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ABSTRACT
In many surveillance applications, capture devices are set on fixed

locations to track entities, leading to valuable spatio-temporal

trajectories. However, sometimes the IDs of the entities in these

trajectories are incorrectly identified due to various reasons (e.g.,

illumination conditions and partial occlusion). Since very often

the movements of the entities are constrained by certain restric-

tions imposed by the application (e.g., vehicles must move along

the given road network), we consider how to repair the erro-

neous IDs using transition graphs derived from such restrictions.

Roughly speaking, the occurrence of erroneous IDs can cause a

valid trajectory to be broken into trajectory fragments that vio-

late some movement constraints imposed by the transition graph,

and we aim to repair them by rewriting the IDs and merging the

fragments. This problem is practically challenging since it is not

easy to judge which IDs in the dataset are correct, and also there

may be multiple candidates as the correct value for a single error.

We formulate the repair process as an optimization problem and

propose a two-phase repair paradigm, which includes candidate

repair generation and compatible repair selection, to maximize

the quality improvement estimated by a designed objective func-

tion. Though both phases are intractable, we propose effective

algorithms to solve them through exploiting the locality and spar-

sity of trajectories. We further devise an index structure, as well

as a pruning method to make the repair process more efficient.

Experiments on both real and synthetic datasets demonstrate the

effectiveness and efficiency of the proposed methods.

1 INTRODUCTION
Many surveillance related applications require the continuous

tracking of entities over time in a specified area. For example,

in maritime transport, surveillance devices can be set on ports

to track the ships; in traffic surveillance systems, cameras are

placed along city streets to capture images of passing vehicles.

One of the main tasks for these applications is to identify the

unique ID (which may be an atomic value or a composite one

consisting of multiple features, such as name, color and shape)

of each recorded entity (e.g., a ship or a vehicle) so that tracking

records of those entities can be constituted.

For instance, vision-based algorithms are used to identify both

the types [3] and names [15] of ships; similarly, optical character

recognition (OCR) techniques are used to distill license plate num-

bers from the captured vehicle images. Due to various reasons

(e.g., illumination conditions, partial occlusion or masking), it is

not uncommon for the IDs of some entities to be incorrectly iden-

tified. Although much effort has been devoted to developing new

techniques for improving the recognition accuracy, such errors

are still unavoidable, especially when deliberate efforts are made
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to prevent the entities from being recognized (e.g., in the case

of smuggling at sea
1
). According to recent studies [10, 15], the

recognition rates of modern approaches are generally over 90%

in lab environments, while in real-world settings, the rates may

drop (e.g., to about 83% in the real traffic dataset we examined).

In this paper, we take a different perspective and aim to repair

erroneous IDs by exploiting the inherent movement constraints,

which are formally represented as transition graphs, that each
entity must follow. Specifically, a transition graph is a directed

graph with each vertex corresponding to a location and each

edge a feasible move. Furthermore, some vertices are designated

as the entrance/exit locations. In general, the transition graphs

are the results of geographical restrictions (e.g., road networks),

regulations (e.g., shipping routes), etc., and thus can be easily

derived or sometimes even explicitly given.

1.1 A Motivating Example

A B C D E

(a) The Road Network

C

DA B E

entrance location
exit locationfeasible move

location

(b) The Transition Graph

Figure 1: A Transition Graph Example

Example 1.1. As a running example, consider the transition

graph depicted in Figure 1(b) for the road network shown in

Figure 1(a) with surveillance cameras installed at locations A,
B, . . ., E (where the hollow arrows indicate driving directions) .

The transition graph implies the following two movement con-

straints: (1) vehicles can only enter this area at locations A or C
and leave from location E; and (2) the move of a vehicle must

match a directed edge in this graph.

Table 1 shows an example of the tracking records captured by

the cameras in Figure 1(a). Without loss of generality, we assume

that each tracking record contains at least three fields – the ID,

the capture location and the capture timestamp. We also assume

that errors occur only in the ID field, as the locations are fixed

and the timestamps can be synchronized across cameras and are

thus much less error-prone. Records with the same ID can be

chronologically sorted and concatenated to form a trajectory.

For convenience, we denote a trajectory by the ID followed by

the sequence of locations, e.g., GL21348⟨A → B → D → E⟩
represents an entity with ID GL21348 moving from A to B to D
to E.

Suppose that the dataset is complete, i.e., there are no missing

records. Then each trajectory must satisfy both of the aforemen-

tioned movement constraints.

Example 1.2. Table 2 shows the composed trajectories from

the tracking records in Table 1. Among the three trajectories,

only the first one satisfies the movement constraints imposed by

1
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Table 1: Tracking Records

ID Loc Time

GL21348 A 08:09:10

GL21348 B 08:13:07

GL03245 C 08:17:23

GL21348 D 08:19:13

GL83248 D 08:19:40

GL21348 E 08:21:29

GL83248 E 08:21:30

Table 2: Trajectories

No. Trajectory

1 GL21348⟨A→ B → D → E⟩
2 GL03245⟨C⟩
3 GL83248⟨D → E⟩

the transition graph in Figure 1(b) and is thus considered valid;

the second and third trajectories are invalid as they fail to satisfy

the first movement constraint in Example 1.1.

