA-
TION is ©(nlogn).

We use the same approach to prove a lower bound for
KSG-Estimation. With the algorithms presented by Vejmelka et
al. [28] this lower bound is tight as well.

THEOREM 4.3. The problem KSG-ESTIMATION has a time com-
plexity in Q(nlogn).

Proor. The formal proof is available in Appendix A.2. O

COROLLARY 4.4. The computational complexity of KSG-ESTIMA-
TION is ©(nlog n).

As a next step, we consider dynamic data. The distinctive
feature of dynamic data is that the data changes over time. For
a set P of points, all changes can be modeled using insertion of
new points and deletion of existing points. For instance, moving
a point from (x, y) to (x’,y’) can be modeled with one deletion of
(x, y) and one insertion of (x’, y’). To maintain an estimate of MI
with the 3KL or KSG, we need to adjust the estimate according
to such insertions or deletions. We see this as a problem for a
dynamic data structure and thus allow storage of some auxiliary
information about P, noted as state Sp of a dynamic data structure.
The formal problem is then:

52

Problem 3 (3KL-UPDATE). Let P C R? be a set of points, Sp
the state for P and p € R? a point. Determine I3 (P U {p}) and

Spu{py ifp is inserted andI;K\L(P\ {p}) and Sp\ () ifp is deleted
using only Sp and p.

Problem 4 (KSG-UpPDATE). Let P C R? be a set of points, Sp
the state for P and p € R? a point. Determine Igsg(P U {p}) and

Spu{py ifp is inserted and Ik s (P \ {p}) and Sp\ (p} ifp is deleted
using only Sp and p.

Because these problems can be used to solve 3KL-ESTIMATION
and KSG-ESTIMATION, respectively, we can use the previous re-
sults to infer lower bounds for their time complexities. If we
start with an empty set P and incrementally insert n points, the
total time required cannot generally be asymptotically faster
than Q(nlogn) by Theorem 4.1 and Theorem 4.3. Because this
includes n insertions, the time complexity of individual insertions
is in Q(log n).

COROLLARY 4.5. The problem 3KL-UPDATE has a time complex-
ity in Q(log n).

COROLLARY 4.6. The problem KSG-UPDATE has a time complex-
ity in Q(log n).

In this section we have established formal problem descrip-
tions for the tasks of estimating and maintaining MI estimates
using the 3KL and KSG. Furthermore, we have proven lower
bounds for the time required to solve these problems. These
bounds are tight for computing estimates on static data. This
means that no asymptotic speed-up is achievable. In contrast,
we are not aware of any data structures or algorithms that solve
the problems of maintaining 3KL or KSG estimates when points
are inserted or deleted. In the following sections, we present two
data structures for these tasks, evaluate their time complexity
and compare them to the lower bounds presented in this section.

5 ESTIMATING MUTUAL INFORMATION
ON DYNAMIC DATA

Naturally, the simplest solution to KSG-UpPpATE and 3KL-UPDATE
is storing exactly P in Sp and computing I;K\L(J and IK’—SE(-),
respectively, with every change. The result from the previous
section is that any such approach would require Q(nlogn) time
for 3KL-UpDATE and KSG-UPDATE. In the following we show that
this is not optimal and present a more efficient solution.

We propose the data structure DEMI (Dynamic Estimation
of Mutual Information) that focuses on updating an estimate
of the 3KL or KSG for a single insertion or deletion. First, we
present how this data structure works with 3KL estimates. In
Section 5.2 we describe the differences when maintaining a KSG
estimate. In more detail, we describe the changes to the 3KL
estimate that can occur by inserting or deleting a point. Then we
describe which information our data structure stores and how
it determines the changes in the 3KL estimate efficiently. Lastly,
we evaluate the space complexity of our data structure as well as
the time complexity of adding or deleting a point.

5.1 Updating 3KL Estimates

Let P = {p1 = (x1,4y1),....pn = (xn.yn)} € R? be the set
of points in our sample and let X = {xi,...,xp} and Y =
{y1,...,yn} be the set of values per attribute. When we in-
sert a point pp41 = (Xn+1.Yn+1) € R% let P/ = P U {pnt1},
X" = XU {xps1} and Y’ = Y U {yn+1} be the sets including

Data Structure 1: DEMI

struct {
‘ real x,y
k k _k
real €pEx> €y
} DemiPoint;
struct {

DemiPoint[] Pp
BST<DemiPoint*> Ty, Ty
real base, sum

} state;

Pn+1, Xn+1 and yp41, respectively. Considering Equation 4, the
change from I3 1 (P) to I3k (P) consists of three partial changes:
(1) ¥(n) increases to Y(n + 1) = ¢(n) + %
(2) the arithmetic mean includes n + 1 logarithms instead of
n,
(3) and the nearest-neighbor distances e’;(pi), ef((xi) and
e{;(yi) may change for any i € {1,...,n}.
While Change (1) is trivial, Change (2) requires the computa-
tion of ef,,(pnﬂ), ek,(xn+1) and 6];,(yn+1). However, Change (3)
could require the re-evaluation of all nearest-neighbor distances.
Clearly, these changes apply analogously if p; is removed from
P instead of inserting pp+1. Following these observations, we
propose a dynamic data structure that determines these changes
efficiently and evaluate its computation complexity.

Overview. Our data structure, DEMI, is given in Data Struc-
ture 1. For each point p; € P of our sample, we store its at-
tributes x;, y; and k-th nearest-neighbor distances ellg(p,-), E;C((x7)

and el;(yi) as a DemiPoint. In addition, we store references to
all DemiPoints, ordered by the x-component and y-component
of the point, in binary search trees (BST) T and Ty, respec-
tively. Using self-balancing BST like red-black-trees, we can in-
sert, delete and search items in logarithmic time. Additionally,
we also maintain the values base = ¥/(|P|) — ¥(k) and sum =

no (s§<x,—>-e§(y,—>

=1 (ep(pa))?
state Sp of our data structure for the sample P. Because we store
a constant amount of information per point, the space complexity
of DEMI is ©(n). Given State Sp, one can query the 3KL estimate

on the set P in constant time as I3 = base+ S"‘Tm. However, this

), The collection of all stored data is the

data structure requires adjustment of Sp after every change of P.

Insertion Algorithm. To insert a point pp41 into a state Sp, il-
lustrated in Algorithm 2, we distinguish two phases of the update.
First (Lines 1-6), we add pn+1 as a DemiPoint to Pp and update
base and sum accordingly. Second (Lines 7-18), we determine
which nearest-neighbor distances change and adjust sum accord-
ing to the changes. We now describe these steps in more detail,
together with the computational complexity of elementary op-
erations, to allow for an easier evaluation. We discuss possible
improvements in Section 6.

To add pp+1 to Sp, we first compute its k-th nearest neigh-
bor in P’ by linear search and derive the k-th nearest-neighbor
distance e}lg,(pnﬂ) (O(n), Line 1). To determine the k-th near-
est neighbor distances ek,(xn+1) and ellj,(ynﬂ) we can use the
binary search tree and evaluate the distance to the next k and
preceding k elements (O(k - log n), Line 2). With this information
we construct the DemiPoint for p,+1 and insert it into Pp (O(1),

53

Algorithm 2: INSERT(Sp, pn+1)

1 Compute ellg,(pnﬂ) O(n)
2 Compute ek,(xn+1) and e’;,(ynﬂ) O(k - log n)
3 Insert pp41 into Pp o(1)
4 Reference pp+1 in T, Ty O(log n)
5 base < base + % 0o(1)
6 sum « sum + log M o(1)

(EI;/(PnH))Z
» A {pi € P: max(lxi - xns1h lyi — gns1]) < i)} O(n)

8 B {pi € P: |x; —xp41] < 6§(xi)} O(n)
9 C— {pi € P: lyi — yns1| < e (yi)} O(n)
10 forall p; € Ado

11 Compute ellg,(p,-) O(|A| - n)
12 | sum — sum+log(k(pi))?) ~ log((ek, (p1))2) O(1A))
13 forall p; € Bdo

14 Compute e;‘(,(xi) O(|B| - k - logn)
15 | sum — sum—log(ek (x)) +log(ek, (x)) O(|B))
16 forall p; € C do

17 Compute e{‘,,(yi) O(|C| - k - logn)
15 | sum — sum—log(ef (y:)) + log(ef, (vi)) o(lc)

Line 3). References to this point are then inserted into Ty and
Ty (O(log n), Line 4). Then, we add the appropriate terms to base
and sum (O(1), Lines 6 and 7), respectively.

