proceedings

O

Beyond Frequencies: Graph Pattern Mining in Multi-weighted
Graphs

Giulia Preti
University of Trento
gp@disi.unitn.eu

Davide Mottin
Hasso Plattner Institute
davide.mottin@hpi.de

ABSTRACT

Graph pattern mining aims at identifying structures that appear
frequently in large graphs, under the assumption that frequency
signifies importance. Several measures of frequency have been
proposed that respect the apriori property, essential for an effi-
cient search of the patterns. This property states that the number
of appearances of a pattern in a graph cannot be larger than the
frequency of any of its sub-patterns. In real life, there are many
graphs with weights on nodes and/or edges. For these graphs, it
is fair that the importance (score) of a pattern is determined not
only by the number of its appearances, but also by the weights on
the nodes/edges of those appearances. Scoring functions based
on the weights do not generally satisfy the apriori property, thus
forcing many approaches to employ other, less efficient, pruning
strategies to speed up the computation. The problem becomes
even more challenging in the case of multiple weighting func-
tions that assign different weights to the same nodes/edges. In
this work, we provide efficient and effective techniques for min-
ing patterns in multi-weight graphs. We devise both an exact and
an approximate solution. The first is characterized by intelligent
storage and computation of the pattern scores, while the second
is based on the aggregation of similar weighting functions to
allow scalability and avoid redundant computations. Both meth-
ods adopt a scoring function that respects the apriori property,
and thus they can rely on effective pruning strategies. Exten-
sive experiments under different parameter settings prove that
the presence of edge weights and the choice of scoring function
affect the patterns mined, and hence the quality of the results
returned to the user. Finally, experiments on datasets of different
sizes and increasing numbers of weighting functions show that,
even when the performance of the exact algorithm degrades,
the approximate algorithm performs well and with quite good
quality.

1 INTRODUCTION

Pattern mining in large graphs has attracted considerable atten-
tion, since it finds applications in many real world scenarios like
fraud detection [31], biological structures identification [16], an-
ticipation of user intention [33], graph similarity search [20], traf-
fic control [21], and query optimization [42]. It has been studied
for graph collections [41], for attributed [35], probabilistic [26],
or even generic large graphs [10]. The goal is to identify patterns
that occur frequently, given that frequency indicates importance.
An interesting property regarding frequency is that a pattern

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

169

Matteo Lissandrini
University of Trento
ml@disi.unitn.eu

Yannis Velegrakis
University of Trento
velgias@disi.unitn.eu

cannot be more frequent that any of its sub-patterns, known as
the apriori property. This property enables efficient implementa-
tions [43], as it ensures that the frequency of a pattern decreases
monotonically as the pattern grows in size, thus allowing the
mining process to start from small patterns and extend to larger
ones only when the frequency of the pattern is above a certain
frequency threshold.

In graph databases the frequency of a pattern has been effec-
tively computed as the number of distinct graphs containing an
appearance of the pattern. However, the same implementation
cannot be used in single large graphs, as each pattern would have
frequency either equal to 0 or to 1. Furthermore, if we simply
define the frequency as the number of distinct occurrences of
the pattern, we may break the apriori property [38]. In fact, this
implementation counts every overlap that may occur among the
occurrences, hence assigning larger frequencies to larger pat-
terns, causing an unwanted (and unjustified) skew in the value
of importance for some patterns. For this reason, alternative met-
rics have been considered in the literature [6, 11, 38], with the
more prevalent one being the MNI support, as it enjoys high
effectiveness [10].

Many real world scenarios are naturally modeled through
weighted graphs, and in these cases, the importance of a pattern
should be determined not only by the frequency, but also by the
weights of its appearances. Examples include the discovery of
metabolic pathways in genomic networks [23], where weights
indicate strength between genomes [8], the identification of top-
ics of interest in large knowledge graphs [29], where weights
quantify the degree a piece of data is qualified as an answer to
a user [39], or the detection of common problematic cases in
computer networks, where weights indicate congestion [5]. Un-
fortunately, weighted graphs do not possess the apriori property,
since the weights of the extra edges/nodes of a larger pattern
may offset its lower frequency. As a consequence, some works
that considered weighted graphs for pattern mining proposed
solutions that are less efficient than those based on the apriori
property [43].

A requirement in modern applications is to offer personalized
products and services rather than generic preferences [34]. Such
generic preferences suit the user on average but fail to deliver the
right answer for each specific user. The same argument holds for
graph patterns. For instance, social network systems record user
interactions [22] and activities [4] and build graphs by modeling
the relationships among users and web content to find frequent
patterns of interactions [30]. Advertisers subsequently exploit
such patterns to target the right customer for a certain product.
Some patterns of interactions may be more important than others
to an advertiser depending on the product or the specific busi-
ness model; in such case, multiple weights are valuable. Other

10.5441/002/edbt .2018.16

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.16

examples include online retailers like Amazon, which build large
graphs on product co-purchases and then exploit the discovered
patterns to recommend future offers [36]. Frequency, number of
items, recency of the purchase, as well as the company’s busi-
ness intentions affect the importance of some co-purchases with
respect to others [34]. Such examples highlight the need for a
solution that accounts for the individual preferences expressed
as a multi-weighted graph, as opposed to “one size fits all” solu-
tions. However, the straightforward approach to multi-weighted
pattern mining that runs the mining algorithm on each weighted
graph separately, is clearly impractical due to the graph size and
the large number of users.

In this paper, we propose a novel approach to mine patterns
in weighted graphs that goes beyond frequencies, yet has per-
formance not significantly different from the pattern mining
in unweighted graphs. We achieve this by defining a family of
scoring functions that are based on the MNI score [6], a metric
that is widely used in graph mining due to its characteristic of
respecting the apriori property, while being efficient to compute.
The solution we have devised is modeled as a constraint satis-
faction problem (CSP), as proposed also for unweighted pattern
mining [10], and implements the pattern growth approach, as
introduced by gSpan [41]. Furthermore, we extend the idea above
for the case of graphs with multiple weights on their edges/nodes.
To avoid running the algorithm one time for each different weight-
ing function, we compute all the scores of each pattern at the
moment we are visiting it, and keep the patterns that return a
high score with respect to at least one weighting function.

In particular we make the following contributions:

(a) We extend the task of pattern mining in weighted large
graphs for a novel family of scoring functions based on the MNI
support [6] (Section 2).

(b) We introduce and formally define the problem of pattern
mining in multi-weight graphs with different weighting func-
tions.

(c) We devise two efficient and effective techniques for solving
the pattern mining problem on weighted graphs (Section 3). The
first one is an exact solution, called RESuM, that is less time
and space consuming than the (naive) brute force method. It
avoids redundant revisits of the graph, by aggregating and per-
forming once multiple computations on the same parts of the
graph, and storing the relevant patterns in a compact way. The
second one is a conservative approximate solution, called RESUM
approximate, that reduces the number of weighting functions
to consider, by aggregating those having a high probability to
generate similar results (Section 4) into a single representative
function. In addition, we show that this method introduces only
few false positives, while running considerably faster than the
exact approach.

(d) We study four different scoring functions (all based on the
MNI support) for devising the score of a pattern in an efficient
way (Section 5).

(e) We evaluate our approach with an extensive set of experi-
ments and discuss our findings (Section 7).

2 PROBLEM DEFINITION

We assume the existence of a countable set of labels ¥ that in-
cludes the special symbol L, and a set Zz)l = [0, 1]JU{L} of weights.
The symbol L in ¥ and IOI is used to denote no label and no weight,
respectively. A weighted graph is a structure that consists of a set
of nodes, a set of edges between them, an assignment of labels

170

0.5

Figure 1: Example of a edge-labeled, weighted graph.

to all the nodes and edges, and an assignment of weights to all

the edges.

Definition 2.1. A weighted labeled graph, or simply a graph,
is a tuple (V, E, £, w) where V is a set of vertices, EC VXV isa
set of edges, { : EUV — X is alabeling function,and w : E — Iol
is a weighting function. The symbol G is used to denote the set
of all the possible graphs.

Note that we assume weights on edges only, mainly for presenta-
tion purposes. Weights on nodes can also be considered with no
need for any major modification. A graph S:(Vs, Es, €, w) is said
to be a subgraph of another graph G:(Vg, Eg, ¢, w), denoted as
SCG, if VsCVi and EsCEg. Note that the two graphs have the
same labeling and weighting function.

To express the fact that two graphs have the same topological
structure, we use the notion of isomorphism, which is a bijective
mapping between the nodes of the two graphs such that the
edges between the nodes, alongside their labels, are preserved
through the mapping.

Definition 2.2. A graph G:(V, E, {, w) is isomorphic to a graph
G'(V',E’, ', @), denoted as G~G’, if there exists a bijective
function ¢:V—V’ such that: V{u, v)€E : ($(u), ¢(v))€E’ and
t((u,) = €'(($(w), p(v))).

A graph G may have multiple isomorphic graphs. To collec-
tively represent those graphs, we introduce the concept of pattern.
Intuitively, a pattern is a graph with no weights, serving as a
representative of a set of isomorphic graphs and describing their
common structure.