Note that ID misidentification can cause “fracture” of a valid

trajectory and therefore may render the trajectory invalid with

respect to the given transition graph. The transition graph is

distinct from most existing constraints [9, 25, 27], in that even

trajectories with correct IDs may violate the constraints imposed

by the graph and thus become invalid.

Example 1.3. Assume that the original trajectory for entity

with IDGL83248 isGL83248⟨C → D → E⟩. Unfortunately, its ID
is misidentified as GL03245 by the camera at C . The trajectory is

thus broken into the second and third trajectories in Table 2, both

of which are invalid (though the second trajectory is actually

error-free).

Some related approaches [27, 29] try to repair erroneous at-

tributes in temporal events (e.g., logs from manufacturing) by

exploiting the structural information or the neighborhood con-

straints of the activities. They propose efficient methods based

on graph structures to detect dirty events and devise heuristic

algorithms to repair them based on the minimum change prin-
ciple [4]. However, these approaches fall short in our scenario

mainly because (1) they perform isolated label rewritings while

in our problem a single repair option may involve multiple ID-

rewritings (as an ID may be identified as multiple erroneous

values), (2) they do not consider the spatial relationships between

the trajectories, which play an important role in our problem,

and (3) the minimum change principle they follow may no longer

be appropriate in our scenario.

1.2 The Present Work

GL21348
 �A→B→D→E>

GL03245
<C>

GL83248
 <D→E>

GL21348
<C>

GL83248
<C>

rewrite to GL21348

rewrite to GL83248

GL21348
<A→B→C→D→E>

merge

GL83248
<C→D→E>

merge

Figure 2: Two Repair Options for Trajectory GL03245[C]

We propose to repair the erroneous IDs through rewriting the

IDs andmerging the trajectory fragments to recover the “original”

trajectories that are valid with respect to the transition graph.

Example 1.4. Consider the trajectory GL03245⟨C⟩ in Table 2.

As shown in Figure 2, by exploring the inherent location and

timestamp relationships, we can rewrite the trajectory’s ID to

GL83248 (or, GL21348) and then merge the corresponding track-

ing records chronologically to form a valid trajectoryGL83248⟨C →
D → E⟩ (or GL21348⟨A→ B → C → D → E⟩).

As shown in Figure 2, there could be multiple options to repair

an invalid trajectory, which are mutually exclusive since it is

logically inconsistent to repair a single ID to different values at

the same time. As such, only one of the options can be used.

Various factors can be considered in evaluating the “goodness”

of the two repair options in Example 1.4, e.g., the ID similarity

and the number of invalid trajectories eliminated. In this example,

the bottom repair option in Figure 2 (i.e., rewriting to GL83248)
is more likely to be selected roughly because (1) compared with

“GL21348”, the string “GL83248” is more similar to “GL03245” (in
terms of edit distance), and (2) applying this option can eliminate

all the invalid trajectories in the dataset, while applying the other

one (i.e., rewriting to GL21348) will leave a dangling invalid

trajectoryGL83238⟨D → E⟩ without other trajectories to merge

with.

The examples above represent a simple case where the dataset

contains only one misidentified ID. In practice, the problem of

trajectory ID repair is much more complex because (1) it is non-

trivial to judge which IDs in the dataset are correct, (2) generating

the repair options, each of which may involve multiple trajecto-

ries, can be time consuming, and (3) there can be a large number

of interrelated repair options and we must consider them as a

whole to make global decisions.

To address these issues, we propose a repair paradigm that

consists of two phases. In the first phase, we generate all potential

repair options that meet certain criteria for later consideration; in

the second phase, we use an evaluation function to estimate the

data quality improvement brought by each repair option, and then

search for a set of such options that can be applied in tandem

to maximize an overall objective function (which reflects the

global quality improvement for the given dataset). Specifically,

we extract the core processes in these two phases as a clique

generation problem and a weighted independent set problem,

which are all NP-hard in general settings. To cope with the first

problem, we add some restrictions on the cliques of interest

and provide a backtracking algorithm. To solve the second one,

we propose an approximate greedy algorithm by exploiting the

probability of selecting a correct repair option. Furthermore, we

also devise an index structure and a pruning method to make the

whole repair approach more efficient.

In repairing the IDs, we do not invent new values and assume

the correct IDs can always be found from the dataset, which is in

line with most previous work on data repair or data matching in

other settings [4, 22, 32]. While the datasets often exhibit another

type of error, namely missing records, our focus in this paper is

on repairing erroneous IDs, which constitute the main source

of error in the datasets we have examined. The reason is that

the problem of missing records are often mitigated through the

deployment of other supporting or complementary technologies.