Next, we find all previous nearest-neighbor distances that
changed, by linear search. For each i € {1,. .., n} we test whether
Pn+1,%n+1 and yp41 is closer than ef,(pi), e;‘((xi) and elk,(y,-), re-
spectively. This takes time in O(n) and yields the sets A, B and
C (Lines 7-9), respectively. For each point p; € A we compute
elﬁ,(pi) analogously to €X,(pn+1), which takes O(n) each. Then
we adjust sum accordingly (O(1), Line 12). The sets A and B are
handled in an analogous way, using ef(, (xi) and ellﬁ, (yi), respec-
tively, instead (Lines 13-18). Note that these distances can be
computed in time O(k - log n) each, instead of O(n), analogous to

6;((/ (xn+1) and 6’;/<yn+1)~

Computational Complexity. The total runtime for inserting a
point into our structure therefore is in O(k - n + |A| - n + (|B| +
|C|) - k - logn). In the following theorem we show that |A|,|B|
and |C| are in O(k), because there are at most 8 - k points for
which pp41 is one of the k nearest neighbors. Consequently, our
insertion time is in O(k - n+ k% -log n). Since k is suggested to be a
small constant, e.g. less than 10, in the literature, we can assume
k to be constant. This means that an insertion is in O(n). This
results in the total time complexity of O(n). Because deleting a
point changes the estimate analogously, we can use an analogous
algorithm with the same complexity, i.e., O(n).

THEOREM 5.1. Let P C R? be a set of points. For any pointp € P
there exist at most 8k points q € P such that p is one of the k nearest
neighbors of q using the Lo -norm.

Proor. The formal proof is available in Appendix A.3. O

As context for the update time of O(n), Theorem 4.1 proves
that any algorithm requires time in Q(nlogn) to compute the
3KL from scratch. As a result, updating an estimate using DEMI
is asymptotically faster than recomputing it, independently of
the method used. In Section 6 we show how the time for updates

Data Structure 3: DEMI-KSG

struct {
real x,y

k sk sk
real ekP, 5]);, 5y
int C, Cy

} DemiPointKSG;

struct {
DemiPointKSG[] Pp
BST<DemiPointKSG*> Ty, Ty
real base, sum

} state;

on the 3KL can be improved even further. However, we will first
discuss how we use the same approach to update KSG estimates.

5.2 Updating KSG Estimates

In this section, we describe how we achieve the same results, that
is linear space and linear time for updates, using KSG estimates
instead of 3KL estimates. As with the 3KL, we decompose the

KSG estimate into Igxsg = base + S&%. Comparing Equation 4

P
and Equation 6, it follows that base| a‘nd sum need to maintain
different values when maintaining 3KL or KSG estimates. The
change for base, that is base = ¥/(|P|) + (k) — % instead of base =
Y(|P|) — ¥(k), does not have any influence on the overall proce-
eX(xi)-ek(y:)
(e (pa))?)
tosum= -3, yl(c’;(p,-))w(c’; (pi)) has stronger implications.
Most notably, we do not require explicit nearest neighbor dis-
tances per point but need marginal counts. We need to update a
marginal count CK(p;) if and only if the nearest neighbors of p;
in P changes, or a point (x, y) with |x — x;| < 5,]§(pi) is inserted
or deleted, see Figure 2. As a consequence, per point p; we do
not store ef((xi) and e];(y,-) but the distances to the furthest x-

dure. However, the change from sum = 37" | log (

and y-values among the k nearest neighbors in P, i.e., 5’;({)1-)
and 55 (pi). Additionally we track the marginal counts CX(p;)

and C’J (pi). These slight changes are displayed in Data Struc-
ture 3. Furthermore, this means that we still store a constant
amount of information per point, and the space complexity of
the data structure remains ©(n).

Updating the data structure follows the same principles as
before, that is, we include the new point into the data structure
and evaluate its impact on other marginal counts afterwards. In
the following we describe the changes in specific steps between
the update algorithm for 3KL estimates and KSG estimates, that
is, Algorithm 2 and Algorithm 4.

Tracking marginal counts, instead of nearest-neighbor dis-
tances, per attribute allows for faster updates, because the counts
only need increments and decrements (O(1) each, Lines 16 and
18), instead of recomputation. However, a change of nearest
neighbors does also invalidate the marginal counts and requires
computing them and correct adjustment of sum (Lines 11-14).
Computing marginal counts from scratch can be done with linear
search (O(n) each, Lines 2 and 13).

Regarding the time complexity of Algorithm 4, it is important
to note that B and C are not sets of points with changed nearest
neighbors. As a consequence, only the size of A has an upper
bound of 8 - k by Theorem 5.1. In the worst case, B and C contain
all points, that is, |B| < n and |C| < n. The total time complexity

54

Algorithm 4: INSERT-KSG(Sp, pn+1)

1 Compute 8% (pn+1). 8K (pn+1) and €k, (pn+1) 0(n)
2 Compute C,’g(pm.l) and C’!;(pm.l) O(n)
3 Insert pp41 into Pp o(1)
4 Reference pp+1 in Ty, Ty O(logn)
5 base < base + % o(1)
6 sum — sum — psi(Ck(pn+1)) = psi(Ch (pn+1)) 0(1)

7 A {p;i € P+ max(|x; — Xn11]. |yi = yns1]) < €5(pi)} O(n)

s B {pi € P: |x; — xn41] < SK(p)} O(n)

9 C— {pi € P: |yi — yns1] < 8K (pi)} O(n)

10 forall p; € Ado

u | sum — sum+ psi(CE(p;)) + psi(CE (pi) O(|A])

2 | Compute 55(p;), 55 (pi) and ef, (pi) O(|A| - n)

13 | Compute C§(p;) and CE (p;) O(A| - n)

u | sum — sum—psi(CK(pi)) — psi(CE (pi)) o(l4))

15 forall p; € B do

16 L sum « sum — C+W; C)]E(pi) — C,’g(p,-) +1 O(|B|)

17 forall p; € C do

18 sum(—sum—;; Ck(p;) — Ck(p;) +1 o(|C
) y(0i) — Cy(pi) (cn

therefore is O(n + |A| - n) = O(k - n). As before, k is taken as
constant, which yields the time complexity O(n). This is asymp-
totically faster than recomputing the estimate by Theorem 4.3.

6 POLYLOGARITHMIC UPDATES

Because DEMI relies only on simple algorithms like linear search
and binary search trees during insertions and deletions, faster
solutions might exist. In this section we determine which parts
of our insertion algorithm have a high computational cost and
present solutions for these tasks. There are two factors that lead
to the linear time complexity of Algorithm 2.

(1) Computing the nearest neighbors, with linear search
(2) Finding the points whose nearest neighbors changed by
linear search

6.1 Geometric Structures

Computing the nearest neighbors. Computing the k nearest
neighbors of a point is a classic problem of computational ge-
ometry, which has received a lot of research. While there exist
many solutions, most of them are built for static data and are
not compatible with the incremental changes in dynamic data.
But there also exist solutions that allow for insertions and dele-
tions. Chan [6] proposed a dynamic data structure that computes
nearest neighbors in two-dimensional spaces with sub-linear
times for insertion, deletion and queries. However, the computa-
tional complexity of deletions is O(log® n), which is quite high.
Kapoor and Smid [11] provide an alternative based on dynamic
range trees [30]. With dynamic fractional cascading [20] the time
complexities for insertions, deletions and querying the nearest
neighbor of a point are in O(log nlog log n). To query two nearest
neighbors, we can query one nearest neighbor, delete this point
from the tree, query the new nearest neighbor and insert the
deleted point. Querying the k nearest neighbors can thus easily
be achieved through a sequence of k queries, k — 1 deletions, and
k — 1 insertions, with total time in O(k - log nloglog n).

Finding the points whose nearest neighbors have changed. Find-
ing all points whose nearest neighbors have changed is also a
geometric problem, that is, finding the reverse nearest neighbors
of the inserted or deleted point. For each point p = (x,y) with
nearest neighbor distance ¢, all nearest neighbors of p (using the
Leo-norm) are within the square [x —e, x + €] x [y —e€,y+€] C R2.
To find all points whose nearest neighbors contain a point p’, the
task is to determine which squares contain p’. One data structure
to solve this problem is the segment tree by Bentley [2]. The
technique of dynamic fractional cascading is also applicable for
segment trees [20] and yields the time complexities for inser-
tions and deletions in O(log nloglog n). Queries require time in
O(log nloglog n+m), where m is the number of squares returned.

6.2 Improving DEMI

To achieve sublinear time complexity for updates, we integrate
a two-dimensional dynamic range tree and a two-dimensional
dynamic segment tree into DEMI. We call this the augmented
version of DEMI (ADEMI). The insertion algorithm is nearly iden-
tical to Algorithm 2, except for changes in time complexities and
insertions and deletions to the integrated tree structures. In con-
sequence, we only mention the changes relative to Algorithm 2
in this section. The full data structure and insert algorithm can
be found in Appendix B.