Definition 2.3. A patternisagraph (V,E, ¢,), such that Ve €
E : w(e) = L. The symbol # denotes the set of all possible
patterns. Given a graph G, and a pattern P, the support set of the
pattern P is the set SG(P) = {glg T GAg ~ P AP € P}. Each
element in Sg(P) is referred to as an appearance (or matching)
of Pin G.

By definition, the support set of P is the set of all the subgraphs
of G that are isomorphic to P. By abuse of notation we write
P C G and call the pattern P a subgraph of G if its support set is
non-empty. Then, We denote by ¢§ the bijection that maps an
isomorphic subgraph g of G to the pattern P.

Given a scoring function f: PxG—R, we will refer to the
value f(P, G) as the score of P in G. Graph pattern mining is the
task that aims at identifying those patterns that have score higher
than a threshold 7, or the k patterns with the highest score [10].
A natural scoring function is the one that returns the cardinality
of Sg(P), i.e., the number of appearances of the pattern P in the
graph G, and the patterns identified by this function are called
frequent patterns. Nevertheless, it has been shown that this simple
function violates the a-priory property, due to the presence of
overlapping isomorphisms in G [6]. As an example, the frequency
of the pattern P; : [v1]—B—[v2]—A—[v3] in the graph in Figure 1

<0.2;0.7> <0.8;0.2>

A

<0.9;0.3> <0.1;0.1>
A A

O

Figure 2: Graph with two weights < w1, w2 > on each edge.

is 3, while the frequency of its sub-pattern P, : [v1] —B—[v2] is 1.
For this reason a number of works have investigated alternative
scoring functions [11, 15, 25, 38]. Among them, the MNI support
is highly effective and efficient to compute [6].

Definition 2.4. Given a graph G : (V, E, {, w), the MNI sup-
port of a pattern P:(Vp, Ep, {p, wp) in G is the number MNI(P, G)
= mi‘r/l IN(G,v")| where N(G,v’") = {v | veV A JgeS;(P) such

v’ eVp

that (]55(0):0’}.

Intuitively, the set N(G, v’) contains all the nodes of G that
are mapped to the pattern node v’ by some isomorphism ¢5
from g to P. Then, the MNI support is the minimum cardinality
of this set across all the nodes of the pattern P. We can define
similar sets also for the pattern edges, i.e., for each e’ € Ep, the
set E(G,e’) = {ele € E A Jg € Sg(P) such that ¢§(e) =e'}
contains all the edges of G that are mapped to the pattern edge
e’ by some isomorphism ngg (e). Consider, for instance, the graph
G in Figure 1 and the pattern P : [v1] — B — [v2] — A — [v3]. Since
N(G,v1) = {1,3}, N(G,v2) = {1,3}, and N(G,v3) = {2,4,5},
the MNI support of P is 2. On the other hand, the number of
appearances of P in G is 3: Sg(P) = {[3] - B - [1] - A - [2],
[1]-B-[3]-A-[4]. [1]-B-[3] - A-[5]}.

In the presence of weights on edges, the score of a pattern
cannot be based only on the frequency, but should strike a bal-
ance between frequency and weights, allowing also the weights
to play a role in assessing the relevance of the pattern. Thus,
there is a need for a different scoring function that looks beyond
the structure of the subgraphs, by considering the importance of
their edges as well. In this case, we talk about weighted frequent
patterns, or relevant patterns. This alternative scoring function,
however, has to be carefully selected to satisfy the apriori prop-
erty [43].

Furthermore, if there are multiple weighting functions, i.e.,
several functions that assign weights on the graph edges/nodes,
then the pattern mining task must be carried out for each indi-
vidual function. An example of graph with multiple weights on
the edges is illustrated in Figure 2. Such situation leads to the
following specification of the mining task.

Pattern Mining in Multi-Weighted Graphs. Given a thresh-
old 7, a scoring function f and a graph G : (V, E, £, W), where W
is a finite set of weighting functions, we must discover, Yo; € W,
the set of patterns R; = {P|G’ = (V,E,{,w) A f(P,G’) > 7}.

3 SCORE-BASED PATTERN MINING

Our solution to the pattern mining on weighted graphs problem
consists of two steps. The first step is the identification of the
frequent patterns and the elimination of the appearances that
do not satisfy the constraints on the weights imposed by the
scoring function used. In the second step, a score is computed
for each pattern (and for each weighting function in the case of
multi-weighted graphs) in terms of the appearances in its support
set that were selected in the first step.

171

Algorithm 1 RELEVANTPATTERNMINING

Input: Graph G : (V,E,{, w), min score 7
Output: Set of relevant patterns R

1: R « RELEVANTEDGES(G)

2. fE « FREQUENTEDGES(G)

3. while fE # 0 do

4 e «— fE.pop
5: R <« R U PATTERNEXTENSION(G, ¢, 7, fE U {e})
6: return R

7: function PATTERNEXTENSION(G, ¢, 7, fE)
8: Cand «— 0; S « 0
9: for each e € fE do
Cand « Cand U {g o e}
for each ¢ € Cand do
(score, sup) «— EXAMINEPATTERN(G, c)
if sup > 7 then
© « © U PATTERNEXTENSION(G, ¢, 7, fE)
if score > 7 then
S —cU{c}

return S

3.1 Assessing the relevance of a pattern

A scoring function can have many different properties, which
may be desirable for certain applications but not for others. As a
consequence there may be no scoring function that is consistently
better than others in all the applications. Therefore, in this work
we do not advocate a single one-size-fits-all scoring function, but
we propose a framework that can accommodate a wide range of
functions.

Assuming w.l.o.g. that larger weights signify higher impor-
tance, the function f must satisfy the following key properties:
P1: the score f(P,G) monotonically increases with the weights
of its appearances.

P2: the score f(P, G) monotonically increases with the number
of appearances with large weights.

P3: f is MNI-compatible, i.e., f(P,G)>t = MNI(P,G)>r.

Properties P1 and P2 are a natural consequence of our as-
sumption on the importance of the weights, while P3 ensures
the time practicality of the solution.

3.2 Mining weighted graphs
Finding the frequent patterns on weighted graphs requires the
computation of the frequency and the score of each pattern. To
this end, we propose RESUM, an efficient and effective general
algorithm for any MNI-compatible score that exploits the pruning
power of the anti-monotonicity property of the MNI support.

We model the frequent subgraph mining as a constraint satis-
faction problem (CSP) [9]. An instance of the CSP problem is a
tuple (X, D, C) where X is a set of variables, D is a set of domains
corresponding to the variables in X, and C is a set of constraints
between the variables in X. A solution for an instance of CSP
is an assignment from the candidates in D to the variables in X
that satisfies all the constraints in C. The matching problem for
a pattern P C G is then translated into CSP(P) = (Xp, Dp,Cp),
so that any solution for CSP(P) corresponds to a subgraph g
isomorphic to P.

Specifically, each node v € Vp is mapped to a variable x,, € Xp,
each domain D, € Dp is a subset of V containing all the graph

Algorithm 2 EXAMINEPATTERN

Input: Graph G:(V,E,{, w), pattern P, score threshold 7
Output: Score and MNI support of P
1: for each v € Vp do
2 supy — 0
3 D, « {v'eV|e@’) = £(v)}
4: A « automorphisms of P
5: STRUCTURALCONSISTENCY({Dy|v € Vp}, P)
6: for each v € Vp do
7 if 3w = A(v)s.t. Dy, already computed then
8 Dy < Dny
9 continue
STRUCTURALCONSISTENCY({Dy |v € Vp}, P)
if 3Dy s.t. |Dy| < 7 then return (-1, -1)
for each n € D, do
searchforgst.g=P AneVg Anm—wv
if g # Nil then
Valid « 1sVALID(g,)
for eachn’ € Vy, v’ € Vpst.n’ > v’ do
mark n’ in Dy
if Valid then
Supy « supy U {n’}
else
remove n from Dy,
22:
23:

score <— RELEVANCESCORE({supy|v € Vp})
mni < mingev,|Do|
return (score, mni)

N
E

nodes isomorphic to v, and C includes consistency constraints
that enforce a topology isomorphic to that of P [28]. Then, for
each candidate node n € D, we search for a valid assignment
that maps n to v. If no assignment is found, n is removed from the
domain Dy, and the topology constraints are checked again until
no invalid candidate is found in the other domains. At the end
of the process, the number of elements in the smallest domain,
ie,argminp_cp, |Dol, corresponds to the MNI support of P, as
defined in Definition 2.4. Therefore, given a score threshold 7,
P is frequent if each variable in Xp has at least 7 distinct valid
assignments. This means that if the size of some domain D, is
lower than 7, P cannot be frequent. Notice that in general not all
the matching subgraphs of a pattern satisfy the constraints on the
weights forced by the scoring function used, and thus we must
additionally check each of them to determine if it contributes to
the score of the pattern. The aggregated score is then computed
considering only the matches not discarded.

