
Counting Edges with Target Labels in Online Social Networks
via RandomWalk

Yang Wu

Chinese University of Hong Kong

Shatin, Hong Kong, China

yangwu@cse.cuhk.edu.hk

Cheng Long

Queen’s University Belfast

Belfast, United Kingdom

cheng.long@qub.ac.uk

Ada Wai-Chee Fu

Chinese University of Hong Kong

Shatin, Hong Kong, China

adafu@cse.cuhk.edu.hk

Zitong Chen

Chinese University of Hong Kong

Shatin, Hong Kong, China

ztchen@cse.cuhk.edu.hk

ABSTRACT
Online social networks (OSNs) embed a rich set of information

that could be used in a few fields. Extensive research has been

done on estimating graph properties such as counts of wedges

and triangles in OSNs. While these graph properties which are

defined based on the structural information only are useful at a

coarse level, they are not sufficient in applications where fine-

grained information is desired. In this paper, we study a problem

of estimating a type of graph property, namely the count of edges,

refined by the labels of the users, which are usually available in

users’ profiles, and serves as finer-grained information. Existing

solutions for estimating graph properties pay no attention on

users’ labels and thus they are not suitable for many real world

applications. We develop two algorithms for the problem, each

of which samples a set of edges or nodes via a random walk

process and construct estimators based on the sampled edges

or nodes. Theoretical analysis on the accuracy guarantees of

our algorithms and extensive experiments based on real datasets

verify that our algorithms are superior over baseline algorithms.

1 INTRODUCTION
Online social networks (OSN) is very commonly used in real

life and it embeds a rich set of information that would be useful

in applications from different fields such as social community,

marketing business, political campaigns, etc. People are inter-

ested in knowing some information of graph properties such as

counts of wedges, triangles, cliques, and k-node structures etc.
embedded in OSNs. In the literature, researchers have studied

problems of estimating degree distribution[7, 14, 16], clustering

coefficient[11], graph size[11, 13] and graphlet statistics[5, 21].

These graph properties are usually defined based on the struc-

tural information, e.g., a triangle is a triplet of three nodes which

are connected with one another via links.

We notice that graph properties based on the structure infor-

mation correspond to information at a coarse level only, which

may not be sufficient in some applications. For example, if an ed-

ucation institution considers to introduce a new Spanish course

in Hong Kong, the most important step is to determine whether

there are enough potential users who are likely to take this course

in Hong Kong. One simple but efficient way is to estimate the

number of links/friendships between a user living in Hong Kong

and another user living in Spain in OSNs. The reason is that if a

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

user has Spanish friends, then it is likely that he/she will be in-

terested in learning Spanish. Another example is that estimating

the number of links/friendships between a user living in China

and another user living in Austria in an OSN is an indicator of

how many people from Austria and those from China interact

with each other. Such information is very useful for airlines in

web marketing and advertising, e.g., it could be used for decision

making about whether or not to launch a new flight route be-

tween China and Austria. Thus, graph properties refined by some

feature/label information of users (which are available in user’s

profiles in many cases) correspond to finer-grained information

and could be highly valuable in real world application.

Motivated by this, we propose to estimate graph properties

refined by users’ labels. In this paper, we focus on one type of

graph properties, namely the number of edges with some target

labels. Specifically, given two target labels, we say that an edge is

a target edge if one node of the edge has one target label and the

other node has the other target label. For example, in the example

of estimating the number of links between users living in Spain

and those living in Hong Kong, “Spain” and “Hong Kong” could

be used as two target labels and an edge between a user living

in Spain and another user living in Hong Kong corresponds to a

target edge. Then, the problem studied in this paper is to estimate

the number of target edges for two given target labels.

Existing solutions of estimating graph properties (based on

the structural information only) do not pay any attention to

users’ labels and thus, they could not be used for our problem

of estimating graph properties (based on both the structural

information and the information of users’ labels). Another branch

of studies that is related to ours is labeled graph mining, such

as graph classification [20], subgraph mining [3, 4, 9] and label

prediction [24]. However, these solutions all assume full access

to the graph, which is not true when dealing with OSNs as we

do in this paper since OSNs are only accessible via provided

APIs[11, 13].

To solve the problem of estimating the number of target edges,

we develop two algorithms, namely, NeighborSample and Neigh-

borExploration, both of which are based on a randomwalk on the

graph and sample a set of edges or nodes. NeighborSample sam-

ples a set of k edges with k iterations, at each iteration it samples

one edge by sampling a user via a random walk process and then

sampling a neighbor of this user. NeighborExploration samples

a set of nodes with k iterations via a random walk process and

also explores all neighbors of each sampled node and records

the number of target edges incident to the sampled node, if the

sampled node involves a target label (with the purpose of sam-

pling target edges with higher probabilities). Then, based on the

Series ISSN: 2367-2005 217 10.5441/002/edbt.2018.20

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.20

sample set, we construct unbiased estimators using some statisti-

cal techniques. For each estimator, we conduct some theoretical

analysis on the relationship between the number of samples and

the corresponding accuracy guarantees.

In summary, our main contributions are as follows. First, we

propose to estimate graph properties refined by users’ labels in

OSNs, which, to the best of our knowledge, is the first attempt

to do so. Second, we develop two algorithms for estimating the

number of edges with target labels and provide theoretical anal-

ysis on the accuracy guarantees. Third, we conducted extensive

experiments which verified that the algorithms developed in this

paper are superior over baseline algorithms.

This paper is organized as follows. Section 2 reviews the re-

lated work. Section 3 provides some preliminaries and the prob-

lem definition. Section 4 introduces our proposed algorithms

for estimating the number of edges with target labels. Section 5

presents the experiments and Section 6 concludes the paper and

gives a few directions for future study.

2 RELATEDWORK
In the literature, OSNs with restricted access and labeled graphs

with full access are both popular topics, but to our knowledge,

there has been no study about labeled graphs with restricted

access, which we study in this paper.

A lot of work has been done on online social networks with

restricted access and most existing work is based on randomwalk

methods, which have been used for estimating degree distribu-

tion [7, 14, 16], clustering coefficients [11] and graph size [11, 13].

In [14], the authors introduced a non-backtracking random walk

method, which is more efficient than traditional random walk

for estimating degree distribution. In [11], the authors proposed

simple but efficient sampling algorithms for estimating the clus-

tering coefficient and the graph size via simple random walk.

In addition, node pairs sampling in OSNs has also been studied

in [22]. Recently, Chen et al. [5] proposed the state-of-the-art

random walk based algorithms for graphlets statistics using the

concepts of subgraph relationship graphs and expanded Markov

Chain.

Labels in graph are widely used in many applications, which

has attracted much attention from researchers and a considerable

amount of work has been done on labeled graphs. Particularly, it

has been studies in the area of subgraph mining a lot. In [9], the

authors studied the problem of mining frequent neighbourhood

pattern in labeled graphs and in [4], a method for mining signifi-

cant connected subgraph in labeled graphs is proposed. Anchuri

et al. consider the difference between labels as a cost and intro-

duce an algorithm for mining approximate subgraph patterns

with label cost [3]. Labels are also used in graph classification. In

[20], the authors proposed an algorithm for classifying labeled

nodes based on structural neighbourhood. Recently, Ye et al. [24]

considered a new scenario where only very few vertices have

labels compared to large amounts of unlabeled vertices, and pro-

posed an algorithm which leverages the limited user information

and friendship network wisely to infer the labels of unlabeled

users in OSNs.

3 PRELIMINARIES AND PROBLEM
DEFINITION

In this section, we first introduce some basic notations, and then

give a formal definition of the problem.

An OSN is represented as an undirected graphG(V ,E), where
a user corresponds to a node in V and a friendship between two

users corresponds to an edge in E. For each useru inG , we denote
u’s degree by d(u), i.e., d(u) corresponds to the number of u’s
friends. Each user/node inV has a set of labels such as this user’s

gender, profession, living country etc. which could be found out

in most cases by checking users’ profile. For an edge (u,v), we
define its label as a pair of two labels, one is a label of u and the

other is a label of v .
Let t1 and t2 be two target labels. We say that an edge (u,v)

is a target edge if the edge has the pair of t1 and t2 as one of its
labels, i.e., either u has t1 and v has t2, or v has t1 and u has t2.
We say that (t1, t2) is the target edge label. Let F be the number

of target edges. In this paper, we study the problem of estimating

F with the following assumptions: (1) we have no full access to

the graph G(V ,E) but only some limited access via APIs each of

which can be used to retrieve the list of friends/neighbors of a

given user; (2) the information of |V | and |E | is available as prior
knowledge (this is reasonable since this information can be often

obtained from the OSN owner’s reports or Internet, and in case

that such information is not publicly available, some existing

methods such as [11] and [23] could be used to estimate |V | and
|E |, respectively).

We also derive the bound on the sample size which can achieve

an (ϵ,δ)-approximation estimation of F . The F̂ which satisfies

the following equation is an (ϵ,δ)-approximation estimation of

F .

P[(1 − ϵ)F < F̂ < (1 + ϵ)F] ≥ 1 − δ (1)

4 ESTIMATORS OF NUMBER OF EDGES
WITH TARGET LABEL

We propose to estimate the number of edges with target labels by

first sampling a set of edges or nodes and then constructing an

(un-biased) estimator based on the set of sampled edges or nodes.