Using the dynamic range tree, Line 1 requires only time in
O(k - lognloglogn), and Line 11 requires time in O(|A| - k -
log nloglog n). Using the dynamic segment tree, Line 7 can be
done in time O(log nloglogn + |A|). Additionally, B and C can
only contain elements that are at most k positions before and
after xp+1 and yp41 in Ty and Ty, respectively. Consequently,
Lines 8-9 can also be done using the binary search trees in time
O(k - log n).

Additionally, we need to maintain the integrated tree struc-
tures. Specifically, we insert p,+1 into the dynamic range tree
and insert the square of its nearest neighbors, that is,

square(pn+1, P') = [Xn+1 — €5 (ns1)s Xns1 + €5 (n+1)]
X [Yns1 = €5 (Pnr1)s Yns1 + €8 (pus)l, (7)

into the dynamic segment tree. The dashed lines in Figure 1 illus-
trate this square. Both insertions require time in O(log n log log n).
Finally, for each point p; € A we delete its old square of nearest
neighbors square(p;, P) from the dynamic segment tree and in-
sert the new square square(p;, P’). This requires time in O(|A] -
log nloglogn).

For an overview of the new time complexity, the updated inser-
tion algorithm can be found in Appendix B. Because |A|, |B|, |C| €
O(k), the total time complexity of an insertion is O(k? - logn -
loglog n). As before, k can be assumed to be a small constant,
which leads to an insertion time of O(log nloglog n). Deleting
a point is completely analogous to insertions in (A)DEMI, and
the used tree structures have the same complexity for insertions
and deletions. Consequently, deletions in ADEMI also have a
deletion time of O(log nloglog n). Since the time complexity of
queries is in O(1), ADEMI solves problem 3KL-UPDATE in time
O(log nloglogn). This means that ADEMI is a nearly optimal,
since its time complexity is only a factor loglog n higher than
the lower bound from Corollary 4.6.

The drawback of ADEMI is an increased space complexity.
The space complexity of the two-dimensional range tree and
segment tree are O(nlogn) and O(nlog? n), respectively. Addi-
tionally, the improvements to the time complexity cannot be used

55

when maintaining KSG estimates. This is because the number of
points whose marginal counts change during an update has no
bound lower than n. Additionally, the impact of incrementing or
decrementing a marginal count on the overall estimate depends
on the current count, which can be any value between k and n.
As a consequence, it remains unclear whether any dynamic data
structure can solve KSG-UPDATE in sublinear time, or whether
there exists a stronger lower bound.

7 EXPERIMENTS

In this section we empirically validate the estimation quality and
time efficiency of our approach. To this end, we use data with
known MI values and show that the 3KL converges to these values
even with small samples. We also do so for the KSG. For brevity
we only present the results for k = 4, since this value offers
good rates of convergence for both the KSG and 3KL and follows
the general recommendation of small values for k. Additionally,
we compare the runtimes for maintaining 3KL estimates using
ADEMI, DEMI and repeated estimation from scratch (REFS). For
REFS we compute Equation 4 repeatedly with a state-of-the-art
static approach [9], i.e., using sorting and space-partitioning trees
for nearest-neighbor searches. While we have already proven a
clear hierarchy regarding their asymptotic scalability, the com-
plexity classes neglect constant factors. So it remains interesting
how their concrete runtimes compare.

Setup. All approaches are implemented in C++ and compiled
using the Gnu Compiler (v. 5.4) with optimization (-O3) enabled.
We use the non-commercial ALGLIB! implementation of KD-
Trees as space-partitioning trees in REFS. We conduct all exper-
iments on Ubuntu 16.04.2 LTS using a single core of an AMD
Opteron™ Processor 6212 clocked at 2.6 GHz and 128GB RAM.

7.1 Data

For our evaluation, we use synthetic and real data sets. In par-
ticular, we use the dependent distributions with noise used for
comparing MI estimators [13]. These distributions have a noise
parameter o, which we vary from 0.1 to 1.0. Thus, we use 10
distributions for each of these dependency types. Additionally,
we use the uniform distributions used to compare MI with the
maximal information coefficient [14] as well as independent uni-
form and normal distributions. As real data sets, we use sensor
data of randomly charged and discharged batteries [4] and time
series of household power consumption [18]. Monitoring MI on
such data could be useful to monitor the condition of battery cells
for maintenance or to infer knowledge about the behavior of the
households inhabitants. In the following, we briefly describe the
different distributions and data sets.

Linear. To construct the point p; € P, we draw the value x;
from the normal distribution N(0, 1). Additionally, we draw some
noise r; from the normal distribution N(0, o,), where o, is the
noise parameter of the distribution. This yields the point p; =
(i, xi +).

Quadratic. This distribution is generated analogously to the lin-
ear distribution, except that the point is p; = (x;, xl.2 +ri).

Periodic. For each point p; € P, we draw the value x; from the
uniform distribution U[—7, 7]. Additionally, we draw some noise
r; from the normal distribution N(0, o;), where o, is the noise
parameter. This yields the point p; = (x;, sin(x;) + r;).

! ALGLIB (www.alglib.net), Sergey Bochkanov

Eb%

Figure 3: An overview of the uniform distributions used.

Chaotic. This distribution uses the classical Hénon Map, that is,
hxiy =1—a-hi +hy,
hym =B hxy,
with @ = 1.4, 8 = 0.3 and (hx,, hy,) = (0,0). For a point p; we
additionally independently draw noise ry;, ry; from the distribu-

tion N(0, o), where o, is the noise parameter. Each point p; € P
is then p; = (hxi + Ixi, hyi + ry,').

Uniform. The uniform distributions A to H we use are illustrated
in Figure 3. Note that the striped areas contain twice as many
points as the dotted areas. For these distributions, each striped
area with size 0.25 - 0.25 contains 25% of all points, while dotted
areas of the same size contain 12.5% of all points. The distribution
A simply draws values v; from U[0,1] and constructs the points
pi = (vi, vj).

Independent. Lastly, we use the distributions Upyp and Niyp,
where each point consists of two values drawn independently
and identically distributed from U[0, 1] and N(0, 1), respectively.

Battery Data. This data set, available at the NASA Prognostics
Center of Excellence [4], monitors voltage, current and tempera-
ture of battery cells during random loads. We use the data corre-
sponding to battery cell “RW9” and use each combination of the
attributes as bivariate sample.

Power Consumption. This data set, available at the UCI Machine
Learning Repository [18], monitors the power consumption of a
household in France. We use each combination of global active
power, global reactive power and voltage as a bivariate sample.

Data Precision. The nearest-neighbor based entropy estimator,
and by consequence the 3KL and KSG, expects samples from
continuous distributions and require samples without duplicate
values. Because of the limited precision of the battery and the
power consumption data, we add noise to the sample. Kraskov
et al. also have observed this issue and recommend the addition
of low intensity noise, e.g., a normal distribution with variance
10719, to eliminate duplicate points [17]. However, we think that
filling the missing precision with uniform noise is a better com-
pensation for rounded or imprecise data. Figure 4 illustrates both
approaches with the number of duplicates per value of an im-
precise data set in parentheses. For our experiments we use the
second approach.

7.2 Quality of Estimation

To evaluate the quality of estimation, we use all data sets with
well-defined MI values. That is, all synthetic data sets except the
chaotic distributions, whose probability densities are unknown,

56

p(x)

X
7 V [/
T sk i

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 X
23 O @O @@ G

Figure 4: Avoiding duplicates in a sample by adding mini-
mal noise (top) or filling the missing precision uniformly
(bottom).

0.9 — —
' +— i I
- 08F =
T 0.7 .
T 06 i
S o5l DIMID ——+— |
5 o 3KL (k=4) —>— |
0o U KSG (k=4)
g 03]
g 02 .
<
1 .
00 ¢
10 100 1000 10000

Sample Size

Figure 5: Average difference of estimates to true MI values
depending on sample size.

and the uniform distribution A, whose Ml is infinite. We use these
distributions to evaluate the consistency and the rate of conver-
gence of the KSG, 3KL and the estimator used by DIMID [3].
Specifically, we are interested in the difference between the es-
timated MI and true value for the distribution as well as the
variance of estimates for samples of the same distribution. Since
the behavior has turned out to be very homogeneous across the
different distributions, we restrict our presentation to selected
results.

Development with sample size. For each distribution we cre-
ated samples with sample sizes between 10 and 10000 and 1000
repeats per size. Figure 5 graphs the average difference between
the estimate and the true MI value of the respective distribution.
Additionally, Figure 6 shows the standard deviation of estimates
of the same distribution and sample size, averaged across all
distributions. One can see in these diagrams, that both the 3KL
and the KSG converge quickly to the true values and have only
small variance. In contrast, the approximate estimator in DIMID
has a strong variance and difference. We think the reason is the
random projection used by that estimator. It may retain enough
information such that estimates are comparable to each other,
as shown in their work [3]. However, we think that the projec-
tion loses too much information regarding the joint probability
density to allow for good MI estimates.