Algorithm 1 outlines the RESUM framework. First, the rele-
vant and the frequent edges are found (Lines 1-2). Then, each
subgraph is recursively extended following the pattern-growth
approach introduced by gSpan [41] (Line 5), until no other exten-
sion is possible. Each extension is a candidate relevant pattern,
whose MNI support is computed alongside its score by the Ex-
AMINEPATTERN procedure (Algorithm 2). This procedure first
initializes the candidate domain D, of each pattern node v € Vp
with all the nodes in G with the same label as v (Lines 1-3), and
the support set sup, of each node v € Vp with the empty set.
Then, the algorithm computes the automorphisms of the pat-
tern (Line 4). Automorphisms are isomorphisms of a graph to
itself and can be used to compute the valid assignments more
efficiently (Lines 7-8), since each assignment valid for a pattern
node v is valid for each automorphic node w too. Finally the

172

algorithm iterates over each candidate node n € Dy, to determine
if it belongs to some subgraph g isomorphic to P (Lines 12-13).
As soon as such subgraph is found, all the domains are updated
(Lines 16-17) and the subgraph is checked for validity (Line 15).
In particular, the 1SVALID procedure compares the edge weights
in g against the constraints specified by the scoring function f,
and if g satisfies the condition, the nodes of the subgraph are
stored in the corresponding support sets (Line 19). These nodes
will contribute to the relevance score of P.

On the other hand, if n does not participate in any isomor-
phism, it is removed from D,,. As a consequence, in the subse-
quent iteration, structural constraints like the minimum degree
of a node mapped to a v € Vp are enforced, to remove candi-
dates that can no longer participate to any isomorphism of P
(Line 10). The algorithm terminates either when all the pattern
nodes have been examined, or when the size of some domain
becomes lower than 7, as in this case P can be neither relevant
nor frequent (Line 11). In the first case, instead, the MNI support
and the relevance score of P are calculated and returned. We refer
to Section 5 for a discussion about suitable scoring functions that
can be implemented in Procedure 1sVALID.

Finally in Lines 13-17 of Algorithm 1, all the frequent patterns
are further extended, while all the relevant patterns are included
in the final set of relevant patterns R. Since we enforce the use
of MNI-compatible scoring functions, the MNI support of P is an
upper-bound of its score, and thus the pruning strategy ensures
that all the relevant patterns are returned.

Complexity. Even though the computation of the automor-
phisms (O(|Vp| IVel)) and the pruning strategy improve the ex-
pected performance of the algorithm, in the worst case it takes
C= ()(2|V|2 [V|!VP1) time, which is exponential in the number of
nodes and the size of the patterns. In particular, O(2 ‘V|2) is the
time required to compute all the patterns in G, and O(|V| Ve |) is
that needed to find all the isomorphisms of a pattern P.

3.3

In the case of multiple edge weights assigned by m weighting
functions W = {w1,...,wmn}, the naive approach for solving
the Pattern Mining in Multi-Weighted Graphs problem runs Al-
gorithm 1 |W| times, once for each function. Evidently, this ap-
proach becomes impractical for large m, as the process of mining
the patterns is computationally intense. In fact, this process would
take O(C™) to terminate.

The naive approach recomputes the same patterns multiple
times, incurring in a significant time overhead that can be avoided
by running the algorithm only once and keeping track of the rele-
vant patterns for each weighting function. This strategy replaces
Line 12 in Algorithm 1 with Algorithm 3, which searches for
the isomorphisms of the pattern P, while checking their validity
with respect to each w; € W, at the same time. Similarly to the
single weight case, we initialize each candidate domain and all
the support sets for each weighting function (Lines 1-4). When
an isomorphic subgraph is found, procedure 1sVALID checks in
parallel each set of edge weights against the constraints set by
the scoring function and stores the results in the auxiliary ar-
ray VAL. If the weights assigned by w; satisfy the constraints,
the nodes of the subgraph are stored in the corresponding sets
SUP,|i] (Line 21).

Finally, all the scores of the candidate pattern c are evaluated
in Line 16 of Algorithm 1, and c is added to the final set R only if
at least one of its scores is larger than 7. As a further optimization,

Mining in multi-weighted graphs

Algorithm 3 EXAMINESUBGRAPHMULTI

Algorithm 4 GENERATEREPRESENTATIVEFUNCTIONS

Input: Graph G:(V,E, {, W), pattern P, score threshold 7
Output: Scores and MNI support of P

1: for each v € Vp do
2 Dy — {v'eVL@’) = €(v)}
3: foreachie1,...,|W|do
4 SUP,[i] < 0

5: A « automorphisms of P

6: STRUCTURALCONSISTENCY({Dy|v € Vp}, P)

7: for each v € Vp do

8 if 3w = A(v)s.t. Dy, already computed then
9

: D‘U — DW
10: continue
11: STRUCTURALCONSISTENCY({Dy|v € Vp}, P)
12: if 3Dy s.t.|Dy| < r then return ({-1,...,-1},-1)

for each n € D, do
searchforgst.g=~P AneVg An—wv
if g # Nil then
VAL « 1sVALID(g, W)
for each n’ € Vy, v’ € Vpsit.n’ v’ do
mark n’ in Dy
foreachie1,...,|W|do
if VAL[i] then
SUP[i] « SUP[i]U {n’}
else
remove n from Dy,

22:
23:
24: 8 < RELEVANCESCORES({SUPy|v € Vp})
25: mni < Mmingy ey, |Dol

26: return (S, mni)

instead of storing in memory the sets of relevant patterns for
each function w;, we maintain a binary vector of size m for each
relevant pattern P, where position i is set to 1 if P is relevant for
Wj.

4 APPROXIMATE ALGORITHM

The exact algorithm introduced in Section 3 incurs a significant
memory overhead when the number of weighting functions is
in the order of thousands, which, for example, is the case for
recommender systems for big retailers (e.g., Amazon). For such
applications, we devise a more conservative approximate solution,
called RESUM approximate, that significantly reduces the memory
consumption by taking advantage of the similarities between the
weighting functions wy, ..., 0m € W.

The RESUM approximate algorithm first generates k < m
representative functions w7, by clustering and aggregating the
original functions w;. Then, it runs Algorithm 3 to compute k
sets of relevant patterns R’l‘, . ,RZ, which are used to build m
approximate sets of relevant patterns Ay, ..., Ay, returned in
place of the exact sets Ry, . . ., Ryy. Clearly, the quality of the ap-
proximate result depends on the way the representative functions
are generated. With our implementation, we aim at returning
a set Aj for each w; that resembles the exact set R; as much as
possible.

4.1 Generation of the representative
functions

The generation of the representative functions is shown in Algo-
rithm 4 and consists of three steps. First, each weighting function

173

Input: Graph G : (V,E,{, W), number of buckets b, number of
clusters k
Output: Set of representative functions W*
1: ¥ < CREATEFEATUREVECTORS(E, W, b)
2: C < coMPUTECLUSTERING(F, k)
3: W* « GENERATEMAXWEIGHTVECTORS(C, W)
4 return W*

Algorithm 5 CREATEBUCKETFEATUREVECTORS

1: function CREATEBUCKETFEATUREVECTORS(E, W,)

2 for each !/ € 3¢ do

3: BucketList; < coMPUTEBUCKETLIMITS(E], W, b)
4 for each w; € W do

5 rf <« FILLBUCKETS(E}, w;, BucketList)

B

for each w; € W do
7 rj « CONCATE({rfU €Xg})

8: return {rl,‘..,r|w‘}

i € W is transformed into a feature vector (Line 1). Secondly,
the weighting functions are clustered into k groups of similar
functions (Line 2). Thirdly, the set of k representative functions
wW* ={o],... ,w;;} is returned (Lines 3-4).

Creation of the feature vectors.

In the first step, we construct a feature vector r; for each wj,
which is used in the second step to determine the similarities
between the functions. Since our final goal is to assign a set of
patterns A; to each w; that is as close as possible to the exact
set R;, a straightforward choice is to use the edge weights as
features. We call this approach full-vector strategy. According to
this strategy, Procedure 1 decides an ordering of the graph edges
and creates m vectors ry,...,I;, of size |E|, where r;[x] is the
weight assigned by w; to the edge in the xth position.

Although similar edge weights lead, with high probability,
to similar sets of relevant patterns, the effectiveness and the
efficacy of the full-vector strategy decrease as the size of the
graph increases. In fact, the high dimensionality of the vectors
complicates the detection of functions with similar properties, as
a consequence of the curse of dimensionality phenomenon [37].

Thus, we propose also a more efficient approach called bucket-
based strategy, which overcomes the problem of high dimen-
sionality by considering the edge labels in place of the graph
edges, as features to build the vectors. The underlying idea is
that, in real scenarios, a preference for an edge is highly corre-
lated with the preference for the label of that edge. This strategy
is implemented in Procedure CREATEBUCKETFEATUREVECTORS
(Algorithm 5), which takes the set of weighting functions W and
the number of buckets b, and generates a set of feature vectors
..,y each of size |Xg| - b, where X indicates the set of dis-
tinct edge labels. In particular, each vector r; is the concatenation
of |Xg| summaries of the edge-weights of w;, one for each edge
label, and b is the resolution of each summary.

The summary for a label is obtained by splitting the range of
admissible weights [0, 1] into b of sub-ranges (buckets) (Line 3),
e.g., [0,x1), [x1,x2), and [x2, 1.0] for b = 3. Then Procedure FILL-
BuckeTs (Line 5) counts, for each sub-range, how many times
the function w; assigns a weight within that sub-range to an edge
with label I. Note that, in the degenerate case of b = 1, the vector

Iy, .

r; simply keeps, for each label, the number of edges with that
label and whose weight is greater than 0.