In the following, we introduce two algorithms, one for sampling

edges and the other for sampling nodes, both of which are based

on a random walk on the graph. The first one, as presented in

Section 4.1, is called NeighborSample and samples a set of k edges

withk iterations at each of which it samples one edge by sampling

a user via a random walk process and then sampling a neighbor

of this user. The second one, as presented in Section 4.2, is called

NeighborExploration and samples a set of nodes with k iterations

via a randomwalk process and also explores all neighbors of each

sampled node and records the number of target edges incident to

the sampled node, if the sampled node involves a target label (with

the purpose of sampling target edges with higher probabilities).

For each sampling algorithm, we use Hansen-Hurwitz esti-

mator [10], Horvitz-Thompson estimator [12] and Re-weighted

estimator [17] to estimate the number of target edges. Hansen-

Hurwitz estimator and Horvitz-Thompson estimator are two

simple and widely used estimator when samples are sampled

with unequal probabilities, and Re-weighted estimator is an esti-

mator based on the Hansen-Hurwitz estimator.

4.1 Estimation Based on NeighborSample
4.1.1 Sampling Process. NeighborSample samples a set S of

k edges with k iterations. At each iteration, it samples an edge

by sampling a user u via simple random walk first and then

randomly picking one of u’s neighbors, says v (i.e., (u,v) corre-
sponds to the edge sampled at this iteration). The pseudo-code

of NeighborSample is presented in Algorithm 1.

218

Algorithm 1 NeighborSample

Require: an online social network G(V ,E) accessible via APIs
1: S ← ∅
2: for i: 1← k do
3: Sample a user ui via simple random walk

4: Sample a neighbor vi of ui randomly

5: S ← S ∪ (ui ,vi)
6: end for
7: Return S

Based on the sampling process, we construct two different

estimators, one is based on the Hansen-Hurwitz Estimator and
the other is based on the Horvitz-Thompson Estimator.

4.1.2 Hansen-Hurwitz Estimator. We define Xi (1 ≤ i ≤ k)
to be the edge sampled at the ith iteration of the sampling pro-

cess. Consider the distribution of Xi . First, Xi could be any edge

(u,v) ∈ E. Second, an edge (u,v) is sampled if and only if the

following two events happen: (E1) u is sampled by the random

walk (line 3 in Algorithm 1) and then v , as one of u’s neighbors,
is picked (line 4 in Algorithm 1) and (E2) v is sampled by the

random walk (line 3 in Algorithm 1) and then u, as one of u’s
neighbors, is picked (line 4 in Algorithm 1). Third, the proba-

bility of event E1 is equal to
d (u)
2 |E | ·

1

d (u) =
1

2 |E | (the probability

that u is sampled by the random walk is equal to
d (u)
2 |E | according

to the stationary distribution of a random walk [8, 18] and the

probability that one specific neighbor of u is sampled is equal to

1

d (u)) and so is that of event E2. Therefore, the probability that

Xi corresponds to any edge (u,v), denoted by π (Xi = (u,v)),
is equal to

1

2 |E | +
1

2 |E | =
2

2 |E | =
1

|E | , i.e., Xi corresponds to a

uniform sample from the set of edges.

Now, consider
I (Xi)
π (Xi)

which is also a random variable, where

I (Xi) is an indicator function and I (Xi) = 1 if Xi is one target

edge, and 0 otherwise.We deduce that E[I (Xi)
π (Xi)

] =
∑
Xi ∈E I (Xi) =

F . Based upon on this, we construct an estimator of F as
I ((ui ,vi))

π (Xi=(ui ,vi))
= |E | · I ((ui ,vi)), which could be verified to be unbiased. Since

in each iteration, we can construct such an estimator, we use

the average of these estimators as the final estimator, which is

presented as follows.

F̂ = 1

k
∑
1≤i≤k |E | · I (Xi) =

1

k
∑
1≤i≤k |E | · I ((ui ,vi)) (2)

This estimator corresponds to a Hansen-Hurwitz estimator [10].

Implementation.A straightforward implementation of theNeigh-

borSample sampling process as shown in Algorithm 1 would

perform k random walk processes. We note that performing a

random walk process is costly since it needs to walk for some

enough steps (which corresponds to the mixing time [6] of the
random walk) in order to achieve the stationary distribution,

where each walk from one user to one of her neighbors requires

to issue an API call. Fortunately, we observe that the above es-

timator does not require to sample edges (ui ,vi) (1 ≤ i ≤ k)
independently, and thus we propose to sample all these edges

using a single random walk process. Specifically, it performs a

enough number of simple random walk steps first (i.e., the mix-

ing time is achieved) and then continues to walk for k steps

further, each via an edge. At the end, it picks those edges it walks

through at the last k steps as the sampled edges. In this way, k
edges are sampled via only a single random process and as could

be verified, the probability that one sampled edge corresponds

to a specific edge in the graph is still equal to
1

|E | and thus the

estimator constructed above is still valid.

Analysis. In this part, we derive theoretical results on the num-

ber of edges to sample in order to achieve some pre-set accuracy

guarantee.

Theorem 4.1. Let 1 > δ > 0, ϵ ≤ 1 and k ≥ 1. Sampling
k edges in NeighborSample will return an (ϵ,δ)-approximation
estimation of F by the Hansen-Hurwitz estimator, if

k ≥
∑
X ∈E |E | ·I (X)−F 2

ϵ 2 ·F 2 ·δ

Proof. Since F = E[I (Xi)
π (Xi)

], if 1

k
∑k
i=1

I (Xi)
π (Xi)

is an (ϵ,δ)-approximation

estimation of E[I (Xi)
π (Xi)

], then F̂ is also an (ϵ,δ)-approximation es-

timation of F .

LetY = 1

k
∑k
i=1

I (Xi)
π (Xi)

, thenE[Y] = F andVar [Y] = 1

k (E[
I (Xi)

2

π (Xi)2
]−

E[I (Xi)
π (Xi)

]2) = 1

k ·
∑
X ∈E

I (X)
π (X) −F

2
and E[Y] = F . By Chebyshev’s

inequality (see Appendix A), we obtain the bound of k for achiev-

ing (ϵ,δ)-approximation.

k ≥
∑
X ∈E |E | ·I (X)−F 2

ϵ 2 ·F 2 ·δ □

4.1.3 Horvitz-Thompson Estimator. For each edge e = (u,v) ∈
E, we define a new indicator functionH (e ∈ S) such thatH (e ∈ S)
is equal to 1 if e is sampled by the NeighborSample sampling

process once or multiple times, and 0 otherwise. We define Pr (e)
as the probability that an edge e is sampled in at least one iteration

of the NeighborSample sampling process, i.e., e ∈ S . Consider
Pr (e) for a specific edge e , we observe that the event that e is not
sampled happens if and only if all following k events happen: e

is not sampled in the ith iteration for 1 ≤ i ≤ k . Considering
that the probability that each of these events happens is equal

to (1 − 1

|E |) and these events are independent, we know that the

probability that e is not sampled in any of iterations is equal to

(1 − 1

|E |)
k
, which further implies that the probability that e is

sampled in at least one of the iterations, i.e., Pr (e), is equal to

(1 − (1 − 1

|E |)
k).

Then, we construct an estimator of F as follows.

F̂ =
∑
e ∈E

I (e)
Pr (e)H (e ∈ S) =

∑
e ∈E

I (e)
1−(1− 1

|E |)
k H (e ∈ S) (3)

Next we show how this estimator is derived and that it is unbiased.

Define {S1, S2, ..., Sm } as the collection of all possible sample sets

each of which contains k edges from the edge set E. Let P(Si) be
the probability that we get set Si as the sample set in Neighbor-

Sample process. Let S be a random set from {S1, S2, ..., Sm }, we
have

E[
∑
e ∈E

I (e)
Pr (e)H (e ∈ S)] =

∑m
j=1 P(Sj)

∑
e ∈E

I (e)
Pr (e)H (e ∈ Sj)

=
∑
e ∈E

I (e)
Pr (e)

∑m
j=1 P(Sj)H (e ∈ Sj)

=
∑
e ∈E

I (e)
Pr (e)Pr (e) =

∑
e ∈E I (e) = F

(4)

So the estimator F̂ =
∑
e ∈E

I (e)
Pr (e)H (e ∈ S) is an unbiased estima-

tor.

Implementation.Different from the case of theHansen-Hurwitz

estimator in Section 4.1.2, the Horvits-Thompson estimator re-

quires that the edges sampled in different iterations are inde-

pendent. With the implementation in Section 4.1.2, the edges

sampled are not independent since the edge sampled at the cur-

rent iteration is adjacent to the one sampled at the last iteration.

To meet the independence requirement, we adopt an existing

strategy [11], which is to use those vertices (and edges) which are

219

sampled far away from each other by a certain number r of steps
in the random walk process, (in this way, every two sampled

edges could be regarded as approximately independent sampled

edges, and following [11], we set r as 2.5%k) in our experiments.

Analysis. In this part, we derive some theoretical results on

the number of edges to sample in order to achieve some pre-set

accuracy guarantee.

Theorem 4.2. Let 1 > δ > 0, ϵ ≤ 1 and k ≥ 1. Sampling
k edges in NeighborSample will return an (ϵ,δ)-approximation
estimation of F by the Horvitz-Thompson estimator, if

k ≥ maxe ∈E log
I (e)2+B

B /log 1

A(e)
where A(e) = 1 − 1

|E | and B = δϵ2 · F 2/|E |.