Different dependency types. We also studied whether the qual-
ity of estimation changes for different dependency types. As we
have seen in the previous paragraph, both the 3KL and KSG are
very consistent even with moderate sample sizes. As a result we
will use a small sample size, i.e. 100, to highlight differences. Fig-
ure 7 shows the average estimation error and standard deviation
of estimates using 3KL, KSG and DIMID for each dependency
type. While the variance of both KSG and 3KL are comparable

1.2 T

® i DIMID +—+—

& 1P 3KL (k=4) —>%— |

< KSG (k=4

S 08F (k=4)

© B

3 06 .

[a)

T 04 s

©

he)

S 0.2% X 7

- /K\

(7] 0) \\/\\\/g N N
10 100 1000 10000

Sample Size

Figure 6: Standard deviation of estimates depending
sample size.

on

1.2
= 4| KSG (k=4) 1 |
2 3KL (k=4)
Z0.8 DIMID mmm
]
= 0.6
Eo04
e
S 0.2

0 X <
\)(\ &z\ e(\ob\ & (\6?'“ \/\(\e,’c) o e“oé\ < (\69,(\
Q O° A€ o0 [O% O e %

Average Error Standard Deviation

Figure 7: Average difference (left) and standard deviation
(right) of estimates to true MI values on distribution type.

for all dependency types, the difference to the true value is im-
balanced for the KSG but not the 3KL. Unfortunately, we do not
have any explanation for this difference. As before, we notice
strong differences between the DIMID approximation and the
results of KSG and 3KL.

7.3 Runtime Analysis

We have benchmarked runtimes of our data structures for all data
sets. Because we are not aware of any competitor that offers good
MI estimates on dynamic data, we compare our performance to
naive recomputation of the estimate when an update occurs. We
compare the runtime to maintain 3KL estimates using DEMI and
ADEMI as well as repeated recomputation (REFS). We use a slight
simplification of the ADEMI trees, compared to the description in
Section 6. Specifically, we did not implement dynamic fractional
cascading and relied only on the technique of Willard [30] for
insertion and deletion of nodes. The reason is that dynamic frac-
tional cascading provides a small asymptotic benefit, i.e. reducing
a factor log n to loglog n, but requires a lot of overhead. As a re-
sult, the structure labeled ADEMI in this section has insertion
and deletion time in O(log? n) instead of O(log nloglog n).

By design, both DEMI and ADEMI require only constant time
for querying the current MI value, but require more time to
update the data structure during insertions and deletions. The
repeated static estimation REFS has inverse properties, i.e., con-
stant time insertions and deletions but expensive queries. To
provide a good overview we use the task of monitoring the MI
of a changing data set of fixed size. That is, each update consists
of deleting one point, inserting a different point and querying

57

10000 ¢ rrr———
o " DEMI (k=4) —+—]
E 1000 £ ADEMI (k=4) —— E
% 100 i REFS (k=4) —]
2 SVEEEVENVEVIS®- SIS e
“
g 1]
o 0.0006-x-log(x) 3
£ 0.1 0.0004-x 4
= : _0.2-log(x)-log(x) -]
0.01 il -
100 1000 10000 100000 1x106
Sample Size

Figure 8: Average time for an update depending on sample
size for the synthetic distributions.

10000 g g
e F DEMI (k=4) —+—]
E 1000 ¢ ADEMI (k=4) —<— 3
© REFS (k=4]
o] 100 ¢ S () E
© E 3
-8_ E]
S 10> 3
_
g 1
o 0.0006-x:log(x) E
£ 0.1 0.0004-x 4
- 0. 2 Iog(x) Iog(x) —————— 1
100 1000 10000 100000 1x106
Sample Size

Figure 9: Average time for an update depending on sample
size for the used real data set.

the current MI estimate. For these experiments we averaged the
time required per update using 1000 updates per distribution and
sample size.

Figure 8 shows the average update time required across all
synthetic distributions per sample size. The same graph based on
the real data sets instead of the synthetic distributions is Figure 9.
As expected, the time complexity of each approach translates
directly to asymptotic scaling with sample sizes, that is, steepness
of the curve in the double log plot. To highlight this, the graphs
include different asymptotic functions with dashed and dotted
lines. An interesting result is that ADEMI has by far the worst
performance for small windows and by far the best performance
for large ones. Our explanation is as follows: The maintenance of
the range trees and even more so the segment trees is expensive,
even if it scales favorably. For instance, when inserting a square
into a two-dimensional segment tree, 8 - (1 + logn) nodes are
created in the tree. This is a lot even for small n but does not
increase significantly for large n.

7.4 Discussion

To summarize this section, we confirmed the estimation quality of
3KL and KSG across all dependency types tested. Additionally, we
compared the performance of DEMI, ADEMI and REFS both on
synthetic and real data. As expected, DEMI consistently outper-
forms the SE. The evaluation of ADEMI depends on the context
and application. While it is slow for small window sizes, it barely
slows down for larger sizes. On the one hand, this means that
it is often recommendable to use DEMI if the data size is small.
On the other hand, ADEMI can be used for very data-intensive

tasks such as monitoring high-throughput streams. A problem
with stream monitoring often is the multiplicative cost of high
temporal resolutions: A stream with frequent items permits less
time to process a new item, and a window with fixed time length
contains more items. This leads to increased time to process a
new item. As we have seen, the second factor is nearly negligible
when using ADEMI.

8 CONCLUSIONS

In this work we have studied the efficiency of estimating mutual
information using nearest-neighbor distances. We have consid-
ered the estimator by Kraskov et al. [17](KSG) and the direct
application of the entropy estimator [9, 16](3KL). We have in-
vestigated the computational complexity of these estimators on
static data and have proven a tight lower bound for both in the
algebraic computation tree model. Next, we have turned to the
maintenance of 3KL and KSG estimates on dynamic data and
have examined possible optimizations and limitations. We have
inferred a lower bound for the computational complexity of this
task. We also have presented two dynamic data structures DEMI
and ADEMI that maintain 3KL and KSG estimates. We have
proven that both data structures require asymptotically less time
to update their estimate than the lower bound to recompute it.
Additionally, for maintenance of 3KL estimates, the time com-
plexity of ADEMI is near optimal. Finally, we have validated the
performance of our approach empirically. We have shown that
the 3KL has a good rate of convergence for various dependen-
cies. We also have benchmarked our data structure using both
synthetic and real data and have shown that ADEMI is very fast
for large data sets.

Future Work. In this work we have focused on exact computa-
tions of nearest-neighbor based MI estimators for dynamic data.
It remains open whether our approach offers the best trade-off
between estimation quality and computation time.

For one, it would be interesting which results one could achieve
by binning the data and using estimators for discrete distribu-
tions [5, 10]. However, it is unclear how the bin width should be
chosen, given the evolving nature of a stream. If the bin width
needs adjustment, this is computationally expensive or reduces
the quality of estimation if there is no adjustment.

It would also be interesting to study which provable quality
one might achieve with approximations. While there exist ap-
proximations of static estimators [3, 12], there are no bounds
for additive or multiplicative errors. But these would be very
important because there exists a lot of work comparing static
estimators. In addition, empirical assessments of new estimators
often cover only some of the dependencies that MI quantifies.

A FORMAL PROOFS
A.1 Proof of Theorem 4.1

THEOREM 4.1. The problem 3KL-ESTIMATION has time complex-
ity Q(nlog n).

Proor. The proof is by reduction from the problem INTE-
GERELEMENTDISTINCTNESS. Given a multiset A = {ay,...,an}
of integers, are there two indices i # j such that a; = a; are
duplicates. The problem INTEGERELEMENTDISTINCTNESS has a
known lower bound of Q(nlog n) in the algebraic computation
tree model [19]. For an instance A of INTEGERELEMENTDISTINCT-
NESS, we construct an instance of 3KL-ESTIMATION P as follows.
For a; € A, the set P contains two points p; = (i,a; + ﬁ) and

58

I paxP®
paxP?
;;5 z Z’bxxp7
i p@p seb(p1) = 0.25 psx10
ol | | | .
«DI‘H 0 1’ 2! 3! 4 5! {

[

el (x1) =0.25

Figure 10: An illustration of the construction of P in Ap-
pendix A.1.

Pn+i = pi +(0.25,0.25). Note that p; and pp+; are closer than
any other pair, because i and a; are integers. Additionally, we
add the offset ﬁ to the y-coordinates, because duplicates in A
would otherwise lead to a nearest-neighbor distance of 0 and
thus log(0) in Equation 4. Figure 10 features an example for this
construction for the INTEGERELEMENTDISTINCTNESS instance
A = {1,2,4,3,1}. The point p; is highlighted as circle and its
nearest-neighbor distances are highlighted.