The bucketization of a label I is performed by Procedure com-
PUTEBUCKETLIMITS (Line 3) following the equi-depth paradigm
[13], which assigns the input values to buckets, while trying to
balance the number of elements in each bucket. Thus, we con-
sider all the weights assigned by all the weighting functions to
edges with label , and split the range [0, 1] into b depth-balanced
intervals.

For example, given b = 2, the label ordering A | C, and the two
weighting functions w1 and wz in Figure 1, we obtain the vectors
r; =[1,3,2,0] and rp = [3, 1,0, 2]. As such, the buckets of A are
the ranges of values [0, 0.3] and [0.3, 1], and those of C the ranges
[0,0.5] and [0.5, 1].

Note that the bucket-based strategy allows us to decide the
size of the feature vectors apriori and tune the parameter b to
improve the accuracy of the clustering.

Identification of similar functions. Procedure comPUTECLUS-
TERING (Algorithm 4, Line 2) implements the Lloyd’s clustering
algorithm [27], which identifies groups of similar w; by compar-
ing the feature vectorsry, ..., r;,; € ¥ using the cosine similarity.

The algorithm can be initialized either providing k random
seeds among all the vectors in ¥, or by selecting the k most
diverse feature vectors. Note that finding the most diverse vectors
may increase the running time of the algorithm, but this strategy
allows the discovery of better separated clusters. Moreover, the
algorithm can either be executed until convergence or can be
run in iterative steps. In the first case it finds k clusters, while
in the second case it runs multiple times with k ranging from 2
to some maximum value kp,4x, and then returns the clustering
with largest silhouette coefficient.

Generation of the representative functions. Given the set
of clusters C, Procedure GENERATEMAXWEIGHTVECTORS (Algo-
rithm 4, Line 3) generates a representative function w;'f for each
cluster C;. Different choices of w; can lead to different sets of
patterns R;f, which can contain patterns not relevant for some
w; € Cj, as well as missing out patterns relevant for some other
w] € Cj. However, as stated in the following theorem, we resort
to take the maximum among the weights to prevent missing any
relevant pattern:

THEOREM 4.1. Given a cluster C;, and a MNI-compatible scoring
function f, a complete set of relevant patterns for C; can be mined
using the representative function w} defined asVe € E, wj(e) =

maxg;ec; wj(e).

PRrOOF. By definition, only the subgraphs that satisfy the con-
straints on the weights through the scoring function f can con-
tribute to the score of a pattern. Moreover, the larger the weights
of a subgraph, the higher the chances that such subgraph fulfill
those constraints. Since the function o] assigns to each edge
e € E the largest weight among those of the weighting functions
in the cluster C;, i.e,, Yoj € C; ,a)lf(e) > wj(e), the chances that a
matching subgraph contributes to the score of a pattern is higher
for] than for any w; € C;. It follows that Yw; € C; f(P, w}) 2
f(P,wj), so if a pattern is relevant for some w; € Cj, it is also
relevant for w}. Thus, the set of mined patterns is complete. O

Given the sets of relevant patterns R7, . . ., RZ discovered by
Algorithm 1 using the representative functions w7, ..., wz, we
create a pattern set A; for each function w; using the patterns in

174

the set R}f for j < k.w; € Cj, i.e, each function w; receives the
set of relevant patterns of the cluster to which it belongs.

4.2 Quality of RESUM approximate

The RESUM approximate algorithm reduces the problem of min-
ing patterns in graphs with m weights on each edge to finding
k sets of relevant patterns R;, with k<m. The quality Q of the
solution can be measured in different ways, according to the
requirements of the user or the application. The most common
quality measure used in the literature is the accuracy, which is
defined in terms of precision and recall. In our case, since Theo-
rem 4.1 ensures a total recall, we consider the average precision
of the sets A; with respect to the exact sets R;:

1 m
Q== "R N Ail/IR;] (1)

mis

The quality Q can be measured also in terms of the average

distance between the patterns in the sets R; and those in the sets
A;. As shown in Section 7, the distance between two patterns
can be calculated using the normalized Levenshtein distance, and
the distance between two pattern sets as the average normalized
Levenshtein distance among the pairs of closest patterns in the
two sets. According to this measure, A; is a good solution for
w; if the patterns in A; have structure and labels similar to the
patterns in R;.

5 PATTERN EVALUATION

A number of scoring function satisfying properties P1, P2, and P3
can be proposed and implemented in Procedure 1sVALID and REL-
EVANCESCORE in Algorithm 2 and 3. Nevertheless, to demonstrate
the flexibility of our framework, we propose here four different
scoring functions that can be used to assess the relevance of a
pattern in a weighted graph. They are called ALL, ANY, SUM
and AVG. We chose these functions because of their intuitive
semantics and their suitability for various scenarios that may
pose different requirements or provide a different interpretation
of the edge weights. Moreover, as they are defined by the MNI
support of the pattern over a specific restriction of its support set,
they are MNI-compatible by definition, and thus they preserve
the apriori property.

ALL, ANY, SUM and AVG differ in the choice of which sub-
graphs they include in the support sets of the patterns P and
in how they aggregate the edge weights of such subgraphs. In
particular, ALL, ANY, and SUM rely on an additional system-
dependent parameter, called relevance threshold «, that is used
to select the subgraphs that contribute to the score, while AVG is
parameter-free.

In the following we provide a formal definition of the four
scoring functions.

ALL. The ALL score considers only the subgraphs whose edge
weights are larger than the threshold « as valid appearances of
a pattern P. Specifically, the ALL score of P is its MNI support
computed over the restricted set of appearances S;;(P) = {g|g =
<Vg,Eg,f,a)>/\g € Sg(P)AVe € Eg, w(e) > al,ie, fALL(Pa G) =
ming,evy [N (G, vp) ls..(p) |, where N'(G,vp) ls.p)= {vlv €
VAdge S’G(P) .(]51;(0) = vp} is the restriction of N (G, vp) to
the subset S;,(P) C Sg(P).

In graphs like protein-to-protein interaction networks, this
score retrieves patterns characterized by an overall confidence
greater than a certain value.

ANY. The ANY score takes into account only the appearances of a
pattern having at least one edge with weight above the threshold
a. Hence, the ANY score of P is the MNI support of P over the set
of appearances Sé(P) ={g9lg=(Vyg.Eg,t,0) Ag € SG(P)ATe €
Eg.w(e) > a}, ie., fany(P,G) = miny,ev, |[N(G,vp) [s..(p) |

This score is suitable especially for the cases in which only
partial weights are available (e.g., product reviews for some prod-
uct), to find patterns that are overall interesting (e.g., the entire
transaction comprising the product), as well as super-patterns
around relevant core structures.

By definition, the ANY score of P is always equal or larger
than its ALL score, as any appearance of P considered by farr
is considered also by fany, while in general, the opposite is
not true. For example, given the graph in Figure 2 and the rele-
vance threshold a = 0.4, the subgraph g : [1]-A-[2]-C-[4] does
not contribute to the ALL score of P : [v1]-A-[v2]-C-[v3], but
contributes to its ANY score.

SUM. For the SUM score of P, a subgraph g contributes if the sum
of its weights is larger than the threshold a. The restricted sup-
port set obtained in this way is S;,(P) = {g| g = (Vy, Eg, {, 0) A
g€ Sg(P)A ZeeEg w(e) > a}. The MNI support over this set is
the SUM score of P: fsym(P,G) = minUPEvP‘N(G, vp) [Sb(P) |

This score accounts for the overall pattern weight in scenarios
like money transactions, where it is beneficial to sum each single
contribution in order to judge the complete value of a structure.

Note that if an appearance of P has some weight greater than
a, then the sum of all its weights is at least a, and therefore
fsum(P,G)=fany (P, G). For example, all the appearances con-
sidered by ANY in computing the score of P : [v1]-A-[v2]-A-
[v3] for @=0.4 in Figure 2 are considered also by SUM, whereas
the subgraph g : [3]-A—-[4]-A-[8] contributes to the SUM score
only.

AVG. In contrast to the previous scoring functions, the AVG score
is not defined in terms of the minimum cardinality among some
node sets of the pattern, but in terms of the relative weights of
its appearances. In general, the score of a pattern P can be a
function of the sum of the weights of the subgraphs in its support
set, and this is called the weighted support (WSUP) of P. In partic-
ular, WIGM [43] proposes a measure called normalized weighted
support (NWSUP), which is the weighted support of P divided
by its size |Ep|, i.e., NWSUP(G, P) = WSUP(G, P)/|Ep|. Never-
theless, this scoring function is not MNI-compatible. In order to
guarantee the apriori property and be consistent with the other
MNI-compatible scoring functions, we compute WSUP(G, P) by
first retaining, for each edge set &(G, ep) with ep € Ep, the set
&E(G, ep) [, of p edges with largest weight, and then summing up
all those weights, i.e., WSUP(G,P) = YepeEp Ziecs(G.ep)], ©(€)-
Setting u to be the MNI support of P we guarantee that the AVG
score is bounded by the MNI support, as stated in the following
theorem:

THEOREM 5.1. Given a graph GV, E, {, w), a pattern P, and an
edge e € E, it holds that fayG(P o e,G) < MNI(P, G), where P o e
is an extension of P with Ep,e = Ep U {e}.