For example, inductive-loop traffic detectors [2] installed at the

same locations as the traffic cameras can detect almost all passing

vehicles and trigger shots by the corresponding cameras. There-

fore, it is rare for a vehicle not to be captured by the camera and

its plate (either correctly or incorrectly) recognized. In general,

dealing with missing records is a separate issue worthy of in-

vestigation in our future work; in fact, most existing methods

on missing value recovery [30, 31] focus on the issue of miss-

ing records itself without tackling other data quality problems

such as indistinguishable objects. Nonetheless, we conduct ex-

periments in Section 6.3.3 to empirically evaluate the impact of

missing records on the performance of the proposed methods.
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1.3 Contributions
To the best of our knowledge, we are the first to study the prob-

lem of trajectory ID repair facilitated by the moving rules. In

summary, we make the following contributions in this paper.

(1) We propose a novel transition graph based trajectory ID

repair problem, as well as a two-phase repair paradigm to

solve it.

(2) By exploiting the locality and sparsity of the spatio-temporal

trajectories, we provide practical algorithms that can solve

the problem effectively.

(3) We further devise some optimization methods, which

make our approach more efficient.

(4) Extensive experiments are conducted on both real and

synthetic datasets, which demonstrate the effectiveness

and efficiency of the proposed methods.

The rest of the paper is organized as follows. In Section 2,

we provide the preliminaries and formally define the problem.

We present the two-phase repair paradigm and the detailed al-

gorithms in Section 3 and Section 4, respectively. We further

propose some optimization methods in Section 5, and show the

experimental results in Section 6. We provide an overview of the

related work in Section 7, and conclude this paper in Section 8.

2 PROBLEM DESCRIPTION
2.1 Preliminaries
We first define several terms that will be used throughout the

paper.

Definition 2.1. Transition Graph, Entrance Location and

Exit Location. A transition graph Gt = (V,E) is a directed graph
that represents the set of movement constraints that the entities

must follow. Each vertex loc ∈ V represents a location (e.g., where

a surveillance device is installed), and an edge (loci , loc j ) ∈ E
indicates that an entity can directly move from location loci to
location loc j . Among these vertices (locations), there are some

special ones from which the entities can enter or leave the area

of interest. We call them the entrace locations (the set of which is

denoted by I) and exit locations (the set of which is denoted by

O).

For the transition graph shown in Example 1.1, V = {A,B,
C,D,E}, E = {(A,B), (B,C ), (B,D), (C,D), (D,E)}, I = {A,C} and
O = {E}.

Definition 2.2. Valid Path. Given a transition graph Gt =

(V,E) with the entrance location set I and the exit location set

O, we call a location sequence loc1 → loc2 · · · → locq a valid
path if it satisfies the following three conditions: (1) loc1 ∈ I, (2)
(loci , loci+1) ∈ E(1 ≤ i < q), and (3) locq ∈ O.

Definition 2.3. TrackingRecord.A tracking record r is a triple
(id, loc, ts ), where id is the entity’s unique identifier (which may

be erroneous and is the subject of our study), loc is the location,
and ts is the timestamp.

Definition 2.4. Trajectory, Valid Trajectory, and Invalid
Trajectory. A trajectory T is a chronologically ordered sequence

of tracking records with the same ID (denoted by T.id), i.e., T =
r1 → r2 · · · → rq with T.id = r1.id = r2.id = · · · = rq .id and

r1.ts < r2.ts < · · · < rq .ts . We can represent a trajectory with

the ID followed by the location sequence, e.g.,GL12345⟨A→ B →
C⟩. Given a transition graph Gt and a trajectory T, we call T a

valid trajectory (orVT for short) if the location sequence r1.loc →

r2.loc · · · → rq .loc of T is a valid path w.r.t. Gt . Otherwise we

call T an invalid trajectory (or IVT for short).

In an ideal setting, each trajectory in a dataset is error-free and

contains all the tracking records of an entity (e.g., GL21348⟨A→
B → D → E⟩ in Example 1.2). Due to ID errors, however, a

trajectory may be broken into multiple fragments, each contain-

ing tracking records with a different ID (e.g., GL03245⟨C⟩ and
GL83248⟨D → E⟩ in Example 1.2). Certainly, at most one of the

IDs is correct, and the the rest are all erroneous. Most of the time,

those fragments are invalid trajectories (including the one with

the correct ID), but there does exist a slight possibility that each

of the fragments coincidentally corresponds to a valid path in

the transition graph and is thus deemed valid. Considering its

rarity, we ignore this case in our subsequent discussion.

We view the ID repair problem as one of “restoring" the origi-

nal true trajectory through ID rewriting. That is, we seek to find

a subset of trajectories and rewrite their IDs to (hopefully) the

correct one, and then merge those trajectories to form a valid

trajectory. As such, we introduce the following definitions.

Definition 2.5. Join, Joinable Subset and Target ID. Given a

transition graph Gt , we define join on a trajectory set T ′ and an

existing ID r from T ′ as first rewriting the ID for each T ∈ T ′

to r and then merging all tracking records in T ′ chronologically
to constitute a new trajectory T̂r , i.e., T̂r = join(T ′, r ). The join

is valid iff the newly formed trajectory T̂r is a VT w.r.t. Gt , and

we call r the target ID and T ′ a joinable subset iff such a valid

join exists.