CraM 1. A contains a duplicate if and only zﬂ;& (P) # y(|P)—-
Y(1) fork = 1.

SuBPROOF. Let i,j € {1,...,n} be two integers with i # j.
Based on the construction of P, it follows that |x; — xj| = [xp4i —
Xn+j| = 1. Additionally, it is |x; — Xp+i| = |yi — yn+i| = 0.25.
Using the reverse triangle inequality, it is |x; —xp+;| > |x; —xj| -
|xj = xn4j| = 0.75. This holds for any i # j, which means that p;
is the nearest neighbor of p,; and vice versa, because we use
the Lo norm. As a consequence the nearest neighbor distances
are e},(p) = 0.25forall p € P and e)l((x) = 0.25 for all x € X.
Note that this means that the nearest neighbor distances in P and
X are independent of the existence of duplicates in A.

If A does not contain any duplicates, it follows that |y; —
Yil = lYn+i — Yn+jl 2 %, since A only contains integers and the
difference between ﬁ and ﬁ is less than 0.2. By the same
arguments as above it follows that |y; — yn+;| > 0.55 and that
e;(y) = 0.25 for all y € Y. We can then use these values in
Equation 4, which yields:

|P|

LrL(P) = ¢(|P|>—¢(1>+ﬁ > log) = Y (IP)-y(1).
m=1

(8)

Conversely, if A contains the duplicates a; = aj, it is |y; —

yjl = Iﬁ - ﬁjl < 0.2 and |y; — yn+j| 2 0.25 - &jl and thus

e;(yi) < 0.2. Additionally, because of j # i it also is ei,(yi) > 0.
It follows that

log(e;(yi)'e;gxi»)@:? 1 'ZPl‘b (eg((xn»wsly(ym)<O

0.25-0.25
(0.25)2

(ep(Pi))? [Pl &4 ep(pm))?
o ©)
and analogously to Equation 8 we obtain Isx1(P) < ¢(|P])—(1).
This concludes the subproof. []

It is clear that P can be constructed in time O(]|A|), which
means |P| € O(|A|). After computing I3k (P), the result is only
compared to a sum over |P| numbers, because /(|P|) — ¥(1) =

Pl-1 1
le 1

m=1 m by definition of the digamma function. Note that this

|
2 L Pax*p1o
Dps i
4 Pax* L1
[
3 L D5x*P11
L SRRy U 1 Y UiEw U
10
L plxxp7 Lol
[
0

Figure 11: An illustration of the construction of P in Ap-
pendix A.2.

reduction works analogously for any fixed k > 0 by placing
k — 1 points evenly spaced on the diagonal between each pair
pi and pn4i. Because k is fixed, the size of P increases only by a
constant factor. Therefore, the complexity of the reduction is in
O(n). This means that determining Lx1(P) has a lower bound of
Q(nlogn). O

A.2 Proof of Theorem 4.3

THEOREM 4.3. The problem KSG-ESTIMATION has a time com-
plexity in Q(nlogn).

Proor. Similarly to the Proof of Theorem 4.1, see Appen-
dix A.1, we reduce the problem to INTEGERELEMENTDISTINCT-
NEss. For any instance A of INTEGERELEMENTDISTINCTNESS, we
construct an instance of KSG-EstimaTION P as follows. For
a; € A, the set P contains two points p; = (i,a;) and pp4i =
(i +0.25,a; + 0.25). We use 0.25 because it means that this pair
of points is closer than any other pair, because i and a; are in-
tegers. Figure 11 features an example for this construction for
the INTEGERELEMENTDISTINCTNESS instance A = {1,4, 2,5, 3, 2}.
The dashed lines in the figure illustrate the areas of the marginal
counts CL(p3) and C; (p3).

Cramm 2. A contains a duplicate if and only lfIT{SE(P) #
sIPEN L)~ 1 fork = 1.

SuBPrOOF. Let i,j € {1,...,n} be two integers with i # j.
Based on the construction of P, it follows that |x; — x;| = |xp+i —
Xp+j| = 1. Additionally, it is |x; — Xp+i| = |yi — yn+il = 0.25.
Using the reverse triangle inequality, it is |x; —xp+j| > |x; —xj| -
|xj — Xp+j| = 0.75. This holds for any i # j, which means that p;
is the nearest neighbor of p,; and vice versa, because we use
the Lo norm. As a consequence, the marginal counts CL(p) are 1
for all p € P, independent of the existence of duplicates in A.

If A does not contain any duplicates, it follows that |y; — y;| =
|yn+i — Yyn+jl = 1, since A only contains integers. By the same
arguments as above it follows that |y; — yn+;| > 0.75 and that
C;(p) = 1forall p € P. We can then use these values in Equation 6

and because of /(x) = an;ll(%) —Citis:
(%)
—|-1
m

10

Conversely, if A contains the duplicates a; = a;, it is |y(,- —)
yjl = 0 and |y; — yn+j| = 0.25 and thus C;(Pi) > 3. Because
of (x +1) = ¢(x) + % > ¥(x) for all x > 0, it is, analogously
to Equation 10, II</5\G(P) < Zlf:l(%) — 1. This concludes the
subproof. [

|P|

Txsa(P) = Y +yPD =3 =150 O, V) +U(1) =
m=1

[P]-1

2

m=1

59

Qu Yi

Qru : Qru U
QL""éZ;"'QR

I
AR o5
Qrp ' QrD P ? L
M~ - X
QID A :

Figure 12: The partioning
of Q in Appendix A.3.

Figure 13: An example for
Qru-

It is clear that P can be constructed in time O(]A|), which
means |P| € O(]A|). Note that this reduction works analogously
for any fixed k > 0 by placing k — 1 points evenly spaced on the
diagonal between each pair p; and py;. Because k is fixed, the
size of P increases only by a constant factor. After computing
IxsG(P), the result is only compared to a sum over |P| numbers.
Therefore the complexity of the reduction is in O(n). This means
that determining @(P) has a lower bound of Q(nlogn). O

A.3 Proof of Theorem 5.1

THEOREM 5.1. Let P C R be a set of points. For any pointp € P
there exist at most 8k points q € P such that p is one of the k nearest
neighbors of q using the Loo-norm.

ProoF. Let p = (x,y) € P be a point and Q C P be the
set of points such that for each point g € Q, p is one of the k
nearest neighbors of q. We separate Q into eight sets based on
their relative location to p, as illustrated in Figure 12. There are
four axis-aligned rays Qr, QOr, Qu,Qp C Q centered at p such
that points on any of these rays share one component with p
and differ in the other one. Additionally, there are four quad-
rants Qry, Qru.Qrp,Orp S Q centered at p excluding the
axis-aligned rays. Because p cannot be its own nearest neighbor,
these eight sets partition Q. To prove the lemma we proceed to
show that each of these eight sets contains at most k points.

Let r = (xr,y,) be the most distant point to p in the axis-
aligned ray Qg, that is, [x — x| = max(y, y,)eQp 1* — Xil. Then
all other points in Qg are on the line between p and r and thus
closer to r than p. This means that Qg cannot contain more than k
points, because p would not be a nearest neighbor of r otherwise.
By symmetry, this result also holds for the sets Oy, Qu, Op.

Similarly, Let r = (x,, y,) be the most distant point to p in the
quadrant Qgry and let A be that distance. More formally, it is

A =max(|x — x|, [y —yr|) = max

max(|x — x;il, [y — yil)-
(xi,yi)€QRU iy

An exemplary illustration can be found in Figure 13 with the
set Qry = {s, r}. For any other point q; = (x;,y;) € Qry with
qi #ritisx <x; <x+Aandy <y; <y+ A, because r is the
point most distant to p. Figure 13 illustrates this by delimiting the
area in which all points of Qg lie with dashed lines. Because of
xr > x and y, > y, it follows that |x, —x;| < A and |y, —y;| < A.
This means that g; is a nearest neighbor of r. Figure 13 shows this
by highlighting the area of nearest neighbors of r with dotted
lines. Analogously to the axis-aligned rays, Qryy cannot contain
more than k points, because p would not be a nearest neighbor
of r otherwise. By symmetry, this result also holds for the sets

OLu,>9QLD> ORD- m|

B ADEMI

Data Structure 5: ADEMI

struct {
real x,y
k k _k
real €p> Exs €y
} DemiPoint;
struct {

DemiPoint[| Pp

BST<DemiPoint"> Ty, Ty

real base, sum

2D dynamic range tree Tygnge

2D dynamic segment tree Tseg
} state;

Algorithm 6: ADEMI-INSERT(Sp, pn+1)

1 Compute ellg,(pnﬂ) O(k - lognloglogn)
2 Compute €, (xn+1) and ellj/(ynﬂ) O(logn)
3 Insert pp41 into Pp o(1)
4 Reference pp+1in Ty, Ty O(logn)
s Insert pp+1 into Trange O(log nloglogn)
6 Insert square(pn+1,P’) into Tseq O(log nloglog n)
7 base < base + % 0o(1)
€k (xn+1)-€X,(yns1)

8 sum «— sum + log o(1)

(€K, (pn+1))?