Proor. Since the MNI support has the apriori property [6],
MNI(Poe,G) < MNI(P, G). By definition, the pattern Poe has the
maximum normalized weight £}, -(Poe, G) when all the edges in
&(G, e) [, have weight 1, and hence each subgraph contributes
with a total weight of (|Ep| + 1). In this case, fXVG(P oe,G) =

175

MNI(P ¢ e,G) - (|[Ep| + 1)/(|[Ep| + 1), and thus fayg(P ¢e,G) <
fivg(Poe,G) = MNI(Poe,G) < MNI(P,G). 5

According to this theorem, although AVG does not have the
apriori property, the AVG score of a pattern is at least bounded by
the frequency of its sub-patterns, making it MNI-compatible and
allowing early pruning during the pattern search. In fact, if the
MNI support of P is lower than 7, then all its super-patterns can
be discarded. On the other hand, f4yG(Poe, G) can be higher than
favg(P, G) even though the frequency of P ¢ e is lower, because
the weights of the edges in E(G, e) [, can be so large that they
compensate for the lower frequency. For example, the AVG score
of P : [v1]-C—[v2] in the graph G in Figure 2 is 0.6, because
MNI(P,G) = 1and E(G,C) 1= {(1, 4)}. Instead, the AVG score
of P : [v1]-C-[v2]-B-[v3]-A-[v4] is 0.8, because E(G,C) [1=
{(1,9)}, 8(G.B) 1= {(1,3)}, and E(G. 4) [1={(3,5)}.

Implementation. To implement ALL, ANY, and SUM in our
framework, function 1sVALID checks every match g of P in its
support set, by comparing its edge weights against the relevance
threshold a, according to the corresponding definition of S;,(P).
Then, Procedure RELEVANCESCORE computes the MNI support
over the support set S’G(P). On the other hand, for the AVG score,
Procedure 1sVALID returns always True, while Procedure REL-
EVANCESCORE calculates the normalized sum of the top-k edge
weights of every pattern edge, where k = minyev, |Dyl.

6 RELATED WORK

We survey the main solutions for pattern mining in graph datab-
ases, single graphs, and probabilistic graphs. While previous work
has tackled the problem of pattern mining in weighted graphs
to a certain extent, no solution has been proposed for pattern
mining in multi-weighted graphs.

Graph databases. Graph databases are collections of graphs
such as chemical compounds, transactions, and workflows. Two
main approaches have been proposed for pattern mining in
unweighted collections of graphs: apriori-based methods, and
pattern-growth methods. The apriori-based approaches generate
frequent structures incrementally, by merging smaller frequent
patterns [24]. Pattern-growth methods, on the other hand, gener-
ate one structure at a time, expanding each pattern in a depth-first
fashion [17, 41].

In weighted graphs, a few pattern-growth methods have been
recently introduced [19] to embody weights into the support
measure. Additionally, WFSM-MR [3] further extends such ap-
proaches in a distributed manner on top of the MapReduce frame-
work.

Nevertheless, frequent pattern mining in graph databases em-
ploys a support measure, i.e., the number of graphs containing
a specific pattern, that cannot be used to mine patterns in large
graphs, as each pattern would have a support equal to 1 or 0.

Single Large Graphs. Pattern mining in large graphs requires
the support measure to be adjusted to account for edges shared by
multiple subgraphs [6]. To this end, alternative support measures
satisfying the apriori property have been proposed, alongside ef-
ficient algorithms using such measures. SUBDUE [15] is the first
pattern mining algorithm in single graphs and adopts an approxi-
mate greedy strategy based on the Minimum Description Length
(MDL). Other support measures include the maximum number
of edge-disjoint matchings [38], the Maximum Independent Set
(MIS) support [25], and the Harmful Overlap (HO) [11] support.

Nonetheless, the latter two measures require NP-complete prob-
lems to be solved, rendering them unsuitable in many practical
scenarios. In contrast, the Minimum Image-based (MNI) sup-
port can be computed efficiently [11]. This measure is used by
GraMi [10] and its parallel extension ScaleMine[1], which opti-
mize the computation of the frequent patterns via a constraint
satisfaction problem approach. Yet, as opposed to the problem we
tackle in this work, GraMi and all the support-based approaches
disregard weights on the edges of the graph and do not generalize
to the case of multi-weights.

The first work on weighted large graphs is WTMaxMiner [12].
However, WTMaxMiner restricts the problem to mining path
patterns, which can be efficiently discovered as opposed to sub-
graphs. To the best of our knowledge, WIGM [43] is the only
work that deals with weighted pattern mining in large graphs,
defining the importance of a pattern as the average weight over
its appearances. Although weighted patterns do not naturally
possess the apriori property, WIGM adopts a weaker pruning
strategy based on the so-called I-extension property. Differently
from WIGM, our solution, RESUM is scalable and efficient since
it uses measures (a.k.a. scoring functions) that satisfy the apriori
property and are based on the MNI support. Additionally, Re-
SuM is a more general framework that supports multi-weighted
graphs, as well as a broad family of scoring functions, showcasing
the WIGM support measure as one example (see Section 5).

Uncertain graphs. Uncertain graphs include existence probabil-
ities for edges or nodes of the graph. To some extent, uncertain
graphs can be seen as a special case of weighted graphs in which
probabilities arises, for instance, from random walk approaches,
and represent the likelihood that an edge exists between two
nodes. Few works have been proposed to mine frequent patterns
in uncertain graphs [7, 18, 26, 32, 40, 44]. As opposed to weighted
graphs, support measures for uncertain graphs must consider the
uncertainty in the edges and compute the support as an expected
value. Moreover, the time complexity of mining in such graphs is
exponential in the worst case, since any edge can either exists or
not, and hence all the possible combinations must be considered.

7 EXPERIMENTS

We experimentally show how the patterns found with RESUM
differ from those returned by frequency-based methods, thus
proving the importance of our approach in pruning irrelevant
patterns that are merely frequent. We also compare the scalability
of our exact algorithm with the performance of our approximate
algorithm. The results demonstrate that RESUM approximate
allows faster response time, yet retaining good accuracy in terms
of the patterns returned.

Datasets. The experiments were performed on four real datasets
of different sizes. Table 1 shows their characteristics, reporting
the number of vertices | V|, edges |E|, and labels | £|; the minimum,
average, and maximum node degree; and the minimum, median,
average, and maximum edge label frequency. For the AMazoN
dataset we report statistics for both edge (top) and node labels
(bottom). We also report the default frequency (r) and relevance
(o) values used in the experiments (unless otherwise stated).

o CITESEER [10], is a graph representing Computer Science pub-
lications and citations between them. The labels on the edges
indicate the area in which the two papers were published (e.g., a
database conference).

176

degree label frequency
dataset |V| |E| |£] [min/avg/max | min/med/avg/max| 7 «
CITESEER 2.1k 3.6k 21 1/3.5/99 15/55/174.7/988 95 .05
FrReeBASe-T | 7.2k 10k 40 1/2.8/504 3/70/251.3/2886 90 .05
FreeBASE-C | 16.7k 26k 77| 1/3.2/1082 1/66/348.5/4861 | 155 .05
4 2k/12k/30k/113k
AMAZON 163k 296k 1710 1/3.6/1072 1/1/95/142k 130 .05

Table 1: Datasets and default 7, « parameters.

o FREEBASE-T and FREEBASE-C are directed subgraphs extracted
from the knowledge graph FreeBase !, which is a database collect-
ing structured information about real-world entities like people,
places and things for various topics. We obtained the two samples
by restricting the graph to the topic travel and computer respec-
tively, and then taking the largest weakly connected component
in the restriction.

o AMAZON? [14] is a directed graph representing items, purchases,
and user ratings. We considered the subgraph of electronic prod-
ucts, in which every node represents a product, a category, or
a brand, and a link represents items bought together, bought in
subsequent transactions, or viewed on the website one after the
other. Weights represent individual user review scores (from 1
to 5), and we considered only users with more than 100 reviews.
Given the sparsity of the weights, we used Personalized PageR-
ank to spread the user preferences to products other than those
they rated, as it is a standard technique for recommendations [2].
In this way we obtained weights not only for the items reviewed,
but also for the most related items. Each edge weight is actu-
ally computed as the average between the PageRank value of its
endpoint nodes.

Experimental setup. RESUM is implemented in Java 1.8 on top
of the constraint satisfaction problem presented in GRAM1 [10]
whose code was kindly provided by the authors>. The code of our
implementation and all the datasets we used are publicly avail-
able*. We also compare with a frequent pattern mining approach
(FrREQ) based on GRAMI, which is also implemented in Java 1.8.
All experiments were run on a 24 Cores (2.40GHz) Intel Xeon
E5 — 2440 with 188Gb RAM with Linux 3.13.