Proof. Let πe =
1

|E | be the probability of sampling edge e in

one NeighborSample process. In [12], it has been proved that the

variance of the Horvitz-Thompson estimator is

Var [F̂] = E[F̂ 2] − E[F̂]2

=
∑
e1∈E

∑
e2∈E

I (e1)I (e2)
Pr (e1)Pr (e2)

E[H (e1 ∈ S)H (e2 ∈ S)]

−
∑
e1inE

∑
e2inE

I (e1)I (e2)
Pr (e1)Pr (e2)

E[H (e1 ∈ S)]E[H (e2 ∈ S)]

=
∑
e1inE

∑
e2inE

I (e1)I (e2)
Pr (e1)Pr (e2)

Cov(H (e1 ∈ S),H (e2 ∈ S))

(5)

Since Cov(H (e1 ∈ S),H (e2 ∈ S)) = Pr (e1, e2) − Pr (e1)Pr (e2),
where Pr (e1, e2) = Pr (e1) + Pr (e2) − (1 − (1 − πe1 − πe2)

k) for

e1 , e2 and Cov(H (e1 ∈ S),H (e2 ∈ S)) = Pr (e1)(1 − Pr (e1)) for
e1 = e2, so we have

Var [F̂] =
∑
e1∈E (

1−Pr (e1)
Pr (e1)

)I (e1)
2+∑

e1∈E
∑
e2∈E,e2,e1 (

Pr (e1)+Pr (e2)
Pr (e1)Pr (e2)

+

−{1−(1−πe
1
−πe

2
)k }−Pr (e1)Pr (e2)

Pr (e1)Pr (e2)
)I (e1)I (e2)

(6)

The second term in the right hand side of Equation (6) can be

simplified as ∑
e1∈E

∑
e2∈E,e2,e1 (

(1−πe
1
−πe

2
)k

Pr (e1)Pr (e2)

−
(1−πe

1
−πe

2
+πe

1
πe

2
)k

Pr (e1)Pr (e2)
)I (e1)I (e2)

(7)

since πe1 = πe2 = 1/|E | ≥ 0, it is obvious that 1 − πe1 − πe2 ≤
1−πe1−πe2+πe1πe2 . As a result, the term 7 is also negative, so we

can ignore this term. By Chebyshev’s inequality (see Appendix

A), we have ∑
e ∈E (

(1−πe)k

1−(1−πe)k
)I (e)2 ≤ δϵ2 · F 2 (8)

so if

(
(1−πe)k

1−(1−πe)k
)I (e)2 ≤ δϵ2 · F 2/|E | (9)

holds for each e ∈ E, then Equation (8) also holds.

Define A(e) = 1 − πe and B = δϵ2 · F 2/|E |, then we obtain the

bound of k for achieving (ϵ,δ)-approximation.

k ≥ maxe ∈E log
I (e)2+B

B /log 1

A(e) (10)

□

4.2 Estimation Based on
NeighborExploration

4.2.1 Sampling Process. NeighborExploration samples a set

S of nodes with k iterations for a given integer k . At each itera-

tion, it first samples a node by a random walk process and then

explores all edges incident to u if u involves a target label. The

Algorithm 2 NeighborExploration

Require: an online social network G(V ,E) accessible via APIs
Require: a pair of two target labels t1 and t2
1: S ← ∅
2: for i: 1← k do
3: Sample a user ui via simple random walk

4: if ui has label t1 or label t2 then
5: Explore all the neighbors ofui and compute the number

of target edges incident to ui and we use function T
to record the mapping from ui to the number of target

edges incident to ui .
6: end if
7: S ← S ∪ ui
8: end for
9: Return S and function T

rationale of exploring all neighbors of the user u is that once we

know that u has a target label, the probability that we can find a

target edge incident to u would be relatively high since one of

the two target labels has been covered already. The pseudo-code

of NeighborExploration is presented in Algorithm 2.

4.2.2 Hansen-Hurwitz Estimator. Wedefine a random variable

Yi to be the node sampled at ith iteration of NeighborExploration

sampling process. Yi could be any user u ∈ V and the probability

that Yi corresponds to a specific user u, denoted by π (Yi = u),

is equal to
d (u)
2 |E | which is based on the stationary distribution of

a simple random walk. We define T (Yi) as the number of target

edges incident toYi , which also corresponds to a random variable

and could be computed when all neighbors of Yi are explored
after we sample Yi in the random walk process.

Now, consider
T (Yi)
π (Yi)

which is also a random variable. We de-

duce that E[T (Yi)π (Yi)
] =

∑
u ∈V T (u) = 2 · F . Based upon on this,

we construct an estimator of F as
T (Yi)
2·π (Yi)

which could be easily

verified to be unbiased. Since in each iteration, we can construct

such an estimator, we use the average of these estimators as the

final estimator, which is presented as follows.

F̂ = 1

k
∑
1≤i≤k

T (Yi)
2·π (Yi)

= 1

k
∑
1≤i≤k

|E | ·T (ui)
d (ui)

(11)

This estimator corresponds to a Hansen-Hurwitz estimator [10].

Implementation. Same as the case in Section 4.1.2, the estimator

here does not require that the sampled nodes are independent.

As a result, it can sample all nodes via a single random process by

performing an enough number of simple random walk steps first

(i.e., the mixing time is achieved) and then continuing to walk for

k steps further. At each of the last k steps, it checks whether the

current user u involves a target label. If so, it explores all edges

incident to this user, and records T (u).

Analysis. In this part, we derive some theoretical results on the

number of nodes to sample in order to achieve some pre-set

accuracy guarantee.

Theorem 4.3. Let 1 > δ > 0, ϵ ≤ 1 and k ≥ 1. Sampling k
nodes in NeighborExploration will return an (ϵ,δ)-approximation
estimation of F by the Hansen-Hurwitz estimator, if

k ≥

∑
u∈V

2|E |·T (u)2
du

−4F 2

4ϵ 2 ·F 2 ·δ

220

Proof. Since F = 1

2
E[T (Yi)π (Yi)

], if 1

k
∑k
i=1

T (Yi)
π (Yi)

is an (ϵ,δ) -

approximation estimation of E[T (Yi)π (Yi)
], then F̂ is also an (ϵ,δ)-

approximation estimation of F .

LetX = 1

k
∑k
i=1

T (Yi)
π (Yi)

, thenE[X] = 2F andVar [X] = 1

k (E[
T (Y)2

π 2

Y
]

- E[T (Y)πY]
2) = 1

k ·
∑
u ∈N

T (u)2
πu − 4F 2. By Chebyshev’s inequal-

ity (see Appendix A), we obtain the bound of k for achieving

(ϵ,δ)-approximation.

k ≥

∑
u∈V

2|E |·T (u)2
du

−4F 2

4ϵ 2 ·F 2 ·δ
(12)

□

4.2.3 Horvitz-Thompson Estimator. We define an indicator

function H (u ∈ S) such that H (u ∈ S) is equal to 1 if u is sampled

by the NeighborExploration sampling process once or multiple

times, and 0 otherwise. S is the sample set obtained from the

NeighborExploration sampling process. Then, we define Pr (u) as
the probability that a nodeu is sampled in at least one iteration of

the NeighborExploration sampling process, i.e., u ∈ S . Consider
Pr (u) for a specific node u. We observe that the event that u is

not sampled happens if and only if all following k events happen:

u is not sampled in the ith iteration for 1 ≤ i ≤ k . Considering
that the probability that one of these events happens is equal

to (1 −
d (u)
2 |E |), and these events are independent, we know that

the probability that u is not sampled in any of iterations is equal

to (1 −
d (u)
2 |E |)

k
, which further implies that the probability that u

is sampled in at least one of the iteration, i.e., Pr (u) is equal to

(1 − (1 −
d (u)
2 |E |)

k).

Then, we construct a Horvits-Thompson estimator of the num-

ber of target edges as follows.

F̂ = 1

2

∑
u ∈V

T (u)
Pr (u)H (u ∈ S) =

1

2

∑
u ∈V

T (u)
1−(1−

d (u)
2|E |)

k
H (u ∈ S)

(13)

This estimator could be verified to be unbiased similarly as it is

done for the Horvits-Thompson estimator based on Neighbor-

Sample in Section 4.1.3.

Implementation. Also, the Horvits-Thompson estimator re-

quires that the nodes sampled in different iterations are inde-

pendent. With the implementation in Section 4.2.2, the nodes

sampled are not independent since the node sampled at the cur-

rent iteration is adjacent to the one sampled at the last iteration.

To meet the independence requirement, we use the same strat-

egy introduced in 4.1.3, which is to use those nodes which are

sampled far away from each other by a certain number r of steps
in the random walk process, and we set r as 2.5%k .

Analysis. In this part, we derive theoretical results on the num-

ber of nodes to sample in order to achieve some pre-set accuracy

guarantee.

Theorem 4.4. Let 1 > δ > 0, ϵ ≤ 1, and k ≥ 1. Sampling k
nodes in NeighborExploration will return an (ϵ,δ)-approximation
estimation by the Horvitz-Thompson estimator, if

k ≥ maxy∈V log
T (y)2+B

B /log 1

A(y)
where A(y) = 1 − πy and B = 4δϵ2 · F 2/|V |.