9 A {p;i € P+ max(|x; — Xn+1l. [yi — yn+1]) < X (pi)}
O(lognloglogn + |A])

10 B— {p; € P: |x; — xps1] < ek (x;)} O(k - logn)

1 C— {pi € P: |yi = yns1| < ef(yi)} O(k - log n)

12 forall p; € Ado

13 Delete square(p;, P) from Tseq O(|A| - log nloglogn)

1 Compute 6}]; (i) O(|A] - k - lognloglog n)

15 Insert square(p;, P’) into Tseg O(]A| - log nloglogn)

16 | sum e sum+log(ef(pi)*) — log(ef, (pi)?) O(IA])

17 forall p; € Bdo

18 Compute ek,(x,-) O(|B| - k - logn)
1 | sum — sum—log(ek(x)) +log(ek, (x)) O(|B))
20 forall p; € C do

21 Compute e§,(yi) O(|C| - k - log n)
22 | sum — sum—log(ef (y:)) + log(e¥, (y:)) o(lc))
ACKNOWLEDGMENTS

This work was partially supported by the DFG Research Training
Group 2153: “Energy Status Data — Informatics Methods for its
Collection, Analysis and Exploitation”

REFERENCES

[1] Michael Ben-Or. 1983. Lower bounds for algebraic computation trees. In
Proceedings of the 15th Annual ACM Symposium on Theory of Computing.
80-86.

[2] Jon Louis Bentley. 1977. Algorithms for Klee’s rectangle problems. Technical
Report. Technical Report, Computer.

[3] Jonathan Boidol and Andreas Hapfelmeier. 2017. Fast mutual information
computation for dependency-monitoring on data streams. In Proceedings of
the Symposium on Applied Computing. ACM, 830-835.

60

4]

[13

(14

(19]
[20]

[21

(22

[23

[24

[25

™
&

[27

[28

[29]

€

Brian Bole, Chetan S Kulkarni, and Matthew Daigle. 2014. Adaptation of
an electrochemistry-based li-ion battery model to account for deterioration
observed under randomized use. In Proceedings of Annual Conference of the
Prognostics and Health Management Society, Vol. 29. https://ti.arc.nasa.gov/c/
25/

Amit Chakrabarti, Graham Cormode, and Andrew McGregor. 2007. A near-
optimal algorithm for computing the entropy of a stream. In Proceedings of
the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’07).
Society for Industrial and Applied Mathematics, 328-335.

Timothy M Chan. 2006. A dynamic data structure for 3-d convex hulls and
2-d nearest neighbor queries. In Proceedings of the 17th annual ACM-SIAM
Symposium on Discrete Algorithm (SODA’06). 1196-1202.

Kenneth Ward Church and Patrick Hanks. 1990. Word association norms,
mutual information, and lexicography. Computational Linguistics 16, 1 (1990),
22-29.

Thomas M. Cover and Joy A. Thomas. 2006. Elements of information theory (2.
ed. ed.). Wiley-Interscience, Hoboken, NJ.

Dafydd Evans. 2008. A computationally efficient estimator for mutual infor-
mation. In Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, Vol. 464. The Royal Society, 1203-1215.

Nicholas JA Harvey, Jelani Nelson, and Krzysztof Onak. 2008. Sketching
and streaming entropy via approximation theory. In IEEE 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’08). IEEE, 489-498.
Sanjiv Kapoor and Michiel Smid. 1996. New techniques for exact and ap-
proximate dynamic closest-point problems. SIAM J. Comput. 25, 4 (1996),
775-796.

Fabian Keller, Emmanuel Miiller, and Klemens Bohm. 2015. Estimating mutual
information on data streams. In Proceedings of the 27th International Conference
on Scientific and Statistical Database Management (SSDBM’15). ACM.

Shiraj Khan, Sharba Bandyopadhyay, Auroop R. Ganguly, Sunil Saigal, David J.
Erickson, Vladimir Protopopescu, and George Ostrouchov. 2007. Relative
performance of mutual information estimation methods for quantifying the
dependence among short and noisy data. Phys. Rev. E 76 (2007), 15. Issue 2.
Justin B Kinney and Gurinder S Atwal. 2014. Equitability, mutual information,
and the maximal information coefficient. Proceedings of the National Academy
of Sciences 111, 9 (2014), 3354-3359.

Yuliya Kopylova, Duncan A Buell, Chin-Tser Huang, and Jeff Janies. 2008.
Mutual information applied to anomaly detection. Journal of Communications
and Networks 10, 1 (2008), 89-97.

LF Kozachenko and Nikolai N Leonenko. 1987. Sample estimate of the entropy
of a random vector. Problemy Peredachi Informatsii 23, 2 (1987), 9-16.
Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. 2004. Estimating
mutual information. Phys. Rev. E 69 (2004), 16. Issue 6.

M. Lichman. 2013. UCI Machine Learning Repository. (2013). https://archive.
ics.uci.edu/ml/machine-learning-databases/00235/

Anna Lubiw and Andrés Réacz. 1991. A lower bound for the integer element
distinctness problem. Information and Computation 94, 1 (1991), 83-92.

Kurt Mehlhorn and Stefan Néher. 1990. Dynamic fractional cascading. Algo-
rithmica 5, 1 (1990), 215-241.

Angeliki Papana and Dimitris Kugiumtzis. 2009. Evaluation of mutual infor-
mation estimators for time series. International Journal of Bifurcation and
Chaos 19, 12 (2009), 4197-4215.

Hanchuan Peng, Fuhui Long, and Chris Ding. 2005. Feature selection based
on mutual information criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence
27, 8 (2005), 1226-1238.

Josien PW Pluim, JB Antoine Maintz, and Max A Viergever. 2003. Mutual-
information-based registration of medical images: a survey. IEEE Transactions
on Medical Imaging 22, 8 (2003), 986-1004.

Peng Qiu, Andrew] Gentles, and Sylvia K Plevritis. 2010. Reducing the com-
putational complexity of information theoretic approaches for reconstructing
gene regulatory networks. Journal of Computational Biology 17, 2 (2010),
169-176.

Thomas Schreiber. 1995. Efficient neighbor searching in nonlinear time series
analysis. International Journal of Bifurcation and Chaos 5, 02 (1995), 349-358.
Claude Elwood Shannon. 1948. A mathematical theory of communication.
The Bell System Technical Journal 27 (1948), 379-423, 623-656.

Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. 2015.
General incremental sliding-window aggregation. Proceedings of the VLDB
Endowment 8, 7 (2015), 702-713.

Martin Vejmelka and Katefina Hlavackova-Schindler. 2007. Mutual informa-
tion estimation in higher dimensions: A speed-up of a k-nearest neighbor
based estimator. In International Conference on Adaptive and Natural Comput-
ing Algorithms (ICANNGA’07). 790-797.

Janett Walters-Williams and Yan Li. 2009. Estimation of mutual information:
A survey. In International Conference on Rough Sets and Knowledge Technology
(RSKT’08). 389-396.

Dan E Willard. 1985. New data structures for orthogonal range queries. SIAM
J. Comput. 14, 1 (1985), 232-253.

O

proceedings

Finding All Maximal Connected s-Cliques in Social Networks

Rachel Behar

The Rachel and Selim Benin School of Computer Science
and Engineering, Hebrew University of Jerusalem, Israel

rachel.beharharr@mail huji.ac.il

ABSTRACT

Cliques are commonly used for social network analysis tasks, as
they are a good representation of close-knit groups of people. For
this reason (as well as for others), the problem of enumerating,
i.e., finding, all maximal cliques in a graph has received extensive
treatment. However, considering only complete subgraphs is too
restrictive in many real-life scenarios where “almost cliques” may
be even more useful. Hence, the notion of an s-clique, a clique
relaxation that allows every node to be at distance at most s
from every other node, has been introduced. Connected s-cliques
add the natural requirement of connectivity to the notion of an
s-clique.

This paper presents efficient algorithms for finding all maximal
connected s-cliques in a graph. We present a provably efficient al-
gorithm, which runs in polynomial delay. In addition, we present
several variants of the well-known Bron-Kerbosch algorithm
for maximal clique generation. Extensive experimentation over
both real and synthetic datasets shows the efficiency of our algo-
rithms, and their scalability with respect to graph size, density,
and choice of s.