Definition 2.6. Candidate Repair. A candidate repair (or re-
pair for short) R is a pair (T ′, r ) consisting of a joinable subset
T ′ and a target ID r . For a repair R, the corresponding joinable

subset and the invalid trajectories contained therein are denoted

by jns (R) and ivt (R). With R defined, the join operation can be

rephrased as T̂r = join(R). If r is the true ID for all trajectories

contained in T ′ (which implies that they actually come from the

same entity), and T̂r is the true trajectory for the entity with ID

r , we call R a correct candidate repair (or correct repair for short).
For two candidate repairs Ri and Rj , if their joinable subsets are
mutually exclusive, i.e., jns (Ri ) ∩ jns (Rj ) = ∅, we say that Ri and
Rj are compatible; otherwise incompatible. If all pairs of repairs in
a set of repairs are compatible, then we call this set a compatible
repair set.

Figure 2 shows two candidate repairs whose correctness is

unknown. They are incompatible due to the sharing of trajectory

GL03245⟨C⟩.
Given a trajectory set T and a compatible repair set R ′, a

new trajectory set T̂ can be produced by joining the trajectories

indicated by each R ∈ R ′. As illustrated before, the reason why

the repairs must be compatible is that it does not make sense to

rewrite a trajectory’s ID to more than one target ID at the same

time.

2.2 Problem Statement
Given a transition graph Gt , a set of trajectories T with ID errors,

we use R to represent the set which contains all the potential

candidate repairs. The ID repair problem can be regarded as

searching a compatible repair setR ′ ⊆ R , and joining trajectories

designated by the compatible candidate repairs in R ′ to obtain a

new trajectory set T̂ .

Note that there may exist various (incompatible) candidate

repairs in R for a single trajectory, and our goal is to find the
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most promising one. We thus need a function ω (R) to evaluate
the effectiveness of R, which serves as an estimate of how much

quality improvement can be gained by R.

2.2.1 The Evaluation Function for Repair Effectiveness. We

first discuss the factors that we have considered in devising a

suitable evaluation function for the effectiveness of a repair.

• The individual fitness of a repair. In real applications,

the erroneous IDs often bear some similarities with their

correct values, i.e., the more similar two IDs are, the more

likely they correspond to the same entity. In the case of

composite IDs, even if attempts are made to camouflage

the entities with a fake name, the remaining components

of the IDs, such as color and type, are more difficult to

conceal and thus the erroneous IDs would still be similar

to the true IDs. For that reason, we use ID similarity to

evaluate the individual fitness of a repair. This similarity

can be measured by the distance between the strings or

feature vectors representing the IDs, and there have been

dozens of metrics (e.g., edit distance, overlap coefficient,

and cosine similarity) proposed in the literature for this

purpose [24]. In this paper, we choose edit distance as

the similarity metric, but this can be replaced by other

metrics for different applications. Specifically, for a repair

R = (T ′, r ), we use the similarity function sim(R), which
is based on the minimum similarity from an ID in T ′ to

the target ID r , to evaluate the individual fitness of R:

sim(R) = min

T∈T ′

(
1 −

dist (r ,T.id )
max ( |r |, |T.id |)

)
(1)

where dist (r ,Ti .id ) is the edit distance between r and

Ti .id , and |Ti .id | is the length of Ti .id . Apparently, the
range of the similarity function is [0, 1].

• The potency of a repair. As illustrated before, ID errors

will cause invalid trajectories. Candidate repairs that fix

more IVT s are considered more “powerful" and are ex-

pected to bring greater quality improvement to a dataset.

• The rarity of a repair. For a set of trajectoriesT and a set

of corresponding potential candidate repairs R, each IVT
T′ ∈ T may be covered by multiple repairs in R. We call

the number of those repairs the degree of T′ (denoted by

d (T′)). A smaller degree implies that the trajectory is more

“endangered", i.e., there are fewer candidate repairs that

are able to fix it. On the other hand, each such candidate

is considered more precious or rarer and thus should be

preferred. We define the rarity of a repair R as

ra(R) = min

T∈ivt (R )
d (T) (2)

The value of ra(R) ranges from 1 to |R |. When ra(R) takes
the minimum value of 1, it means that only R can fix a

certain IVT in the dataset.

Different effectiveness evaluation functions can be designed

based on the factors above. We find the following one performs

well in our scenarios:

ω (R) =



0 |ivt (R) | = 0

sim(R) + λ logra (R )+1 |ivt (R) | |ivt (R) | ≥ 1

(3)

where sim(R) and ra(R) are the similarity function and the rarity

function respectively, |ivt (R) | represents the number of invalid

trajectories in R, and λ ∈ (0, 1] is a coefficient controlling the

trade-off between the two terms.

In Equation (3), the first term sim(R) acts as assurance on the

matching fitness and makes it unlikely for an ID to be rewritten

to another arbitrary ID. The second term logra (R )+1 |ivt (R) | rep-
resents the potency impact scaled by the rarity factor. According

to this term, repairs holding more invalid trajectories and being

more rare will be more effective. In general, ra(R) + 1 ≫ |ivt (R) |
and thus the range for logra (R )+1 |ivt (R) | is also [0, 1].