Proof. Let πy =
dy
2 |E | be the probability of sampling node y

in the random walk process. In [12], it has been proved that the

variance of the Horvitz-Thompson estimator is

Var [F̂] = 1

4
{
∑
y∈V (

1−Pr (y)
Pr (y))T (y)

2+∑
y∈V

∑
z∈V ,z,y (

Pr (y)+Pr (z)
Pr (y)Pr (z) +

−{1−(1−πy−πz)k }−Pr (y)Pr (z)
Pr (y)Pr (z))T (y)T (z)}

(14)

The second term in the right hand side of Equation (14) can

be simplified as ∑
y∈V

∑
z∈V ,z,y (

(1−πy−πz)k

Pr (y)Pr (z)

−
(1−πy−πz+πyπz)k

Pr (y)Pr (z))T (y)T (z)

(15)

since πy = dy/(2|E |) ≥ 0, it is obvious that 1 − πy − πz ≤
1 − πy − πz + πyπz . As a result, term (15) is negative, so we can

ignore this term. Then By Chebyshev’s inequality (see Appendix

A), we have ∑
y∈V (

(1−πy)k

1−(1−πy)k
)T (y)2 ≤ 4δϵ2 · F 2 (16)

so if

(
(1−πy)k

1−(1−πy)k
)T (y)2 ≤ 4δϵ2 · F 2/|V | (17)

holds for each y ∈ V , then Equation (16) also holds.

Define A(y) = 1 − πy and B = 4δϵ2 · F 2/|V |, we can get the

bound of k ,

k ≥ maxy∈V log
T (y)2+B

B /log 1

A(y) (18)

□

4.2.4 Re-Weighted Estimator. Based on the NeighborExplo-

ration sampling process, the nodes are sampled with non-uniform

probabilities, which is different from the case based on the Neigh-

borExploration sampling process. This makes it possible to con-

struct a Re-weighted estimator [17] as follows.

F̂ =
∑k
i=1 T (ui)/d (ui)
2

∑k
i=1 1/d (ui)

· |V | (19)

Here, ui corresponds to the user sampled via the random walk

process in ith iteration. It was known that the Re-weighted es-

timator can be interpreted using the importance sampling (IS)

framework [17]. Specifically, instead of sampling nodes from the

target distribution (i.e., the uniform distribution), the IS frame-

work samples edges from a different and easily implemented trial

distribution (i.e., the stationary distribution of a random walk

process). According to the IS framework, the importance weight

of a useru is given by
1/ |V |

d (u)/2 |E | ∝ 1/d(u), which meets the defini-

tion in Equation (19), where 1/|V | corresponds to the probability

based on the target distribution and d(u)/2|E | corresponds the
probability based on trial distribution.

Implementation. Same as the Hansen-Hurwitz estimator in

Section 4.2.2, the Re-weighted estimator constructed here does

not require that the nodes sampled are independent, and thus

the implementation described in Section 4.2.2, which samples all

nodes with one single random walk process, could be applied.

Analysis. In this part, we derive theoretical results on the num-

ber of nodes to sample in order to achieve some pre-set accuracy

guarantee.

Theorem 4.5. Let 1 > δ > 0, ϵ ≤ 1 and k ≥ 1. Sampling k
nodes in NeighborExploration will return an (ϵ,δ)-approximation
estimation of F the by the Re-Weighted estimator, if

k ≥ max{18

∑
y∈V

T (y)2

πy
−4F 2

ϵ 2 ·4F 2 ·δ , 18

∑
y∈V

1

πy
−|V |2

ϵ 2 · |V |2 ·δ }

221

Proof. Let Y be an random node sampled from one random

walk step and πY =
d (Y)
2 |E | be the probability of sampling node Y

in the random walk process. Since F = E[T (Y)πY]/E[
1

πY] ·
|V |
2

and F̂ =
�
E[T (Y)πY]/

�E[1

πY] ·
|V |
2
, if

�
E[T (Y)πY]/

�E[1

πY] is an (ϵ,δ)-

approximation estimation of E[T (Y)πY]/E[
1

πY], then F̂ is also an

(ϵ,δ)-approximation estimation of F .

Assume that

�
E[T (Y)πY] and

�E[1

πY] are (ϵ/3,δ/2)-approximation

estimations ofE[T (Y)πY] andE[
1

πY] respectively. LetA=

�
E[T (Y)πY]/

�E[1

πY]

and B = E[T (Y)πY]/E[
1

πY], then we have P[A/B > 1−ϵ/3
1+ϵ/3 > 1 −

ϵ,A/B < 1+ϵ/3
1−ϵ/3 > 1+ ϵ] ≥ (1−δ/2)2 > 1−δ . So

�
E[T (Y)πY]/

�E[1

πY]

is an (ϵ,δ)-approximation estimation of E[T (Y)πY]/E[
1

πY].

Let X = 1

k
∑k
i=1

T (yi)
πyi

and Z = 1

k
∑k
i=1

1

πyi
. By Chebyshev’s

inequality in Appendix A, we have

Pr [|X − E[X]| > ϵ/3 · E[X]] ≤ Var [X]
(ϵ/3·E[X])2 ≤ δ/2 (20)

Pr [|Z − E[Z]| > ϵ/3 · E[Z]] ≤ Var [Z]
(ϵ/3·E[Z])2 ≤ δ/2 (21)

SinceE[X] = 2F ,Var [X] = 1

k (E[
T (Y)2

π 2

Y
]−E2[T (Y)πY]) =

1

k (
∑
y∈V

T (y)2
πy −

4F 2),E[Z] = |V | andVar [Z] = 1

k (E[
1

π 2

Y
]−E2[1

πY]) =
1

k (
∑
y∈V

1

πy −

|V |2), we have

k ≥ max{18

∑
y∈V

T (y)2

πy
−4F 2

ϵ 2 ·4F 2 ·δ , 18

∑
y∈V

1

πy
−|V |2

ϵ 2 · |V |2 ·δ } (22)

□

5 EXPERIMENTAL RESULTS
5.1 Experimental Set-up
Datasets.We used 5 real datasets which are publicly available

and widely used in previous work [5, 11, 13] as shown in Table 1.

In the experiment, we simulate the scenario where we only have

accesses to the graphs via APIs. In each network, we remove

the directions of edges, self-loops and multi-edges. We use the

largest connected component for each network (since the method

could be similarly run on other connected components) and the

statistics of the largest connected components of networks are

shown in Table 1.

In order to show the efficiency and effectiveness of our algo-

rithms comprehensively, we use several types of labels to evaluate

our algorithms. In Facebook and Google+, we use users’ genders

as node labels. In Pokec, we use users’ locations as node labels.

Such information can be obtained in the users’ profiles in these

networks. While in Orkut and Livejournal, the node degree is

considered as the node label since we do not have the users’

profiles in these two networks. Node degree contains structural

information about the graph and in OSNs, it shows the number

of friends that the user has. In order to simplify the discussion,

all the labels are denoted by integers in the experiments.

Mixing Time. The mixing time of the Markov Chain is defined as

the minimal length of the random walk in order to reach the sta-

tionary distribution. Following [2, 19], we define the mixing time

of a Markov chain on G parameterized by a variation distance

parameter ϵ as follows,

Definition 5.1. The mixing time parameterized by ϵ of a Markov
Chain is defined as

T (ϵ) = maxi min{t : |π − π (i) |1 < ϵ}

= maxi min{t : 1

2

∑
u ∈V |π (u) − [π

(i)P t](u)| < ϵ}
(23)

where vector π is the stationary distribution and P is the transi-
tion matrix. Vector π (i) is the initial distribution concentrated at
node i , i.e. the i-th element is 1 and all the other elements are 0.
[π (i)P t](u) is the u-th element in π (i)P t . |π − π(i) |1 is the total
variation distance which is a distance measure of two probability
distributions.

After testing, we find that when ϵ = 10
−3

which is small

enough, the mixing time of Facebook, Google+, Pokec, Orkut

and Livejournal is 3200, 200, 100, 800 and 900 respectively which

are not very large. So it is easy to achieve the stationary distri-

bution quickly in our experiments. Note that the nodes or edges

encountered in the random walk before the mixing time are not

included in the sample set.