1 INTRODUCTION

Maximal cliques have long been considered a key component in
the analysis of social networks [34]. Cliques are indeed highly
cohesive sets of nodes, and as such are used to detect close-knit
overlapping communities [13, 29, 36]. For this reason (among
others), there has been extensive work on algorithms for finding
all maximal cliques in a given graph, e.g., [1, 6, 8, 11, 17].

While the notion of a clique captures a completely cohesive
group of nodes within a graph, this definition is often overly re-
strictive. In practice, it is obvious that sets of nodes can represent
cohesive groups even if several links are missing; for example,
within a community not all pairs of people will be friends. In ad-
dition, as networks are often built from observation of empirical
data, there may be real-life links that are missing within the data
captured. Searching for groups of nodes that are cliques will miss
highly related groups of nodes for which links have been omitted
from the dataset. To overcome these limitations, relaxations to
the notion of a clique have been studied [30].

One useful relaxation to the notion of a clique, called an s-
cliqgue, was introduced over 65 years ago [24] to describe and
measure connectivity in social groups. Given a graph G, we say
that a set of nodes U is an s-clique, where s is a (typically small)
natural number, if every pair of nodes u,v € U is at distance at
most s one from another in G. In particular, when s = 1, the no-
tions of a clique and an s-clique coincide. An s-clique is maximal
if it cannot be extended with additional nodes, while retaining
the required distances property. Unlike cliques, s-cliques may be

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

61

Sara Cohen

The Rachel and Selim Benin School of Computer Science
and Engineering, Hebrew University of Jerusalem, Israel

sara@cs.huji.ac.il

Bob Eli
Ann Dan Fay Hal
Cal Guy

Figure 1: Example of a small social network G.

unconnected. Connected s-cliques add the natural requirement
of connectivity.

Example 1.1. Consider the example of a small social network
G in Figure 1. Graph G contains six maximal cliques, namely
{a,b,c}, {b,c,d}, {d,e, f}, {e, f,h}, {d, g}, {g,h}, where a is a
shorthand for Ann, b is a shorthand for Bob, and so on. This graph
contains three maximal 2-cliques {a, b, ¢, d}, {b,c,d,e, f,g} and
{d, e, f, g, h}. Intuitively, the 2-cliques seem to better capture the
graph communities, as they are a bit coarser. They also highlight
the fact that d is a bridge between the communities.

Graph G contains two maximal 3-cliques {a, b, ¢, d, e, f, g} and
{b,c,d,e, f, g, h}, which (by their symmetric difference) indicate
the people who, if linked, could help merge the communities.
Thus, such a link might be suggested to Ann and Hal. Finally, we
note that there is a single maximal 4-clique in G, as the diameter
of G is four.

This paper studies the problem of enumerating (i.e., finding) all
maximal connected s-cliques in a graph. Maximal clique enumer-
ation has been shown to be useful in other areas (beyond social
network analysis), e.g., finding subgraphs common to a set of in-
put graphs [19], genome mapping and protein clustering in bioin-
formatics [14, 25], clustering for wireless sensornetworks [4],
and statistical analysis of financial networks [5]. As s-cliques are
relaxations of cliques, they allow significantly greater flexibil-
ity, and may be useful for the above applications, e.g., to find
subgraphs that are “almost common” to input graphs (i.e., that
appear in slight variations in the various input graphs), to inte-
grate genome mappings based on very similar subportions or
to cluster protein sequences while allowing more flexibly for
missing information.

An algorithm for enumerating maximal connected s-cliques
can be used for new and interesting applications, such as link
prediction in social networks [22], since missing direct links in
large s-cliques are prime candidates for link suggestion. Note
that large cliques could not be used for this purpose, as they are
missing no links at all, by definition. Similarly, another possi-
ble application would be to help identify hidden connections in
a social network, by finding maximal s-cliques that may form
unidentified communities. We leave the development of such ap-
plications to future work, and focus in this paper on algorithms
for efficiently enumerating all maximal s-cliques from a given
graph.

10.5441/002/edbt .2018.07

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.07

The main contributions of this paper are three new algorithms
for enumerating all maximal connected s-cliques from a given
graph G. While it may seem from Example 1.1 that graphs have
a small (polynomial) number of maximal s-cliques, this is in fact
not always the case. As we demonstrate later, a graph may have
exponentially many maximal s-cliques. (This was already well
known for s = 1, and is true for larger values of s as well.) Hence,
we cannot hope to derive a polynomial time algorithm for the
problem at hand, as it may take exponential time to simply print
the output. Instead, our first algorithm guarantees polynomial
delay between results, i.e., the time to produce the first result,
between every pair of subsequent results, and from the final
result until completion, is polynomial.

The other two algorithms we present are adaptations of the
well-known Bron-Kerbosch method, originally developed for
finding all maximal cliques, to the problem at hand. While Bron-
Kerbosch clique enumeration does not run in polynomial delay,
it is known to be the fastest method, in practice, for maximal
clique enumeration (when used with some specific optimizations).
Hence, adapting this method to s-cliques is of interest. Optimiza-
tions for our adaptations, including pivoting and checking for
feasibility, are studied. Extensive experimentation, over both real
and synthetic datasets, proves the efficiency of our techniques,
as well as their suitability for use over social network data.

2 RELATED WORK

Due to their numerous uses, the problem of finding all maximal
cliques of a graph has received extensive attention. In the worst
case, there can be exponentially many maximal cliques in a graph.
In fact, [26] shows that the maximal number of cliques in graph
with n nodes is O(3"/3). Thus, the focus is on finding maximal
cliques in time that is efficient with respect to the input and
output. One well-known algorithm is that of Bron-Kerbosch [6],
which, with the pivoting improvement of [32], guarantees a worst-
time complexity of 0(3"/3) for graphs of size n. Hence the total
time spent is no worse than required to return all maximal cliques
on the graph with the most possible cliques.

Additional work on maximal clique enumeration has focused
on output-efficient algorithms, i.e., algorithms whose runtime
is a function of the number of maximal cliques in the given
input graph [1, 17]. Several works have studied enumeration
over sparse graphs [7, 12], as such graphs tend to be common
in practice. Recent work has also focused on maximal clique
enumeration over uncertain graphs [38], and over massive net-
works [9, 11].

Enumeration of maximal graphs for several relaxations of the
notion of a clique has also been studied. The problem of mining
all maximal k-plexes was studied in [3, 35], and enumeration of
maximal c-isolated cliques was studied in [15]. There has also
been work on mining quasi-cliques (i.e., densest subgraphs) in a
single graph [23, 33, 37], and over a set of graphs [16], as well as
mining locally dense subgraphs [31].

Among clique relaxations, both quasi-cliques and s-clubs ap-
pear to be most related to s-cliques. Formally, quasi-cliques are
parameterized by a value y, i.e., a subset S of nodes in a graph
G is a y-quasi-clique if every node in S is connected to at least
v(|S| — 1) nodes in S. It has been shown [16] that there is a strong
relationship between the parameter y, and the diameter of the
15122 then
the induced subgraph on S will have diameter at most 2. At first

induced subgraph of G on S. For example, if% <Y S 5
glance, it would seem then that this property can be utilized to

62

enumerate (connected) s-cliques, e.g., by enumerating y-quasi-
cliques with an appropriate (s-dependent) choice of y. In fact,
this is not the case, and previous algorithms for y-quasi-cliques
do not enumerate s-cliques. The difference is subtle, as every pair
of nodes in an s-clique S is of distance at most s in G, but may be
of larger distance in the graph induced by S.

A subset U of nodes in a graph G is an s-club, if the diameter of
U is at most s, i.e., if there is a path between every two nodes in
U that only traverses nodes in U, that is of length at most s. This
definition is different from that of s-cliques, where the distance
between nodes is determined by the shortest path in the entire
graph G. Similar to the maximum clique problem, the problem
of finding an s-club of maximum size is also NP-complete [2].
However, unlike cliques and s-cliques, s-clubs are not heredi-
tary (i.e., a subgraph of an s-club is not necessarily an s-club),
and indeed s-club maximality testing is NP-complete [28]. Since
maximal s-clubs cannot be efficiently recognized, enumerating
maximal s-clubs cannot be achieved in polynomial delay (unlike
enumerating maximal connected s-cliques, as we show in this
paper).

The enumeration problem for connected s-cliques has not yet
been studied. However, the optimization problem for s-cliques,
i.e., the NP-complete problem of finding an s-clique of maximal
size, was studied in [2]. Enumerating s-cliques with given labels,
over a labeled graph, is also NP-complete problem, and is stud-
ied in [18]. Finally, [28] has shown that for graphs with some
special properties, the notions of connected s-cliques and s-clubs
coincide.

3 FORMAL FRAMEWORK

Graphs and Induced Subgraphs. We use G, H (possibly with
subscripts or superscripts) to denote simple undirected graphs.
We use V(G) to denote the nodes of G and E(G) to denote the
edges of G. Note that an edge is a pair {v, u} where v and u are
two different nodes in V(G).