Note that due to the introduction of ra(R), the effectiveness
of a repair cannot be evaluated unless a full candidate repair set

R is provided.

2.2.2 The ID Repair Problem. Given a trajectory set T (with

ID errors), a transition graph Gt , and an evaluation functionw
for repair effectiveness, the ID repair problem is to search for a

compatible repair set R ′ that can maximize the sum of the repair

effectiveness. Formally, this can be described as

maximize

R′
Ω(R ′) =

∑
R∈R′

ω (R)

subject to jns (Ri ) ∩ jns (Rj ) = ∅,∀Ri ,Rj ∈ R
′.

(4)

2.3 Applicability and Assumptions
The ID repair approach we adopt exploits the locality and sparsity

properties of the real world spatio-temporal trajectories:

• Locality of movement – a given entity is more likely to

move within a local geospatial neighborhood than “jump-

ing” between far-away locations in a relatively short time

span. This implies that it is more likely to find the true

value of an erroneous ID based on entities that are close

in time and space.

• Sparsity of IDs – two entities with different but very sim-

ilar IDs are highly unlikely to appear in the same local

neighborhood during a relatively short period of time.

Based on these properties, we make the following assumptions.

First, we assume that identical IDs in the data, whether correct

or not, belong to the same entity. In other words, we would not

break a trajectory into smaller pieces. In exceptional cases, it may

so happen that a tracking record with an erroneous ID becomes

part of a valid trajectory in place of a missing record with the

true ID; but such cases are so rare due to the sparsity of IDs that

we could consider them negligible.

Second, we consider all records with the same ID constitute a

trajectory with bounded length and time span. The rationale is

that despite some entities intending to wander around in the area

of interest, the majority should be passing traffic and thus their

trajectories should not be too long. Based on this assumption, we

set two bounds θ and η, where θ is the maximum possible length

of a VT (i.e., the maximum number of tracking records in it) in a

dataset, and η is the maximum time span for a VT .
Finally, we assume that the error rate for ID identification is

not too high (which is consistent with what we observe from

real data), i.e., the number of trajectory fragments caused by

erroneous IDs in a trajectory is limited. We use a bound ζ to

represent the maximum possible number of trajectories in a join-

able subset. Although there may be extraordinary cases where

these assumed bounds do not hold, their establishment grants

us the opportunity to significantly improve the efficiency of the

proposed algorithms, as will be shown in Section 6.2.

3 A TWO-PHASE REPAIR PARADIGM
We now describe a two-phase repair paradigm that serves as

the framework for solving the ID repair problem. The detailed
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algorithms involved in this paradigm will be presented in Section

4.

3.1 Overview of the Paradigm
The basic idea of the proposed paradigm is to first generate all

possible candidate repairs and then select a set of repairs that can

maximize the objective function (Equation (4)). Figure 3 depicts

the repair paradigm consisting of two phases: candidate repair
generation and compatible repair selection.

GmT R Gr R0
Gt Gt

1. candidate repair generation

2. compatible repair selection

Figure 3: The Two-Phase Repair Paradigm
In the candidate repair generation phase, we generate all po-

tential candidate repairs R (which are not necessarily compatible

with each other) from the input trajectory set T according to

the transition graph Gt . This phase can be accomplished using

an undirected graph with each vertex representing a different

trajectory and each edge indicating that the two trajectories

corresponding to its connected vertices can appear in the same

joinable subset. We call this graph the trajectory graph (denoted

by Gm ).

In the compatible repair selection phase, we perform the actual

ID repair by selecting a set of compatible repairsR ′ ⊆ R that have

the maximum total effectiveness in terms of Equation (4). This

task can be carried out by introducing another undirected graph

that reflects the incompatible relationships between different

repairs in R . We call this graph the repair graph (denoted by Gr ).

3.2 Candidate Repair Generation
This phase performs two core tasks, namely joinable subset deter-
mination and target ID assignment.

3.2.1 Joinable subset determination. Before delving into the

details of joinable subset determination, we first introduce two

predicates.

(1) The cex predicate. Given a transition graph Gt , the cex
predicate works by checking whether two trajectories can

coexist in a joinable subset w.r.t. Gt , i.e., {Tx ,Ty |cex (Tx ,
Ty )} = {Tx ,Ty |∃T ′(Tx ,Ty ∈ T ′), and T ′ is a joinable
subset}. Apparently, only if the location sequence for the

chronologically merged records of the two trajectories is

a subsequence (which does not have to be continuous) of

a path in Gt , can this predicate evaluate to true.

(2) The jnb predicate. Given a transition graph Gt , the jnb
predicate is used to determine whether a set of trajec-

tories is a joinable subset w.r.t. Gt , i.e., {Tx |jnb (Tx )} =
{Tx |∃T

′(Tx = T
′), and T ′ is a joinable subset}. This

can be performed by checking whether the location se-

quence for the chronologically merged records is a valid

path in Gt . As a special case, for a trajectory set with only

one element, the jnb predicate evaluates to true if that

element is a valid trajectory.

We first use the cex predicate to construct the trajectory graph

Gm . Specifically, each vertex vi in Gm corresponds to a Ti ∈ T ,

and each undirected edge (vi ,vj ) corresponds to a trajectory pair
(Ti ,Tj ) such that cex (Ti ,Tj ) evaluates to true.