Table 1: Statistics of Datasets
Network |V | |E |

Facebook [15] 4.0 × 103 8.82 × 104

Google+ [15] 1.08 × 105 1.22 × 107

Pokec [15] 1.6 × 106 2.23 × 107

Orkut[1] 3.08 × 106 1.17 × 108

Livejournal[1] 4.8 × 106 4.28 × 107

Table 2: Abbreviations of Algorithms

Algorithm Name Abbreviation

NeighborSample with the NeighborSample-HH

Hansen-Hurwitz estimator

NeighborSample with the NeighborSample-HT

Horvitz-Thompson estimator

NeighborExploration with the NeighborExploration-HH

Hansen-Hurwitz estimator

NeighborExploration with the NeighborExploration-HT

Horvitz-Thompson estimator

NeighborExploration with the with NeighborExploration-RW

Re-weighted method

Existing algorithm using EX-RW

re-weighted method

Existing algorithm using EX-MHRW

Metropolis-Hastings random walk

Existing algorithm using EX-MD

maximum degree random walk

Existing algorithm using EX-RCMH

Rejection-controlled Metropolis-Hastings

Random Walk Algorithm on Edges

Existing algorithm using General Maximum EX-GMD

Degree Random Walk Algorithm on Edges

Adaptations of Existing Algorithms. In addition to the two

algorithms and their five corresponding estimators developed in

this paper, we consider a few baseline methods adapted from an

existing study [16]. In [16], the authors have summarized several

common used algorithms which perform random walk on nodes

to get unbiased estimation of the relative count of target nodes

which has a particular degree. If we multiply this estimation by

the total number of nodes, then we can obtain the estimation

of the count of target nodes. Those existing methods cannot be

applied directly to our problem, since our problem is to estimate

the number of target edges instead of target nodes. However, we

find that if we transform the original graph G into a new graph

G ′, then we can apply those existing algorithms in [16] on graph

G ′ to get the estimation of the count of target edges in G. We

first describe how to construct G ′ base on G.
Let G = (V ,E) be the given graph, we construct a new graph

G ′ = (H ,R) based on G with the following properties,

222

• Each edge in G corresponds to a node in G ′ and all these

nodes constitute the node set H in G ′. Thus, we have

|H | = |E |.
• Two nodes in H are connected by an edge in G ′ if and
only if they share one common vertex of G and all these

edges constitute R.

where V and E are node set and edge set in G, and H and R are

node set and edge set in G ′.
It is obvious that if we apply the existing algorithms in [16] on

graph G ′, then we can get the estimation of the count of target

nodes inG ′. Since each node in G ′ corresponds to an edge in G,
counting the number of target edges inG is the same as counting

the number of target nodes in G ′.
In [16], three existing algorithms, Re-weightedmethod,Metropolis-

Hastings Random Walk algorithm (MHRW), and Maximum De-

gree Random Walk algorithm (MDRW), are reviewed by the au-

thors. Also, two new algorithms, Rejection-controlled Metropolis-

Hastings Random Walk algorithm (RCMH) and General Maxi-

mum Degree Random Walk algorithm (GMD), are proposed by

the authors. Two parameters, α and δ , are used to control the

performance of RCMH and GMD, respectively. The authors sug-

gested to set α ∈ [0,0.3] and δ ∈ [0.3,0.7], and in this paper, we

adopt settings which give the best results.

The abbreviation of each tested algorithm is shown in Table 2,

and all algorithms are implemented in C++, and we conducted

experiments on a Linux machine with Intel 3.40GHz CPU.

Measurements.We adopt the normalized root mean square error
(NRMSE) measure as our error measurement, which is defined

as follows.

NRMSE(F̂) =

√
E[(F̂−F)2]

F =

√
Var [F̂]+(F−E[F̂])2

F , (24)

Note that NRMSE captures both the variance and the bias of the

estimator.

Objectives. The objectives of the experiments can be summa-

rized as follows:

(1) The diversity of the network types and corresponding label

types serve to show that our methods sustain satisfactory

performance across different domains.

(2) The different types of labels in different networks have

very different frequencies. This helps us to investigate

the effect of target edge frequency on the accuracy of the

estimation.

(3) Another factor which can affect the accuracy is the sample

size, we expect the accuracy to improve withmore samples

taken. Hence in our experiments, we vary the sample sizes

and examine the impact.

(4) A major objective is to compare our proposed methods

with the baseline methods, which are outlined in Sec-

tion 5.1. We aim to show that our proposed algorithms

outperform these baseline methods.

(5) Since we propose two algorithms, NeighborSample and

NeighborExploration, it is of interest to compare the two

and find out how they differ and how to choose between

these algorithms depending on the given problem charac-

teristics.

5.2 Comparison among algorithms with
varying sample size

Firstly, we compare the estimation accuracies of different algo-

rithms. We examine the NRMSE results of different algorithms

Table 3: The labels and their corresponding locations in
Pokec

Label Location

2 zilinsky kraj, kysucke nove mesto

13 zahranicie, zahranicie - australia

20 kosicky kraj, michalovce

24 trnavsky kraj, trnava

51 trnavsky kraj, skalica

86 bratislavsky kraj, bratislava - nove mesto

122 kosicky kraj, kosice - ostatne

135 banskobystricky kraj, dudince

while varying the sample size from 0.5%|V | to 5%|V |. Each target

edge label is represented in the form of (A,B) where A and B are

two integers representing two node labels.

In Facebook and Google+, we use one target edge label (1, 2)

(1 and 2 represent female and male respectively), while in Pokec,

Orkut and Livejournal, we pick 4 different target edge labels to

evaluate all algorithms. The results on Facebook are shown in

Table 4. The results on Google+ are shown in Table 5. The results

on Pokec are shown in Tables 6 - 9 (We use 4 target edge labels,

(86,135), (2,51), (13,20), and (24,122). All these numbers represent

locations using Slovak language, which are shown in Table 3).

The results on Orkut are shown in Tables 10 - 13. The results on

Livejournal are shown in Tables 14 - 17.

In these tables, each row shows the NRMSE of an algorithm

with increasing sample size and each column shows the NRMSE

of each algorithm for a fixed sample size. The target edge label,

the count and the percentage count of the target edges are shown

in the caption of each table. Each NRMSE value is calculated by

averaging over 200 independent simulations.

In Pokec, Orkut and Livejournal, there are thousands of edge

labels we can choose.We first order those edge labels in ascending

order of the count of target edges and divide them into 4 parts

with equal size, then we pick one target edge label from each

part randomly. With this method, we can test our algorithms on

both high frequency edge labels and low frequency edge labels.

Tables 18 - 22 show the bounds of number of samples needed

to achieve an (0.1, 0.1)-approximation based Theorem 4.1 - 4.5.

However, from the experimental results in Tables 4 - 17, we find

that the number of samples needed to achieve a good estimation

is much less than the bound.

The best NRMSE results for each sample size are underlined

and marked with bold font. The best NRMSE results and the

corresponding algorithms are also summarized in Tables 23 - 26

when 5%|V | API calls are used.
We summarize our findings as follows.

(1) The best algorithm in each table is always one of our

newly proposed algorithms (NeighborSample and Neigh-

borExploration), demonstrating that our new algorithms

outperform adaptations of existing algorithms.

(2) Our algorithms give good estimation with low API cost.

Tables 23 - 26 summarize the best algorithms and the

corresponding NRMSE values of each tested label when

only 5%|V | API calls are used. The largest NRMSE is 0.209

and most of the NRMSE values are smaller than 0.1. Note

that for some tested target labels, the number of target

edges is relatively small compared with the total number

of edges, while our algorithms can still obtain accurate

estimations. This shows that our proposed algorithms are

highly effective.

(3) The NRMSE results of all algorithms decrease as the num-

ber of API calls increases, whichmeans that our estimation

223

Table 4: Facebook, target label=(1,2), number of target edges=37400, precentage=42.4%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.341 0.227 0.187 0.182 0.171 0.164 0.153 0.142 0.129 0.127

NeighborSample-HT 0.222 0.162 0.159 0.153 0.134 0.118 0.125 0.105 0.102 0.104
NeighborExploration-HH 0.284 0.334 0.247 0.29 0.272 0.164 0.21 0.234 0.178 0.186

NeighborExploration-HT 0.465 0.509 0.52 0.371 0.332 0.296 0.338 0.234 0.324 0.271

NeighborExploration-RW 3.881 2.919 3.857 2.781 2.482 2.891 1.584 2.279 2.363 2.339

EX-MDRW 0.875 0.741 0.676 0.692 0.575 0.554 0.559 0.531 0.485 0.456

EX-MHRW 0.377 0.299 0.246 0.245 0.241 0.182 0.183 0.19 0.164 0.157

EX-RW 0.338 0.244 0.219 0.215 0.177 0.17 0.193 0.148 0.157 0.172

EX-RCMH 0.645 0.513 0.437 0.387 0.421 0.386 0.298 0.30 0.321 0.318

EX-GMD 0.277 0.240 0.181 0.188 0.162 0.179 0.171 0.156 0.156 0.145

Table 5: Google+, target label=(1,2), number of target edges=3280000, precentage=26.89%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.089 0.061 0.053 0.046 0.043 0.037 0.032 0.031 0.031 0.029
NeighborSample-HT 0.092 0.073 0.059 0.048 0.04 0.036 0.033 0.034 0.029 0.03

NeighborExploration-HH 0.7 0.689 0.642 0.627 0.647 0.58 0.558 0.582 0.49 0.491

NeighborExploration-HT 0.611 0.676 0.607 0.713 0.536 0.578 0.547 0.477 0.436 0.499

NeighborExploration-RW 13.506 11.856 16.765 21.985 19.323 16.279 15.079 11.97 6.65 16.06

EX-MDRW 0.478 0.451 0.443 0.379 0.24 0.269 0.259 0.225 0.261 0.207

EX-MHRW 0.169 0.118 0.089 0.078 0.075 0.06 0.066 0.053 0.057 0.055

EX-RW 0.162 0.117 0.113 0.08 0.078 0.07 0.066 0.067 0.058 0.051

EX-RCMH 0.161 0.108 0.09 0.074 0.066 0.051 0.062 0.063 0.052 0.043

EX-GMD 0.388 0.302 0.228 0.252 0.211 0.187 0.163 0.178 0.169 0.161

Table 6: Pokec, target label=(86,135), number of target edges=295, precentage=0.001%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 2.526 1.935 1.413 1.608 1.273 1.38 1.381 1.074 1.007 1.016