We will often be interested in induced subgraphs of a given
graph G. Formally, a subset of nodes U C V(G) defines the in-
duced subgraph G[U] of G consisting of precisely the set of nodes
U, and the edges in E(G) that are incident only on nodes in U. In
notation, we have V(G[U]) = U and E(G[U]) = E(G) N U?. We
say that H is an induced subgraph of G if H = G[U], for some U,
and denote this fact by H C G.

We use dist(u, v) to denote the number of edges on the short-
est path between u and v in G and Né (v) to denote the set

Nci;(v) :={u | distg(v,u) < iandu # v}

of the nodes at distance at most i from v in G. We use Ng(v)
for the special case where i = 1, i.e., Ng(v) contains all direct
neighbors of v. Extending this notation, we use Ng‘l(V) and

Ng’i(V) to denote the set of nodes at distance at most i from all
and at least one, respectively, vin V, ie.,

Ng’i(V) ={u|VYveV,distg(v,u) <iandu ¢ V},
Ng’i(V) ={u|JveV,distg(v,u) <iandu ¢ V}.
If G is clear from the context, we will omit the subscript.

Example 3.1. Consider graph G from Figure 1. Let V = {e, h}.
We have:

N*(V) = {d, f.g}
NF2(V) = N1 (V) U {b.c}

NN (V) = {f}
NY2(v) = NFY(v).

/N /N /N

ui,2 ui,3 U1 uz,3 __u3 us,2

w

Figure 2: Graph G'.

Cliques and s-Cliques. A set of nodes U in a graph G is a
clique if all pairs u,v € U are adjacent one to another in G.
Cliques are useful in many problem areas, as they represent fully
cohesive portions of G. As discussed earlier, in many scenarios,
the requirement that a set of nodes form a clique may be overly
restrictive.

Previous work [30] has studied various relaxations of the no-
tion of a clique. In the following, let s be an integer and U be a
set of nodes in a graph G. We say that

e Uisans-cliqueif, forallu,v € U, itholds that distg(u, v) <
s.

e U is a connected s-clique if U is an s-clique and the induced
graph G[U] is connected.

When s = 1, cliques coincide with both s-cliques and connected
s-cliques.

Example 3.2. Consider graph G from Figure 1. The set of nodes
{a,b,c,d,e, f, g} is a (connected) 3-clique, but is not a 2-clique,
e.g., distg(a, f) = 3 > 2. The set of nodes {a, b, c,d} is a con-
nected 2-clique, and the set {a, d} is a 2-clique, but is not a con-
nected 2-clique.

We say that U is a maximal (connected) s-clique in G, if U is
a (connected) s-clique, and for all U’ such that U ¢ U’, it holds
that U’ is not a (connected) s-clique. It is natural to focus on max-
imal (connected) s-cliques. Indeed, every (connected) s-clique is
contained in some maximal (connected) s-clique. Hence, maximal
(connected) s-cliques can be viewed as a succinct representation
for all (connected) s-cliques.

Example 3.3. Consider graph G’, from Figure 2. Let

U = {u,2,u1,3,up,1, 2,3, U3,1,U3,2}
W = {w,w’}

V = {v1, 02,03}

V' = {v],v5,05}
Now, it is easy to observe that every subset C of V U V’ that
does not contain both v; and v} for some i < 3 is a 2-clique.
Such 2-cliques are not maximal, however. A subset C € V U
V’ U W will be a maximal connected 2-clique if (1) C contains
precisely one among v;, v} for each i < 3,and (2) C contains w, w’.
Thus, for example, {v1, vy, vé} is a 2-clique (but not maximal
nor connected), and {v1, vy, vé, w, w’} is a maximal connected 2-
clique in G. Note that there are additional ways to form maximal
connected 2-cliques, when taking nodes from U. For example,
{v1, vé, w, w’,u1,2} is also a maximal connected 2-clique.

We can now formally state our problem of interest: Given a
graph G and an integer s, enumerate (i.e., find, one after another)
all maximal connected s-cliques in G. As larger s-cliques can,
naturally, be more interesting, we will also briefly consider a

63

U1 U1
VRN VRN
U2 (<3 v2 V6
S N VA NN
U3 Uy Us U3 Vg U5
\—/
(a) H (b) H?

Figure 3: Graph H and corresponding graph H?.

related problem, i.e., that of finding maximal s-cliques of size at
least k, for some given number k.

REMARK 1. We do not consider enumeration of maximal s-
cliques that are not necessarily connected. This is because enu-
meration of maximal s-cliques over a graph G can be reduced to
maximal clique enumeration: Define G® as the graph containing an
edge between nodes u, v if they are of distance at most s in G. Then,
the maximal cliques in G* are precisely the maximal s-cliques in G.
However, this reduction is not applicable for connected s-cliques,
as cliques in G® can correspond to unconnected sets in G. Hence,
enumeration of maximal connected s-cliques is more difficult, as
the following example demonstrates.

Consider the graphs H, H? in Figures 3 (a) and (b). The graph
H? contains an edge between every pair of nodes in H that are
of distance at most 2 one from another. Every 2-clique in H is a
clique (in the standard sense) in H2. Observe, for example, that
the sets C1 = {v1, v2,vs} and Co = {v1,v3, vs} are 2-cliques in H
and cliques in H?. Unlike the set Cy, the set Cy is not a connected
2-clique. Indeed no two nodes in Cy are connected in H, and thus,
Cy forms an unconnected subgraph of H. This cannot be seen when
looking at H? alone; the information about connectedness is lost in
the given graph transformation.

We note that due to the fact that the number of sets in the result
can be exponential in the size of G, the problem of enumerating
all maximal connected s-cliques cannot be solved in polynomial
time. Hence, exponential time may be needed just to print the
output. Therefore, we focus on finding algorithms whose runtime
is either provably efficient with respect to the output size (e.g.,
polynomial delay) or of high efficiency in practice.

Example 3.4. We demonstrate a graph with exponentially
many maximal connected s-cliques for s = 2. It is easy to extend
this idea to derive a graph with exponentially many maximal
connected s-cliques for other values of s. Let n be an integer. Let

V=Avj|i<n} U={ujjli+#j<n}

V' ={v]|i<n} W = {w,w’}
be sets of nodes. We add edges {v;, u;,;}, {ui ;. v]’.} for all i #
Jj < n, as well as edges {v;, w}, {vlf, w’} for all i < n. Finally, we
add the edge {w, w’}. Graph G’ from Figure 2 has precisely this
structure, for n = 3.

Every pair of nodes v;, v J’ where i # j have distance 2 one from
another, while v;, vlf have distance 3. Nodes w, w’ are at distance
at most 2 from every node in the graph. Thus, it is easy to see
that every choice of nodes including precisely one among v;, v;,
for all i < n, as well as nodes w, w’, yields a maximal connected
2-clique. (Note that nodes u; ; cannot be added to such sets.)
Thus, the graph derived has at least 2" maximal connected 2-
cliques, while it has only 2n + n(n — 1) + 2 nodes, i.e., the number
of maximal connected 2-cliques is exponential in the size of the
graph.

Algorithm PoLyDELAYENUM(G, s)

1. Q < EmMPTYQUEUE()

2. I <« EmPTYINDEX()

3. C « ExTeNDMax(0, G, s)

4. ENQUEUE(Q,C)

5. INSErT(Z,C)

6. while NoTEMPTY(Q)

7. do C < DEQUEUE(Q)

8. PrRINT(C)

9. forv e Ng’l(C)

10. C’ « ExtENDMax({v}, G[C U {0v}],s)
11. C" « ExTENDMAX(C’, G, s)
12. ifC"¢1

13. then ENoUEUE(Q, C’)

14. INSERT(L,C")

Algorithm ExTENDMAX(C, G, s)

1. ifC=0

2 then add an arbitrary node to C
3. while 3v e N;*(C)nNZ'(C)

4. do C « CU{v}

5. returnC

Figure 4: An polynomial delay algorithm for enumerating
all maximal connected s-cliques.

4 A POLYNOMIAL DELAY ALGORITHM

We present a provably efficient algorithm for enumerating all
maximal connected s-cliques in a given graph G. This algorithm
is inspired by the general purpose algorithm for enumerating
maximal subgraphs satisfying some connected-hereditary prop-
erty, appearing in [10]. Our algorithm, called PoLYDELAYENUM,
appears in Figure 4.

The algorithm PoLYDELAYENUM uses two data structures:

e @, a queue, containing maximal connected s-cliques that
must still be processed. Later, in Section 6, we will also
consider using a priority queue for Q.

e [, an index containing maximal connected s-cliques that
have already been generated. In order to achieve the re-
quired runtime, access to 7 (both insertions and member-
ship checks) must be in time that is at most logarithmic in
the size of 7. Thus, for