Example 3.1. Let us use T1, T2, and T3 to represent the three

trajectories shown in Table 2. To construct Gm , we first create

v1 v2 v3

(a) The Trajectory Graph

v0
3v0

2v0
1

!(R2) = 0:428

!(R1) = 0 !(R3) = 1:029

(b) The Repair Graph

Figure 4: Gm and Gr for the Running Example
three vertices v1, v2, and v3, corresponding to T1, T2, and T3
respectively. Since both cex (T1,T2) and cex (T2,T3) evaluate to
true, two edges (v1,v2) and (v2,v3) are added to Gm . Figure 4(a)

shows the constructed trajectory graph for the dataset.

Such construction allows the problem of searching for joinable

subsets to be transformed to operations on Gm , as shown in the

theorem below.

Theorem 3.2. A necessary but not sufficient condition for a
trajectory set to be a joinable subset is that its corresponding vertex
set in Gm is a clique.

To compute the joinable subsets, we first generate all cliques

in Gm and then use the jnb predicate to check whether their cor-

responding trajectory sets can really be joinable subsets. Actually,

the clique generation process can be regarded as a preprocessing

step which saves us from enumerating all the trajectory combina-

tions. In general settings, listing all cliques in a graph is NP-hard

[19]. Fortunately, since both the length of a VT and the number

of trajectories contained in a candidate repair are bounded ac-

cording to our aforementioned assumptions, the problem can be

solved in polynomial time in our case. We present the detailed

algorithm for generating the qualified-cliques in Section 4.1.2.

Example 3.3. For the trajectory graph shown in Figure 4(a),

there are five cliques: {v1}, {v2}, {v3}, {v1,v2}, and {v2,v3}. How-
ever, evaluating jnb on their corresponding trajectory sets re-

veals that there are only three joinable subsets: {T1}, {T1,T2},
and {T2,T3}.

3.2.2 Target ID Assignment. After generating all the joinable

subsets, we assign target IDs to them. Given a joinable subset

T ′, the target ID is decided by selecting a trajectory Tc that

maximizes the following equation.

Tc = arдmax
Ti ∈T ′

*..
,

∑
Tj ∈T ′

|Ti |
|Tj |

(
1 −

dist (Ti .id, Tk .id )
max ( |Ti .id |, |Tj .id |)

)+//
-

(5)

In this equation, |Ti | (|Tj |) is the length of trajectory Ti (Tj ),
|Tj .id | (|Tj .id |) is the length of ID Ti .id (Tj .id), and dist (Ti.id,
Tj .id ) is the edit distance between them. The rationale behind

the choice of this equation is that when all trajectories have the

same length, our goal is to choose a target ID that can maximize

the sum of similarities of all IDs with the target ID. We also

give preference to longer trajectories, as the error rate for ID

identification is usually low and it is unlikely for the same error

to be made at consecutive locations in a trajectory. Note that we

choose to use edit distance here to measure the (dis-)similarity

between IDs, but other distance measures can also be used where

appropriate.

Example 3.4. Based on Equation (5), we assignGL21348,GL21348,
and GL83248 as the target IDs for the three joinable subsets

{T1}, {T1,T2}, and {T2,T3} generated in Example 3.3 and com-

bine them respectively to generate three candidate repairs: R1 =
({T1},GL21348), R2 = ({T1, T2},GL21348) , and R3 = ({T2,T3},
GL83248). Then we calculate their effectiveness values accord-

ing to Equation (3), which are ω (R1) = 0, ω (R2) = 0.428, and

ω (R3) = 1.029.
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3.3 Compatible Repair Selection
In the previous phase, we have generated all candidate repairs

R. Next, we select compatible repairs from R to maximize the

objective function in Equation (4). The selection process can be

mapped to operations on another undirected graph, namely the

repair graph, Gr , which can be constructed as follows: (1) for each

candidate repair Ri ∈ R, add a corresponding vertex v ′i to Gr ;
(2) if Ri ,Rj ∈ R share an identical trajectory, add an undirected

edge (v ′i ,v
′
j ) to Gr .

Example 3.5. To construct Gr for the three candidate repairs

generated in Example 3.4, we first add three corresponding ver-

ticesv ′
1
,v ′

2
, and v ′

3
. Since jns (R1) ∩ jns (R2) = {T1} and jns (R2) ∩

jns (R3) = {T2}, two edges (v ′
1
,v ′

2
) and (v ′

2
,v ′

3
) are added. Finally,

we get the repair graph shown in Figure 4(b).

Such construction allows us to view the problem of select-

ing compatible repairs as packing vertices from Gr where no

pairs are adjacent. This translates to the well known weighted
independent set problem, which is NP-hard in common settings

[23]. Considering the inherent relationships between repairs, we

present a greedy algorithm to approximately solve this problem

in Section 4.2.

4 ALGORITHMS
In this section, we present the core algorithms for the two-phase

repair paradigm.