NeighborSample-HT 2.802 1.862 1.478 1.378 0.965 1.124 1.174 0.826 1.323 0.853

NeighborExploration-HH 0.761 0.606 0.445 0.339 0.386 0.426 0.302 0.36 0.238 0.209
NeighborExploration-HT 2.023 0.778 0.541 0.659 0.512 0.307 0.364 0.233 0.3 0.241

NeighborExploration-RW 1.861 0.685 0.542 0.466 0.325 0.362 0.457 0.317 0.355 0.307

EX-MDRW 1.0 1.0 1.0 1.0 104.73 1.0 16.607 2.222 13.005 1.0

EX-MHRW 3.492 2.597 1.935 1.783 1.184 1.521 1.527 2.105 1.136 1.47

EX-RW 3.52 2.22 2.656 2.555 1.472 1.533 1.292 1.532 1.237 1.921

EX-RCMH 0.949 0.607 0.450 0.477 0.430 0.405 0.303 0.352 0.314 0.226

EX-GMD 1.0 1.0 1.23 1.35 0.98 2.45 1.23 0.88 0.93 1.06

Table 7: Pokec, target label=(2,51),number of target edges=1163, precentage=0.005%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 1.262 1.036 0.748 0.73 0.701 0.649 0.551 0.478 0.503 0.444

NeighborSample-HT 1.62 1.17 0.768 0.742 0.739 0.578 0.759 0.559 0.599 0.461

NeighborExploration-HH 0.448 0.301 0.319 0.203 0.177 0.169 0.139 0.129 0.16 0.124
NeighborExploration-HT 0.424 0.401 0.235 0.203 0.196 0.159 0.188 0.139 0.149 0.149

NeighborExploration-RW 0.941 0.407 0.257 0.231 0.22 0.175 0.188 0.156 0.172 0.155

EX-MDRW 1.0 3.104 13.812 1.0 27.873 2.122 1.649 4.274 2.599 2.392

EX-MHRW 1.494 1.248 1.132 0.886 0.987 0.759 0.611 0.628 0.506 0.624

EX-RW 1.905 1.604 1.4 0.996 0.921 0.665 0.719 0.751 0.655 0.528

EX-RCMH 1.65 1.00 0.971 0.759 0.648 0.709 0.628 0.511 0.613 0.497

EX-GMD 1.0 5.79 1.0 1.07 1.57 6.08 1.34 3.36 1.68 1.25

Table 8: Pokec, target label=(13,20), number of target edges=2134, precentage=0.01%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 1.108 0.85 0.635 0.696 0.522 0.531 0.448 0.374 0.404 0.36

NeighborSample-HT 1.555 0.877 0.72 0.552 0.565 0.607 0.458 0.381 0.406 0.382

NeighborExploration-HH 0.396 0.264 0.228 0.192 0.164 0.176 0.139 0.137 0.136 0.12
NeighborExploration-HT 0.445 0.28 0.205 0.211 0.173 0.156 0.15 0.128 0.138 0.104

NeighborExploration-RW 0.344 0.275 0.214 0.194 0.149 0.163 0.144 0.135 0.127 0.146

EX-MDRW 7.56 1.0 9.953 11.815 25.159 3.314 8.077 8.987 3.582 2.476

EX-MHRW 1.373 1.291 0.935 0.706 0.695 0.552 0.545 0.546 0.539 0.415

EX-RW 1.803 1.885 0.864 0.679 0.678 0.58 0.616 0.639 0.451 0.548

EX-RCMH 1.21 0.811 0.625 0.877 0.541 0.461 0.496 0.442 0.527 0.419

EX-GMD 1.27 1.0 1.0 1.28 1.00 1.77 3.05 2.30 2.67 1.24

Table 9: Pokec, target label=(24,122), number of target edges=5784, precentage=0.03%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.727 0.532 0.41 0.358 0.291 0.314 0.282 0.25 0.229 0.213

NeighborSample-HT 0.839 0.46 0.409 0.292 0.226 0.34 0.25 0.292 0.267 0.189

NeighborExploration-HH 0.349 0.247 0.196 0.192 0.154 0.124 0.141 0.115 0.096 0.101

NeighborExploration-HT 0.382 0.29 0.214 0.156 0.178 0.143 0.117 0.118 0.107 0.093
NeighborExploration-RW 0.342 0.251 0.204 0.214 0.165 0.147 0.122 0.115 0.121 0.095

EX-MDRW 1.163 20.821 6.422 2.987 2.546 4.971 2.431 6.339 2.183 5.172

EX-MHRW 1.063 0.592 0.516 0.57 0.452 0.354 0.387 0.324 0.393 0.294

EX-RW 0.996 0.84 0.643 0.455 0.482 0.467 0.501 0.39 0.328 0.334

EX-RCMH 0.949 0.607 0.450 0.477 0.430 0.405 0.303 0.352 0.314 0.226

EX-GMD 1.67 1.12 3.03 2.58 2.30 1.81 1.41 1.09 1.25 1.90

224

Table 10: Orkut, target label=(48,45), number of target edges=5627, precentage=0.001%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 1.08 0.884 0.688 0.705 0.578 0.473 0.402 0.379 0.436 0.332

NeighborSample-HT 0.917 0.812 0.487 0.687 0.689 0.343 0.485 0.533 0.341 0.332

NeighborExploration-HH 0.315 0.265 0.195 0.172 0.146 0.141 0.099 0.116 0.096 0.089
NeighborExploration-HT 0.395 0.237 0.154 0.185 0.14 0.117 0.123 0.105 0.109 0.114

NeighborExploration-RW 0.479 0.304 0.215 0.185 0.161 0.156 0.124 0.118 0.116 0.099

EX-MDRW 1.407 9.96 12.876 13.999 10.188 4.846 4.834 3.759 2.085 3.039

EX-MHRW 1.51 0.852 0.843 0.673 0.601 0.613 0.505 0.471 0.429 0.41

EX-RW 1.181 0.693 0.599 0.558 0.542 0.512 0.378 0.41 0.366 0.373

EX-RCMH 0.944 0.670 0.649 0.524 0.425 0.362 0.37 0.379 0.35 0.32

EX-GMD 1.0 1.34 3.41 1.48 1.28 1.40 1.50 1.70 1.35 1.44

Table 11: Orkut, target label=(11,0),number of target edges=49879, precentage=0.043%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.386 0.357 0.231 0.237 0.168 0.186 0.163 0.148 0.147 0.142

NeighborSample-HT 0.284 0.278 0.249 0.268 0.216 0.197 0.149 0.136 0.167 0.152

NeighborExploration-HH 0.491 0.331 0.278 0.228 0.207 0.193 0.168 0.143 0.147 0.147

NeighborExploration-HT 0.425 0.286 0.274 0.21 0.198 0.185 0.156 0.143 0.152 0.122

NeighborExploration-RW 0.31 0.268 0.202 0.188 0.151 0.166 0.149 0.122 0.111 0.124
EX-MDRW 8.977 6.288 2.317 6.809 8.318 7.408 8.366 3.708 2.174 2.973

EX-MHRW 0.662 0.49 0.381 0.368 0.345 0.261 0.291 0.243 0.238 0.212

EX-RW 1.005 0.788 0.678 0.544 0.503 0.424 0.37 0.379 0.355 0.373

EX-RCMH 0.997 0.651 0.491 0.453 0.384 0.312 0.268 0.281 0.271 0.261

EX-GMD 0.995 3.51 1.78 3.11 1.66 1.76 1.39 2.35 1.71 1.47

Table 12: Orkut, target label=(1,0),number of target edges=128501, precentage=0.11%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.198 0.162 0.124 0.112 0.113 0.1 0.086 0.081 0.075 0.068

NeighborSample-HT 0.182 0.125 0.106 0.084 0.088 0.085 0.067 0.064 0.065 0.063
NeighborExploration-HH 0.491 0.331 0.278 0.228 0.207 0.193 0.168 0.143 0.147 0.147

NeighborExploration-HT 0.212 0.156 0.136 0.113 0.11 0.087 0.089 0.077 0.063 0.071

NeighborExploration-RW 0.523 0.35 0.253 0.215 0.189 0.187 0.17 0.136 0.154 0.15

EX-MDRW 8.977 6.288 2.317 6.809 8.318 7.408 8.366 3.708 2.174 2.973

EX-MHRW 11.117 27.794 11.387 8.223 3.273 4.57 1.0 1.619 4.748 5.788

EX-RW 0.662 0.49 0.381 0.368 0.345 0.261 0.291 0.243 0.238 0.212

EX-RCMH 1.18 0.985 0.75 0.688 0.511 0.553 0.473 0.436 0.427 0.468

EX-GMD 1.0 5.72 5.74 1.22 3.26 1.97 1.45 2.05 1.69 2.92

Table 13: Orkut, target label=(6,5),number of target edges=769188, precentage=0.657%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.124 0.079 0.067 0.066 0.056 0.054 0.043 0.045 0.042 0.038