Generating the weights. Since we had real weights only for
the AMAZON graph, to test the scalability of our method with a
larger number of weighting functions, for the other datasets we
created synthetic weights based on the results of a user study we
conducted on the Crowdflower® platform. We extracted a sample
from the FreeBase knowledge base, restricting the domain of
the edge labels to five topics (Music, Books, Celebrities, Movies,
and Sport). Then we asked the users to rate each graph edge
(i.e., fact) according to their preferences, using a relevance value
between 1 and 5. Once collected the relevance values from 123
users, we modeled the distribution of the edge weights with
respect to the number of facts. We found that the edge weights,
after normalization, are distributed as a Gaussian with mean
0.452 and variance 0.02. In addition, we noted that, on average, a
user rated above 0 between 10% and 20% of the labels, and thus
we concluded that real graph weights are usually quite sparse.
Therefore, we uniformly subset edge labels according to our
findings and generated weights normally distributed in [0, 1].
Furthermore, in order to evaluate the performance of RESUM
and RESUM approximate with different weight distributions, we

!developers.google.com/Freebase/data
%jmcauley.ucsd.edu/data/amazon/
3github.com/ehab-abdelhamid/GraMi
*https://github.com/lady-bluecopper/ReSuM

Swww.crowdflower.com

FrREEBASE-C FREEBASE-T
top-k | ALL ANY SUM AVG|ALL ANY SUM AVG
1 06 06 06 08605 05 05 1
3 043 043 043 1 045 033 033 1
10 0.44 049 049 1 0.8 0.66 0.66 1

Table 2: Quality of FREQ vs RESUM on the top-k patterns.

generated sets of synthetic edge weights, varying a focus pa-
rameter representing the ratio of weighted edges for each edge
label. The edge weights were sampled from a normal distribution
N (u, %) and a Beta(a, f) distribution, hence allowing us to prove
the effectiveness of our algorithms under normally distributed
weights and exponentially distributed weights. We set y = 0.5
and o = 0.25 for the normal distribution and ¢ = 0.7, f = 5 and
B = 0.7, = 5, for the Beta distribution. The two choices of the
parameters for the Beta distribution represent two extreme of
an exponential behavior: the former concentrates the probability
mass on low weights, the latter on large weights. The focus pa-
rameter takes values in {0.5, 0.8} for the normal distribution and
in {0.25,0.5,0.75, 1} for the Beta distribution.

7.1 Frequent vs Weighted Pattern Mining

We compared the patterns returned by a frequent pattern min-
ing algorithm (FREQ) and our algorithm RESUM to validate our
claim that frequent pattern mining returns a large number of
low-weight patterns, which, instead, are correctly discarded in
relevant pattern mining. Unless otherwise stated, we report the
average of 10 different randomly sampled weighting functions.
In particular, these weights were sampled from a normal distri-
bution using focus 0.5, as previously described.

Figure 5 reports the average number of patterns found using
different scoring functions on the four datasets, with default
parameters, as shown in Table 1. We observe that FREQ returns
patterns, at least half of which are irrelevant with respect to any
of the four scoring functions. As expected, in all the datasets,
ANY and SUM return more patterns than ALL and AVG, due to
the less restrictive conditions on the weights. On the other hand,
AVG returns a low number of patterns, mainly because more
than 50% of the edges have low or zero weight. Therefore, AVG
is particularly suited in biological or chemical datasets, where
weights are uniformly distributed in the entire graph.

We now discuss quality (Table 2), number of patterns, and
running time of RESUM compared to FREQ, when varying rel-
evance («) and frequency (r) threshold (Figure 3 and 4). Due
to space limits, we report results for two datasets (FREEBASE-C
and FREeBASE-T); however, we observe similar results also on
the other datasets. In particular, as an example, within the top-5
frequent patterns in the AMAzoN graph, we found that the most
frequently bought products are Sony appliances, but some rele-
vant patterns actually involve Nikon products. This result shows
that Sony products are popular but not interesting for all the
users.

Quality of FREQ vs RESUM. Table 2 shows the quality of the
patterns discovered by FREQ, measured on the k most frequent
patterns. We selected 10 random weighting functions and mined
the relevant patterns for each of them. The quality of FrREQ is
measured as the average Jaccard similarity between the top-k
frequent patterns and the top-k relevant patterns. As expected,
frequency is a bad predictor of relevance, since most of the rel-
evant patterns are not in top-k frequent patterns. Notably, for
AVG the quality is higher mostly due to the small or null number
of patterns returned, as reported in Figure 5.

177

Relevance threshold (). Recall that the relevance threshold
a is a system-dependent parameter set only for ALL, ANY, and
SUM. It can be easily tuned on demand and strongly affects the
number of patterns (Figure 3(a) and Figure 3(b)), because the
larger the value of a, the smaller is the number of appearances
that are considered valid, and thus the smaller is the total number
of relevant patterns mined. We observe that with >0 the number
of relevant patterns is less than half of the number of the frequent
ones. This behavior reflects the characteristics of the weights in
the datasets, as half of the edges have zero weight. Moreover,
for FREEBASE-T SUM, being the most lenient scoring function,
returns patterns even in the restrictive cases when o > 0.5 (Fig-
ure 3(b)). Finally, since AVG does not depend on «, it always
returns the same patterns.

Figure 3(c) and Figure 3(d) show that the threshold « affects
the running time of RESUM mostly when ALL is used, as this
function can prune the irrelevant patterns earlier in the process.
In fact, an occurrence of a pattern is discarded and not included
in the support set of any extension of the pattern, as soon as one
edge weight is found to be below a. On the other hand, for all the
other scoring functions, the extension of an invalid occurrence
of a pattern can be valid for some super-pattern, and therefore
cannot be discarded until all its edge weights have been examined.
As a consequence, the running time of the algorithm is almost
unaffected by a.

Frequency threshold (r). Figure 4 reports the behavior of RE-
SuM and FReQ when varying the frequency threshold 7. We
performed preliminary tests to decide a reasonable range of val-
ues [Tmin, Tmax] for each dataset. In particular, the 7,,;, corre-
sponds to the smallest value that allowed FREQ to terminate the
computation within 48 hours, and 7,4 is the maximum value
returning a non-empty set of frequent patterns. The choice of
different ranges for each dataset is consistent with previous re-
searches [10] and reflects the observation that pattern frequency
is dataset-dependent, while relevance is user-dependent.

As we can see in Figure 4(a) and Figure 4(b), the number of
frequent patterns decreases almost linearly with 7, and conse-
quently the number of relevant patterns decreases as well. Regard-
ing the performance, as opposed to the relevance threshold, the
frequency threshold always alters the computation time, since
higher values lead to an early pruning of many patterns, and
thus the algorithm terminates earlier. Moreover, Figure 4(c) and
Figure 4(d) show that when 7 takes low values (i.e. between 150
and 180), RESUM runs up to two orders of magnitude faster in
both the datasets. Finally, as previously noted, ALL performs
significantly better than the other scoring functions.

7.2 Multiple Weighting Functions

We tested the scalability of RESUM in the case of multiple weight-
ing functions, varying their number between 50 and 50.000. Sim-
ilarly, we also measured time and quality of RESUM approximate.
Nevertheless, in the following we do not further discuss and re-
port the number of patterns retrieved for each weighting function
and each scoring function, since these results are consistent with
what reported in the single edge weight case.

Time. Figure 6 shows how the number of weighting functions af-
fects the running time. Here we report the performance obtained
when the weights were generated following a normal distribution
with focus 0.5. In Figure 6(a) we present the comparison between
RESUM and the brute-force (BF) approach, which computes the
patterns for each weighting function separately. While BF scales

= FREQ mALL ANY SUM =AVG 1000 4-ANY SUM » é\sle -5-FREQ ~-ALL
57 Freebase-C 45 Freebase-T
4 4 iy = = =X 1 BK oy
%20 ‘é’ 20 100 yay] H i e i
[© 10 4
w - —~]
E E Z10 ONE
w w]
g0 4 g 10 4 s s, |
* * (= =14
g g Freebase-C Freebase-T
2 z I |
0 - 0 - = 0,1 T T T T T T — 0,1 r r T - - - —
0 0.0010.01 0.05 0.1 0.25 0.5 0 0.0010.01 0.05 0.1 0.25 0.5 0 0.0010.01 0.05 0.1 0.25 0.5 0 0.0010.01 0.05 0.1 025 0.5
a) a b) a c) a d) a

Figure 3: Varying o: number of patterns (left) and running time (right) in FREEBASE-C (a,c) and FREEBASE-T (b,d).

70 - =FREQ mALL égw SuM EAVG
» Freebase-C ® Freebase-T
E60 1 Z 40 |
@50 | &

=

=40 1 30 -
<40 <
o o
330 § 2+ 20 1
Oqp |
2 210

10 <

0 - 0 -

150 160 170 185 190 200 210 90 110 140 150 160 190 220

a) T b) T

=3
=3

TIME (s)
8

c)

&~ ANY SUM o ﬁve -5-FREQ ——ALL
\ Freebase-C Freebase-T
\ 207
ONE
N\& £,
ey B
; i : = - —— 0,1
150 160 170 185 190 200 210 9 110 140 150 1519 190 220
T d)

Figure 4: Varying r: number of patterns (left) and running time (right) in FREEBASE-C (a,c) and FREEBASE-T (b,d).

57

2.
o o

19,2 19,2 19,519,5

N W A
o o

16,2 16,2

-

AVG # PATTERNS
o ©

0,9

g
<

CiteSeer Freebase-C Amazon
Figure 5: Number of patterns found in each dataset, using

different scores and default parameters.