4.1 Algorithms for Repair Generation
4.1.1 Evaluating the cexnd jnbredicates. Given a transition

graph Gt , the cex predicate determines whether two trajectories

T1 and T2 can coexist in a joinable subset. The key idea in eval-

uating this predicate is to check whether the location sequence

for the chronologically merged records is a subsequence of a

path in Gt . This can be considered a reachability problem, i.e.,

for the merged location sequence loc1 → loc2 → · · · → locq
(q = |T1 | + |T2 |), if loci and loci+1 belong to different trajectories,
we check whether loci+1 is reachable from loci .

A straightforward solution for this problem using breadth-first

(or depth-first) search takes linear time, but we can do some pre-

processing to have it done in constant time. Specifically, the Floyd

Warshall algorithm [16] can be employed to calculate the shortest-

path matrixM for Gt , whereM[i][j] indicates the number of

edges in the shortest path from loci to loc j . After this preprocess-
ing step, the reachability queries can be answered instantly by

consulting the elements inM.

Moreover, recall that we have two user-defined bounds, the

maximum length θ and the maximum time span η for each VT .
Thus we should also check whether |T1 | + |T2 | ≤ θ and whether

the time span for the merged sequence exceeds η. Putting things

together, we show the algorithm for evaluating the cex predicate

in Algorithm 1.

Compared with the cex predicate, the jnb predicate is more

strict in that it evaluates to true only if the given trajectories

can perfectly make up a joinable subset. The algorithm for this

predicate is similar to that for the cex predicate with the follow-

ing two additional restrictions: (1) the location attributes in the

earliest and the latest records of the input trajectories must be an

entrance location and an exit location in Gt , respectively, and (2)

no matter whether two adjacent records (in the merged sequence)

ri and ri+1 belong to the same trajectory or not, there must be an

Algorithm 1 Algorithm for the cex predicate

Input: The reachability matrixM for Gt ; the maximum length

θ ; the maximum time span η; two trajectories T1 and T2.
Output: true if T1 and T2 can coexist in a joinable subset; f alse

otherwise.

1: if |T1 | + |T2 | > θ then
2: return f alse

3: merge records in T1 and T2 by their timestamps to get a

sequence r1 → r2 → · · · → rq ;
4: if rq .ts − r1.ts > η then
5: return f alse

6: for all ri and ri+1 in the merged sequence do
7: if ri .id , ri+1.id then
8: ifM[i][i + 1] ≥ θ then
9: return f alse

10: return true

edge from ri .loc to ri+1.loc . Due to space limitation, the detailed

algorithm for evaluating the jnb predicate is omitted.

4.1.2 Generating Qualified Cliques. We now introduce the

algorithm for generating the qualified cliques in Gm . In general,

enumerating all cliques in an undirected graph requires expo-

nential time, and the running time is output-sensitive (i.e., the

running time depends on the size of the output). However, when

the trajectory length and clique size are bounded (by θ and ζ
respectively), the problem can be much simplified. We show how

to generate the qualified cliques in Algorithm 2, which runs in

O ( |Vm |ζ ) time.

Algorithm 2 Algorithm for generating qualified cliques

Input: The adjacency matrix representation of trajectory graph

Gm = {Vm ,Em }; a set C to store vertices in the current

clique; an index list L for vertices; the maximum trajectory

length θ ; the maximum clique size ζ .
Output: a set of generated cliques results .
1: fill L with 1, 2, · · · , |Vm |
2: function Cliqe(C , L)
3: for i ← L.size (), 1 do
4: v ← L.дet (i )
5: C ← C ∪ {Tv }
6: create a new list Lnew
7: for j ← 0, i do
8: w ← L.дet (j )
9: if (v,w ) ∈ Em then
10: Lnew .add (w )

11: results ← results ∪ {C}
12: if ¬Lnew .empty () and C .RecordNumber < θ and
|C | < ζ then

13: Cliqe(C , Lnew )

14: C ← C \ {Tv }
15: L.remove (i )

16: return results

The main idea of the generation algorithm is backtracking.

It iteratively adds to a temporary vertex set C a vertex that is

adjacent to all existing ones inC from an input vertex list, outputs

the result, starts a recursion with a new list of vertices that are

adjacent to the newly added vertex, and finally removes the vertex

added in this round. As shown in Line 12, unnecessary recursions

are eliminated using the bounds θ and ζ .
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(a) A Sample Gm
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(b) The Clique Generation Process

Figure 5: An Example of Clique Generation

Example 4.1. Figure 5 shows an example of the clique gen-

eration process. Given a trajectory graph with 5 vertices, the

15 cliques are generated in turn with Algorithm 2. As shown

in Figure 5(b), if ζ = 2, the algorithm will automatically skip

generating cliques beneath the dashed line.