NeighborSample-HT 0.107 0.072 0.071 0.057 0.04 0.04 0.049 0.043 0.032 0.039

NeighborExploration-HH 0.159 0.105 0.096 0.077 0.075 0.067 0.07 0.053 0.053 0.05

NeighborExploration-HT 0.136 0.105 0.1 0.085 0.07 0.063 0.056 0.06 0.054 0.046

NeighborExploration-RW 0.084 0.063 0.057 0.043 0.045 0.04 0.037 0.029 0.028 0.029
EX-MDRW 3.514 2.366 2.551 2.373 1.451 1.403 1.6 1.29 1.297 1.026

EX-MHRW 0.186 0.128 0.105 0.099 0.091 0.082 0.074 0.062 0.068 0.055

EX-RW 0.352 0.231 0.214 0.156 0.153 0.133 0.115 0.116 0.102 0.096

EX-RCMH 0.238 0.178 0.159 0.116 0.116 0.091 0.101 0.087 0.082 0.078

EX-GMD 1.84 0.914 0.904 0.712 0.77 0.705 0.646 0.683 0.693 0.64

Table 14: Livejournal, target label=(34,12),number of target edges=5168, precentage=0.001%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.62 0.445 0.338 0.308 0.25 0.232 0.272 0.254 0.179 0.198

NeighborSample-HT 0.6 0.45 0.259 0.252 0.326 0.243 0.175 0.24 0.209 0.218

NeighborExploration-HH 0.264 0.164 0.158 0.14 0.138 0.094 0.085 0.098 0.089 0.088

NeighborExploration-HT 0.231 0.168 0.173 0.114 0.2 0.117 0.144 0.083 0.086 0.074
NeighborExploration-RW 1.089 0.205 0.244 0.167 0.121 0.108 0.112 0.113 0.099 0.091

EX-MDRW 3.482 1.666 3.297 3.952 2.436 4.498 2.553 2.273 1.647 3.465

EX-MHRW 0.669 0.589 0.422 0.373 0.318 0.303 0.278 0.28 0.247 0.245

EX-RW 0.587 0.451 0.324 0.382 0.267 0.253 0.19 0.161 0.213 0.179

EX-RCMH 0.564 0.343 0.303 0.263 0.248 0.216 0.199 0.186 0.171 0.159

EX-GMD 1.86 1.72 1.70 0.991 1.60 1.30 1.00 0.850 1.11 0.987

Table 15: Livejournal, target label=(19,16), number of target edges=15442, precentage=0.04%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.442 0.291 0.196 0.198 0.193 0.174 0.139 0.144 0.116 0.119

NeighborSample-HT 0.557 0.172 0.257 0.182 0.16 0.146 0.157 0.166 0.129 0.117

NeighborExploration-HH 0.393 0.277 0.265 0.204 0.15 0.136 0.125 0.136 0.118 0.105
NeighborExploration-HT 0.466 0.293 0.236 0.204 0.156 0.164 0.157 0.132 0.133 0.115

NeighborExploration-RW 0.543 0.327 0.278 0.263 0.167 0.159 0.173 0.154 0.13 0.129

EX-MDRW 3.447 4.478 2.861 1.834 2.201 1.527 4.163 1.615 1.89 2.148

EX-MHRW 0.637 0.356 0.303 0.32 0.242 0.233 0.233 0.221 0.187 0.187

EX-RW 0.742 0.359 0.337 0.275 0.333 0.241 0.198 0.194 0.172 0.167

EX-RCMH 0.476 0.282 0.239 0.257 0.224 0.195 0.157 0.151 0.128 0.138

EX-GMD 2.52 1.30 1.26 1.23 1.16 1.33 0.853 0.980 0.735 0.822

225

Table 16: Livejournal, target label=(8,4), number of target edges=203945 precentage=0.48%

0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |
NeighborSample-HH 0.104 0.092 0.082 0.06 0.051 0.048 0.038 0.04 0.039 0.04

NeighborSample-HT 0.105 0.101 0.08 0.053 0.06 0.042 0.048 0.046 0.04 0.04

NeighborExploration-HH 0.138 0.107 0.09 0.078 0.057 0.055 0.067 0.06 0.043 0.048

NeighborExploration-HT 0.135 0.117 0.101 0.103 0.082 0.095 0.105 0.084 0.094 0.087

NeighborExploration-RW 0.152 0.1 0.068 0.061 0.084 0.056 0.055 0.054 0.061 0.039
EX-MDRW 1.761 1.535 1.613 1.191 1.191 1.066 1.442 0.942 1.03 0.781

EX-MHRW 0.19 0.127 0.112 0.094 0.071 0.073 0.064 0.064 0.047 0.051

EX-RW 0.201 0.167 0.134 0.096 0.104 0.084 0.08 0.083 0.074 0.082

EX-RCMH 0.172 0.128 0.105 0.093 0.073 0.0745635 0.07 0.08 0.056 0.053

EX-GMD 1.32 0.835 0.717 0.666 0.642 0.613 0.591 0.592 0.546 0.541

Table 17: Livejournal, target label=(1,0), number of target label=1753000, precentage=4.1%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.094 0.054 0.053 0.041 0.04 0.041 0.031 0.029 0.026 0.028

NeighborSample-HT 0.07 0.057 0.048 0.04 0.037 0.031 0.035 0.027 0.027 0.025

NeighborExploration-HH 0.152 0.083 0.072 0.051 0.052 0.049 0.042 0.037 0.035 0.033

NeighborExploration-HT 0.119 0.089 0.076 0.067 0.056 0.05 0.049 0.044 0.042 0.044

NeighborExploration-RW 0.053 0.048 0.043 0.033 0.031 0.026 0.027 0.024 0.023 0.02
EX-MDRW 3.332 1.757 1.825 0.978 1.14 1.213 1.101 0.95 0.884 0.935

EX-MHRW 0.196 0.131 0.09 0.096 0.079 0.07 0.079 0.068 0.057 0.064

EX-RW 0.252 0.211 0.186 0.145 0.122 0.107 0.11 0.128 0.103 0.08

EX-RCMH 0.155 0.175 0.133 0.111 0.0786 0.092 0.08 0.09 0.067 0.073

EX-GMD 1.16 0.958 0.867 0.726 0.705 0.654 0.642 0.647 0.686 0.59

Table 18: Bound on the number of samples in Facebook
NeighborSample-HH NeighborSample-HT NeighborExploration-HH NeighborExploration-HT NeighborExploration-RW

(1,2) 1359 5398 921 3151 53427

Table 19: Bound on the number of samples in Google+
NeighborSample-HH NeighborSample-HT NeighborExploration-HH NeighborExploration-HT NeighborExploration-RW

(1,2) 2726 13879 1714 25400 445515

converges to the ground truth when more samples or API

calls are used. This behavior is as expected.

(4) In most of the cases, NeighborExploration returns the

best estimations. However, NeighborSample outperforms

NeighborExploration in the cases where the target edges

constitute a larger proportion in the whole edge set. This

is the case for the results of facebook and google+. This

indicates that when the target edges are abundant, neigh-

borhood exploration is not needed to boost the sampling

probability for the target edges.

(5) For the datasets of Orkut and Livejournal, we have multi-

ple sets of results for edge labels with different frequencies.

It is found that the NRMSE values for more frequent labels

are generally smaller than those with less frequent labels.

We have therefore conducted a more systematic study

about the impact of the label frequency, to be reported in

the next subsection.

5.3 Comparison among algorithms with
varying relative count of target edges

We notice that in the same graph, for different target labels the

best algorithms can be different. It turns out that the relative

count of target edges (F/|E |) may also affect the performance of

different algorithms. In order to study the relationship between

the performance of different algorithms and the relative count

of target edges, we measure the values of NRMSE for a range

of F/|E |. The results for Orkut and Livejournal are plotted in

Figure 1 and Figure 2. Each node in these figures corresponds

a target edge label and the x-coordinate is the relative count

of edges with this label and the y-coordinate is the NRMSE of

the target edge count estimation when 5%|V | API calls are used.
Here, we only run experiments on two networks, Orkut and

Livejournal, since the range of the relative count of target edges

in Orkut and Livejournal is much larger than the ranges in other

networks, so the change of NRMSE is more obvious in these

two networks when the relative count of target edges varies.

The results of existing algorithms are not shown, since we have

demonstrated that those algorithms are much less competitive

in the previous experiments. Each NRMSE value is calculated by

averaging over 200 independent simulations.

We summarize our results as follows.

(1) In the same network, as the relative count of target edges

increases, the NRMSE results of all algorithms decrease,

which means that the estimation is more accurate. This is

reasonable, since the probability of sampling target edges

in random walk will be higher if there are more target

edges in the networks, which will result in better estima-

tions.

(2) When the relative count of target edges changes the best

algorithm may also be different. When the relative count

of target edges is small, NeighborExploration algorithms

outperforms NeighborSample algorithms and the differ-

ence is quite significant, but when the relative count of

target edges is large enough, the results of NeighborEx-

ploration algorithms and NeighborSample algorithms are

very close and the best algorithm will change from case

to case.