Freebase-T

average pattern edit distance

\wW| [ALL ANY SUM AVG
50 0.195 0069 0069 0.627
500 | 0.192 0.062 0062 0618
5000 | 0.203 0.053 0.053 0.609
50000 | 0.204 0052 0.051 -

Table 3: Quality of RESUM approximate in FREEBASE-T.

average pattern edit distance

FREEBASE-C FREEBASE-T
clustering | ALL ANY SUM AVG | ALL ANY SUM AVG
A-PosT 0.28 0.07 0.07 045 |02 0.07 0.07 0.7
Buck 0.27 0.07 0.07 039 |02 0.06 0.06 0.62

Table 4: Quality of RESUM approximate using Buck and
A-PosT clustering in FREEBASE-T and FREEBASE-C.

linearly with the number of weighting functions, the running
time of RESUM is nearly constant with 5000 functions, and slowly
increases as the number of edge weights approaches 50000. As
a drawback, the memory requirement grows linearly with the
number of weights for both algorithms.

In Figure 6(b) and Figure 6(c) instead, we compare RESUM and
RESUM approximate. For these set of experiments, we generated
the representative functions by first clustering the weighting
functions using the bucket-based strategy. The clustering phase
is performed as a preprocessing and not reported, since it is

178

agnostic to the choice of the various thresholds and depends
solely on the clustering algorithm (e.g., k-means, hierarchical, or
spectral). In particular, we tried numbers of buckets b of different
orders of magnitude and proportional to the frequency of the
edge labels in the graph. Then, we run k-means using different
k to study the impact of the number of clusters on the quality
and the running time of RESUM approximate. Finally, we set the
default value of b of each dataset to the number of buckets that
allowed the algorithm to use at least one order of magnitude
less memory than those consumed using the full-vector strategy,
i.e., 12 buckets for FREEBASE-T, 16 for FREEBASE-C, and 10 for
CITESEER.

We observe that RESUM becomes impractical as the number
of weighting functions increases. As a matter of fact, when AVG
is used, RESUM exhausts the available memory, hence returning
no patterns. This behavior reflects the characteristics of AVG,
which requires the algorithm to exhaustively search for all the
occurrences of a pattern before computing its score. In contrast,
RESUM approximate terminates the computation. On the other
hand, when ANY is used, RESUM is able to return the relevant
patterns; however, RESUM approximate outperforms the exact
algorithm again, taking nearly constant time to terminate. In con-
clusion, in all the cases of large numbers of weighting functions,
RESUM approximate performs better than RESUM by at least one
order of magnitude.

Quality of RESUM approximate. As mentioned in Section 4,
we measure the quality of RESUM approximate in terms of the
average distance between the patterns it returns (sets A;) and
those returned by RESUM (sets R;). We define the distance be-
tween two patterns as the minimum number of edges that should
be added or removed from the first to transform it into the sec-
ond. Thus, the average distance between the two sets of patterns
{A1,...,Ap} and {Ry,. .., R;;} measures the average number
of operations required to transform a pattern in A; to a pattern
in R;. We recall that our method is complete, and therefore no
relevant pattern is missing. However, RESUM approximate may
return spurious patterns, which are patterns not relevant for
any function in the cluster. Computing the distance between the

- Freebase-C 7 Freebase-T
60000 355 Freebase-C (ANY, BF) 6 1—-AVG 6 -4 AVG A
6000 1-O- Freebase-T (ANY, BF) .8 El ANY ,A] ANY i
Freebase-C (ANY) _-- - 1-4A- AVG-Appx Wi]-4- AVG-Appx e
600 | = Freebase-T (ANY) - =] .- o :--l— ANY-Appx /,' 06 17 ANY-Appx ’,/'
0 .a- e~ 0 2
£ 60 4 - _- =06 - / — = ' ot
w - - w | O w] ‘,—’ _______
= 6 @- __-° 5 -4 £ 0.06 4 e e +
= o-" = S 3 g:i _____ A
0,6 3 1
0,06 " 0,06 0,006
50 500 5000 50000 50 500 5000 50000 50 500 5000 50000
a) # EDGE WEIGHTS b) # EDGE WEIGHTS) # EDGE WEIGHTS

Figure 6: Varying number of edge weights in FREEBASE-C and FREEBASE-T: running time of RESUM and brute-force ap-
proach (BF) with ANY (a); and running time of RESUM and RESUM approximate with ANY and AVG (b, c).

Freebase-C ®F25 =F50 =F75 BF100 -4~ SUM, F100 10000 - —A ANY, F100 S
60 - Freq:57 60 - Freq:57. 10000 j‘S\EM’FﬁZO% A X 2“3—:;;5“, F100 ,/
50 50 | ALL -8-ALL, F25 -m- ANY-Appx, F25 ’

£] 1000

i &

£30 E 100

£ £

*® 10
10 Freebase-C Freebase-C
0 14 . . . 100 —
50 500 5000 50000 50 500 5000 50000 50 500 5000 50000 50 500 5000 50000
a) # EDGE WEIGHTS b) # EDGE WEIGHTS c) # EDGE WEIGHTS d) # EDGE WEIGHTS

Figure 7: Varying focus in FREEBASE-C: number of patterns using SUM (a) and ALL (b) with focus between 0.25 (F25) and
1 (F100); and running time of RESUM and RESUM approximate with Beta(0.7, 5) weights with focus 0.25 (F25) and 1 (F100),

using SUM, ALL (c), and ANY (d).

average precision
Beta(0.7,5) Beta(5,0.7) N(0.5,0.25)
ALL SUM ALL SUM ALL SUM
[W| 025 05 075 1 |0.25 05 075 1 |0.25 0.5 075 1 |0.25 0.5 075 1|05 08]05 038
50 0.22 0.20 0.21 0.26 | 0.17 0.53 0.74 091]0.19 023 0.42 1 0.34 073 0.94 1(0.15 0.18]0.36 0.54
500 0.21 021 0.24 0.27]0.18 0.53 0.74 091021 024 042 1 0.36 0.73 0.94 1(0.18 0.20]0.44 0.57
5000 |0.21 0.22 0.24 0.28[0.19 054 0.75 091]0.21 0.25 043 1 0.36 0.74 0.95 1022 0.20]0.49 0.59
50000 | 0.21 0.22 0.25 0.280.19 0.54 0.75 0.91]0.21 0.25 044 0.99|036 0.74 095 1]0.22 0.21]0.51 0.59

Table 5: Quality of RESUM approximate with ALL and SUM on FREEBASE-C, with Beta(a,) and normal N(y, 62) weights
generated using focus values in {0.25,0.5,0.75, 1} and {0.5, 0.8} respectively.

two pattern sets allows us to understand how much a spurious
pattern, on average, differs from the patterns that are actually
relevant for some weighting function in the cluster. Table 3 re-
ports the distances obtained using the four scoring functions in
FrREEBASE-T. Here, ANY and SUM exhibit the best quality; ALL
performs reasonably good, despite being more restrictive and
therefore more sensitive to the approximation based on the max-
imum edge weights. On the other hand, when AVG is used, the
quality of the answer is quite poor. Nevertheless, this behavior is
due to the extremely low number of patterns this scoring func-
tion considers interesting, which skews the computation of the
pattern set distance. Note that, we do no report any value for the
case of 50000 weighting functions with AVG, since the algorithm
exhausted all the available memory and did not terminate. We
conclude that, the additional patterns returned by RESUM ap-
proximate are indeed closely related to the relevant patterns of
each individual weighting function.

Finally, we tested the capability of our bucket-based clustering
(Buck in short) to correctly identify groups of similar weighting
functions. To this end, we compared the quality of the results
mined using Buck in the creation of the feature vectors of the
weighting functions, with the quality measured using a ground-
truth clustering (A-PosT in short). The A-PosT clustering was
created using the sets of relevant patterns Ry, . .., Ry, as feature
vectors of wi, . .., @Wm, and then running a k-medoid algorithm.

179

We regard it as a ground-truth clustering, because it is obtained
knowing what makes two weighting functions really similar, i.e.
their relevant patterns, and maximizing the intra-cluster similar-
ity. Table 4 reports the comparison between A-PosT and Buck on
FREEBASE-C and FREEBASE-T. We recall that lower values mean
higher quality, as they indicate distances. We can see that we ex-
perience a quality comparable with that obtained using A-PosT,
and thus we can conclude that our clustering technique is indeed
effective.

Impact of the weights. For the experiments presented above,
we weighted the Amazon graph using real weights, and the
FREEBASE-T, FREEBASE-C, and CITESEER graphs with synthetic
weights generated according to the results of our user study. The
common feature of these two kinds of weights is that they are
highly sparse. It is worth studying whether weights following
other distributions or that are denser, affect the performance of
our algorithms. To this end, we performed an additional set of
experiments using weighting functions generated following a
Beta(5,0.7), a Beta(0.7,5) and a normal distribution with differ-
ent densities (focus), as described at the beginning of Section7.
One would expect that, with higher densities, the cost of the
computation would be higher too. Although these expectations
are reasonable, in the following we show that the behavior of
ReESUM and RESUM approximate is consistent with what observed

in the case of sparse weights. Figure 7(a) and Figure 7(b) report
the average number of patterns found using SUM and ALL, with
weights generated using a Beta(0.7,5) distribution with focus
varying between 0.25 and 1 (i.e., all edges have weight > 0).
Comparing these results with those in Figure 5 when SUM is
used, we can see that the number of relevant patterns is largely
affected by the presence of more (or all) edges with non-null
weight, meaning that the patterns mined are actually many more.
On the other hand, when ALL is used, RESUM still finds a larger
number of relevant patterns, but the increment is not as large as
in the SUM case.