We explain why our new algorithm NeighborExploration out-

performsNeighborSamplewhen the relative count of target edges

is small as follows. In NeighborSample algorithms, the proba-

bility of sampling a target edge is
F
|E | , since NeighborSample

samples edges uniformly. However, our new algorithm, Neigh-

borExploration, can find a target edge with probability

∑
u∈Q du
2 |E | ,

where node set Q contains all nodes which is included in at least

one target edges, since once we sample a node all target edges

which contains this node will also be found. As a result, our new

algorithm NeighborExploration can obtain target edges with a

226

Table 20: Bounds on the number of samples in Pokec
NeighborSample-HH NeighborSample-HT NeighborExploration-HH NeighborExploration-HT NeighborExploration-RW

(86,135) 7.56 × 107 2.77 × 108 4.08 × 106 3.77 × 108 7.35 × 107

(2,51) 1.91 × 107 2.16 × 108 6.9 × 105 2.54 × 108 1.25 × 107

(13,20) 1.04 × 107 1.89 × 108 4.6 × 105 2.01 × 108 8.27 × 106

(24,122) 3.85 × 106 1.45 × 108 2.3 × 105 1.15 × 108 4.16 × 106

Table 21: Bounds on the number of samples in Orkut
NeighborSample-HH NeighborSample-HT NeighborExploration-HH NeighborExploration-HT NeighborExploration-RW

(48,45) 2.08 × 107 9.62 × 108 2.46 × 105 4.8 × 106 4.44 × 106

(11,0) 2.34 × 106 4.5 × 108 3.3 × 105 1.03 × 108 6.03 × 106

(1,0) 9.1 × 105 2.45 × 108 1.8 × 105 3.97 × 107 3.34 × 106

(6,5) 1.5 × 105 2.11 × 107 1.3 × 104 1.38 × 106 2.49 × 105

Table 22: Bounds on the number of samples in Livejournal
NeighborSample-HH NeighborSample-HT NeighborExploration-HH NeighborExploration-HT NeighborExploration-RW

(34,12) 8.28 × 106 3.16 × 108 1.8 × 105 5.86 × 106 3.23 × 106

(19,16) 2.77 × 106 2.22 × 108 9.6 × 104 4.45 × 106 1.74 × 106

(8,4) 2.09 × 105 3.0 × 107 1.7 × 104 7.10 × 106 3.09 × 105

(6,5) 2.34 × 104 5.93 × 105 9.8 × 103 6.0 × 105 1.76 × 105

higher probability than NeighborSample, especially when F/|E |
is small, so NeighborExploration performs better.

Table 23: Best algorithm for Facebook and Google+ using 5% |V |
API calls

Social Network Label Best algorithm NRMSE

Facebook (1,2) NeighborSample-HT 0.104

Google+ (1,2) NeighborSample-HH 0.029

Table 24: Best algorithm for Pokec using 5% |V | API calls

Label Best algorithm NRMSE

(135,86) NeighborExploration-HH 0.209

(2,51) NeighborExploration-HH 0.124

(13,20) NeighborExploration-HH 0.12

(24,122) NeighborExploration-HT 0.093

Table 25: Best algorithm for Orkut using 5% |V | API calls

Label Best algorithm NRMSE

(48,45) NeighborExploration-HH 0.089

(11,0) NeighborExploration-RW 0.124

(1,0) NeighborSample-HT 0.063

(6,5) NeighborSample-RW 0.029

Table 26: Best algorithm for Livejournal using 5% |V | API calls

Label Best algorithm NRMSE

(34,12) NeighborExploration-HT 0.074

(19,16) NeighborExploration-HH 0.105

(8,4) NeighborExploration-RW 0.039

(1,0) NeighborExploration-RW 0.02

6 CONCLUSION
In this paper, we propose to estimate the number of edges with

target labels, which to the best of our knowledge corresponds to

the first attempt to estimate graph properties refined by users’ la-

bels. To solve the problem, we developed two algorithms, namely

NeighborSample and NeighborExploration, which samples a set

of edges/nodes first and then constructs estimators based on

the sampled edges/nodes. These two algorithms are suitable in

different cases, e.g., NeighborExploration is better than Neighbor-

Sample when the fraction of edges with target labels is low. We

also provide some theoretical results on the accuracy guarantees

of the algorithms. We conducted extensive experiments which

Figure 1: NRMSE vs. number of target edges in Orkut when 5% |V | API calls are
used

Figure 2: NRMSE vs. number of target edges in Livejournal when 5% |V | API calls
are used

verified that the algorithms developed in this paper are superior

over baseline methods.

There are a few directions for future study. For example, it

would be interesting to estimate some other types of graph prop-

erties such as numbers of wedges and triangles refined by users’

labels in OSNs.

REFERENCES
[1] 2016. KONECT Datasets: The koblenz network collection. http://konect.

uni-koblenz.de. (2016).

[2] Louigi Addario-Berry and Tao Lei. 2015. The Mixing Time of the Newman-

Watts Small-World Model. Advances in Applied Probability 47, 1 (2015), 37–56.

[3] P. Anchuri, M.J. Zaki, O. Barkol, S. Golan, and M. Shamy. 2013. Approximate

Graph Mining with Label Costs. In KDD (2013), 518–526.

[4] A. Arora, M. Sachan, and A. Bhattacharya. 2014. Mining Statistically Signif-

icant Connected Subgraphs in Vertex Labeled Graphs. In SIGMOD (2014),

1003–1014.

[5] X. Chen, Y. Li, G. P. Wang, and J. C. S. Lui. 2016. A general framework for

estimating graphlet statistics via random walk. Proc. VLDB Endow. 10, 3 (2016),
253–264.

[6] Y. Press D. A. Levin and E. L. Wilmer. 2008. Markov Chains and Mixing Times.
American Mathematical Society.

227

[7] M. Gjoka, M. Kurant, and C. T. Butts. 2010. Walking in Facebook: A Case

Study of Unbiased Sampling of OSNs. In INFOCOM (2010), 1–9.

[8] Olle Häggström. 2002. Finite Markov chains and algorithmic applications.
Vol. 52. Cambridge University Press.

[9] J. Han and J-R. Wen. 2013. Mining Frequent Neighborhood Patterns in a Large

Labeled Graph. In CIKM (2013), 259–268.

[10] M. Hansen and W. Hurwitz. 1943. On the Theory of Sampling from Finite

Populations. In Annals of Mathematical Statistics 14, 4 (1943), 333–362.
[11] S. J. Hardiman and L. Katzir. 2013. Estimating clustering coefficients and size

of social networks via random walk. In WWW (2013), 539–550.

[12] D. G. Horvitz and D. J. Thompson. 1952. A Generalization of SamplingWithout

Replacement from a Finite Universe. J. Amer. Statist. Assoc. 47, 260 (1952),

663–685.

[13] L. Katzir, E. Liberty, and O. Somekh. 2011. Estimating sizes of social networks

via biased sampling. In WWW (2011), 597–606.

[14] C.-H. Lee, X. Xu, and D. Y. Eun. 2012. Beyond random walk and metropolis-

hastings samplers: why you should not backtrack for unbiased graph sampling.

In SIGMETRICS (2012), 319–330.
[15] J. Leskovec and A. Krevl. 2016. SNAP Datasets: Standford large network

dataset collection. http://snap.standford.edu/data. (2016).

[16] R.-H. Li, J. Yu, L. Qin, R. Mao, and T. Jin. 2015. On random walk based graph

sampling. In ICDE (2015), 927–938.

[17] J. S. Liu. 2001. Monte Carlo Strategies in Scientific Computing. Springer
(2001).

[18] LÃąszlÃş LovÃąsz. 1993. Random Walks on Graphs: A Survey. In Combina-
torics, Paul Erdos is Eighty 2 (1993).

[19] Abedelaziz Mohaisen, Aaram Yun, and Yongdae Kim. 2010. Measuring the mix-

ing time of social graphs. In Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement. ACM, 383–389.

[20] S. Nandanwar and M.N. Murty. 2016. Structural Neighborhood Based Classifi-

cation of Nodes in a Network. In KDD (2016), 518–526.

[21] P. Wang, J. C. S. Lui, B. Ribeiro, D. Towsley, J. Zhao, and X. Guan. 2014.

Efficiently estimating motif statistics of large networks. In ICDE (2014), 8:1–

8:27.

[22] P. Wang, J. Zhao, J. C. Lui, D. Towsley, and X. Guan. 2015. Unbiasedcharacter-

ization of node pairs over large graphs. In TKDD 9, 3 (2015).

[23] Y. Wu, C. Long, A. W. Fu, and Z. Chen. 2017. Counting Edges and Triangles in

Online Social Networks via Random Walk. In APWeb-WAIM (2017), 346–361.

[24] W. Ye, L. Zhou, D. Mautz, C. Plant, and C. Böhm. 2017. Learning from Labeled

and Unlabeled Vertices in Networks. In KDD (2017), 1265–1274.

A CHEBYSHEV’S INEQUALITY
Let X be a random variable with expectation E[X] and variance

var (X). Then the Chebyshev’s inequality states that for any t > 0,

P(|X − E[X]| > t) ≤ var (X)
t 2

(25)

Let X̂ be an estimator of E[X], t = ϵE[X] where 0 < ϵ < 1 and

0 < δ < 1, then we call X̂ an (ϵ,δ)-approximation of E[X], if the
following Chebyshev’s inequality holds.

P(|X̂ − E[X]| > ϵE[X]) ≤ var (X)
(ϵE[X])2 ≤ δ (26)

which shows that the probability of that X̂ is in the range [(1 −

ϵ)E[X], (1 + ϵ)E[X]] is larger than 1 − δ .

228

	Counting Edges with Target Labels in Online Social Networks via Random WalkYang Wu, Cheng Long, Ada Fu, Zitong Chen