Regarding the running time, Figure 7(c) and Figure 7(d) show
that the two algorithms behave accordingly to what already seen
in the previous experiments, meaning that the fact there more
patterns are mined do not downgrade the performance heavily.

Finally, Table 5 displays the quality of RESUM in terms of
average precision, as defined in Equation 1. As we can see, our
approximate algorithm achieves similar quality values no matter
which weight distribution is chosen. In addition, the denser the
weights in the graph, the higher is the average precision of the
pattern sets mined. Intuitively, this is due to the fact knowing a
larger number of positive weights allows the clustering algorithm
to better detect which weighting functions are similar.

8 CONCLUSIONS

In this paper we considered the problem of mining relevant pat-
terns in weighted graphs. As opposed to the previous graph
pattern mining approaches, which are solely based on the fre-
quency of the patterns, our solution assesses the importance of
a pattern also in terms of the weights on the edges of its ap-
pearances. Then, we proposed four different scoring functions
that balance between frequency and weights, while retaining the
apriori property, which is a powerful mean to an effective and
early pruning of the search space. As a natural extension, we
considered the complementary problem of mining patterns in
graphs with multiple weights associated to the edges. We devised
exact and approximate solutions and proved the effectiveness and
efficiency of the algorithms on real datasets. As a future work,
we plan to study the theoretical bounds on the clustering quality,
and automatic approaches for parameter selection.

REFERENCES

[1] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat, and Fuad
Jamour. 2016. ScaleMine: Scalable parallel frequent subgraph mining in a
single large graph. In International Conference for High Performance Computing,
Networking, Storage and Analysis. 716-727.

Charu C Aggarwal. 2016. Recommender Systems. Springer.

Nisha Babu and Ansamma John. 2016. A distributed approach to weighted fre-
quent Subgraph mining. In International Conference on Emerging Technological
Trends. 1-7.

Dorna Bandari, Shuo Xiang, and Jure Leskovec. 2017. Categorizing User
Sessions at Pinterest. arXiv preprint arXiv:1703.09662 (2017).

Petko Bogdanov, Misael Mongiovi, and Ambuj K Singh. 2011. Mining heavy
subgraphs in time-evolving networks. In Data Mining (ICDM), 2011 IEEE 11th
International Conference on. IEEE, 81-90.

Bjorn Bringmann and Siegfried Nijssen. 2008. What is frequent in a single
graph?. In PAKDD. 858-863.

Yifan Chen, Xiang Zhao, Xuemin Lin, and Yang Wang. 2015. Towards frequent
subgraph mining on single large uncertain graphs. In 2015 IEEE International
Conference on Data Mining. 41-50.

[8] James C Costello, Mehmet M Dalkilic, Scott M Beason, Jeff R Gehlhausen,
Rupali Patwardhan, Sumit Middha, Brian D Eads, and Justen R Andrews. 2009.
Gene networks in Drosophila melanogaster: integrating experimental data to
predict gene function. Genome biology 10, 9 (2009), R97.

L. De Raedt and A. Zimmermann. 2007. Constraint-Based Pattern Set Mining.
In SDM. 237-248.

M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. 2014. Grami: Fre-
quent subgraph and pattern mining in a single large graph. PVLDB 7, 7 (2014),
517-528.

=

[10

180

(1]

(12]

M. Fiedler and C. Borgelt. 2007. Subgraph support in a single large graph. In
ICDM Workshops. 399-404.

R. Geng, X. Dong, P. Zhang, and W. Xu. 2008. WTMaxMiner: Efficient Mining
of Maximal Frequent Patterns Based on Weighted Directed Graph Traversals.
In CCIS. 1081-1086.

Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient online compu-
tation of quantile summaries. In ACM SIGMOD Record, Vol. 30. 58-66.
Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In WWW.
507-517.

Lawrence B Holder, Diane] Cook, Surnjani Djoko, and others. 1994. Substuc-
ture Discovery in the SUBDUE System.. In KDD Workshop. 169-180.

J. Huan, D. Bandyopadhyay, W. Wang, J. Snoeyink, J. Prins, and A. Tropsha.
2005. Comparing Graph Representations of Protein Structure for Mining
Family-specific Residue-based Packing Motifs. J. Comput Biol. 12, 6 (2005),
657-671.

J. Huan, W. Wang, J. Prins, and J. Yang. 2004. Spin: mining maximal frequent
subgraphs from graph databases. In SIGKDD. 581-586.

Shawana Jamil, Azam Khan, Zahid Halim, and A Rauf Baig. 2011. Weighted
muse for frequent sub-graph pattern finding in uncertain dblp data. In 2011
International Conference on Internet Technology and Applications. 1-6.

C. Jiang, F. Coenen, and M. Zito. 2010. Frequent sub-graph mining on edge
weighted graphs. In DAWAK. 77-88.

H. Jiang, H. Wang, P. S. Yu, and S. Zhou. 2007. GString: A Novel Approach for
Efficient Search in Graph Databases. In ICDE. 566-575.

W. Jiang, J. Vaidya, Z. Balaporia, C. Clifton, and B. Banich. 2005. Knowledge
discovery from transportation network data. In ICDE. 1061-1072.

Xin Jin, Chi Wang, Jiebo Luo, Xiao Yu, and Jiawei Han. 2011. LikeMiner:
a system for mining the power of’like’in social media networks. In KDD.
753-756.

Minoru Kanehisa and Susumu Goto. 2000. KEGG: kyoto encyclopedia of genes
and genomes. Nucleic acids research 28, 1 (2000), 27-30.

M. Kuramochi and G. Karypis. 2001. Frequent subgraph discovery. In ICDM.
313-320.

M. Kuramochi and G. Karypis. 2005. Finding frequent patterns in a large
sparse graph. DMKD 11, 3 (2005), 243-271.

Jianzhong Li, Zhaonian Zou, and Hong Gao. 2012. Mining frequent subgraphs
over uncertain graph databases under probabilistic semantics. VLDBJ 21, 6
(2012), 753-777.

S. P. Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theory
28, 2 (1982), 129-137.

A. K. Mackworth. 1977. Consistency in networks of relations. Artificial
Intelligence 8, 1 (1977), 99-118.

Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas.
2016. Exemplar queries: a new way of searching. VLDB . (2016), 1-25.
Mark EJ Newman. 2004. Analysis of weighted networks. Physical review E 70,
5 (2004).

C. C.Noble and D. J. Cook. 2003. Graph-based Anomaly Detection. In SIGKDD.
631-636.

Odysseas Papapetrou, Ekaterini Ioannou, and Dimitrios Skoutas. 2011. Effi-
cient discovery of frequent subgraph patterns in uncertain graph databases.
In Proceedings of the 14th International Conference on Extending Database
Technology. 355-366.

J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. 2000. Mining Access Patterns
Efficiently from Web Logs. In PAKDD. 396-407.

Michael J Shaw, Chandrasekar Subramaniam, Gek Woo Tan, and Michael E
Welge. 2001. Knowledge management and data mining for marketing. Decision
support systems 31 (2001), 127-137.

Arlei Silva, Wagner Meira Jr, and Mohammed J Zaki. 2012. Mining attribute-
structure correlated patterns in large attributed graphs. PVLDB 5, 5 (2012),
466-477.

Q. Song, Y. Wu, and X. L. Dong. 2016. Mining Summaries for Knowledge
Graph Search. In ICDM. 1215-1220.

Michael Steinbach, Levent Ertz, and Vipin Kumar. 2004. The challenges
of clustering high dimensional data. In New Directions in Statistical Physics.
273-309.

N. Vanetik, S. E. Shimony, and E. Gudes. 2006. Support measures for graph
data. Data Min. Knowl. Discov. 13, 2 (2006), 243-260.

Haixun Wang and Charu C Aggarwal. 2010. A survey of algorithms for
keyword search on graph data. In Managing and Mining Graph Data. 249—
273.

Di Wy, Jiadong Ren, and Long Sheng. 2017. Uncertain maximal frequent sub-
graph mining algorithm based on adjacency matrix and weight. International
Journal of Machine Learning and Cybernetics (2017), 1-11.

X. Yan and J. Han. 2002. gspan: Graph-based substructure pattern mining. In
ICDM. 721-724.

X. Yan, P. S. Yu, and J. Han. 2004. Graph Indexing: A Frequent Structure-based
Approach. In SIGMOD. 335-346.

[43] J. Yang, W. Su, S. Li, and M. M. Dalkilic. 2012. WIGM: Discovery of Subgraph
Patterns in a Large Weighted Graph. In SDM. 1083-1094.

Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. 2010. Mining
frequent subgraph patterns from uncertain graph data. IEEE Transactions on
Knowledge and Data Engineering 22, 9 (2010), 1203-1218.

[13

(14]

=
&

[16]

=
L

IS
S

™
S

&
=)

@
2

[36]

[37

[38

[39]

[40]

[41]

[42]

[44

	Beyond Frequencies: Graph Pattern Mining in Multi-weighted GraphsGiulia Preti, Matteo Lissandrini, Davide Mottin, Yannis Velegrakis