4.2 Algorithms for Repair Selection
As discussed in Section 3.3, the repair selection problem corre-

sponds to a weighted-independent set problem on Gr , which

is NP-hard. In search of efficient solutions, consider the effec-

tiveness evaluation function in Equation (4). It is defined as an

indicator of the potential quality improvement due to a repair, but

by no means a definitive measure of the true improvement. That

is, for two compatible repair sets R ′
1
and R ′

2
, if Ω(R ′

1
) > Ω(R ′

2
),

it just indicates that R ′
1
is likely better than R ′

2
, but not definitely,

especially when the values of Ω(R ′
1
) and Ω(R ′

2
) are close. This is

confirmed by a large number of experiments on different datasets,

from which we find that the Ω values of the optimal compatible

repair sets (which include all the correct repairs) are randomly

distributed in the proximity of, but not exactly the same as, the

optimal results from the weighted-independent set problem.

The observation inspires us to seek approximate solutions to

the repair selection problem instead. Many heuristic algorithms

have been proposed for the weighted-independent set problem

(see [5] for a survey). Here we propose a greedy algorithm named

maximum-effectiveness first (EMAX), which gives superior empir-

ical results in our settings. As shown in Algorithm 3, the EMAX

algorithm always selects from Gr a vertex whose corresponding

repair is evaluated to be the most effective according to Equa-

tion (3), and then discards its adjacent vertices until there is no

vertex left.

Algorithm 3 The EMAX algorithm

Input: the repair graph Gr = (Vr ,Er ).
Output: a set of selected verticesV .

1: sort vertices in Vr by the ω values of their corresponding

repairs in a decreasing order

2: for all v in Vr do
3: if v .discard = f alse then
4: add v toV

5: for all va adjacent to v do
6: va .discard ← true

7: returnV

Compared with the exact algorithm that requires exponential

running time, the EMAX algorithm runs in only O ( |Vr | log |Vr |)
time. The rationale behind this heuristic is that, repairs evaluated

to be more effective are more likely to be correct, and thus giving

them priorities them makes it more likely to select the best result.

Example 4.2. For the repair graph shown in Figure 4(b), the

EMAX algorithm first selects the vertex v ′
3
corresponding to

candidate repair R3 (since it is the most effective according to

Equation (3)) and then discards v ′
2
adjacent to v ′

3
. Since the effec-

tiveness of R1, the only vertex left, is zero, v
′
1
will not be selected.
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Figure 6: Time Boundaries and the Data Structure for LIG
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Figure 7: Overview of the Length-Indexed Grids

5 OPTIMIZATION
In this section, we provide some optimization methods to make

the repair approach more efficient.

5.1 An Index for Constructing Gm
The candidate repair generation phase requires evaluating the

cex predicate on each pair of trajectories in T for constructing

the trajectory graph Gm . Suppose that there are |Vm | trajectories.
This procedure requires O ( |Vm |2) comparisons, which could be

costly in practice. Recall that valid trajectories are upper-bounded

in length and time span, and we thus make use of the bounds θ
and η to filter out some unnecessary comparisons.

Definition 5.1. Start Time and End Time. The start time and
the end time of a trajectory T are defined as the timestamps of

the earliest and latest records in T, respectively.

Given a trajectory Tk with start time tss and end time tse ,
another trajectory Tu that may constitute a joinable subset with

Tk must first meet the length criterion, i.e., |Tu | ≤ θ − |Tk |. Also,
for the bound on time span η, the max/min start time (denoted

by maxs and mins ) and max/min end time (denoted by maxe
andmine ) of Tu should satisfy the following inequalities (which

are demonstrated in Figure 6(a)): tse −mins ≤ η,maxs − tss ≤
η, tse − mine ≤ η, and maxe − tss ≤ η. According to these

inequalities, both the start time and end time of Tu should fall in

[tse − η, tss + η], and we can transform the criteria into a range

query on a three-dimensional index structure on the trajectories

called Length-Indexed Grids (LIG).

Overview. As shown in Figure 7(a), the three dimensions of

LIG are the length, the start time and the end time of a trajectory.

Specifically, we divide the time span of interest along both the

start time and end time dimensions into time bins with fixed

size tb , resulting in a two-dimensional time grid shown in Fig-

ure 7(b). A separate time grid is created for each trajectory length

appearing in the dataset.

The Data Structure. Figure 6(b) illustrates the data structure
of LIG. An array is used to store the grids with different trajectory

lengths. Each grid is actually a two-dimensional array. Trajec-

tories are distributed to grids according to their start/end times

and trajectories in the same grid are linked to be an element of
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the two-dimensional array. We construct LIG by successively

add trajectories. For each trajectory, we first decide the grid it

belongs to according to the trajectory’s length. Then we assign a

time grid for the trajectory and add it as a new element to the

tail of the corresponding list.

Usage.We use the index to answer the range query by first de-

ciding a set of feasible grids according to the trajectory’s length

and the threshold θ . After that, in each grid, we select trajec-

tory lists that meet the start/end time restrictions from the two-

dimensional array. Without loss of generality, suppose that the

timestamps of tracking records are represented as offsets to the

earliest timestamp in the dataset. Then the target trajectories we

are interested in should be contained in elements whose indices

are bounded by [⌊
tss−η
tb
⌋ × tb , ⌈

tse+η
tb
⌉ × tb ] in both dimensions.

With the index technique provided above, we can prune many

useless trajectory comparisons. As the time grids are static, the

index can be constructed efficiently in Θ( |Vm |) time. As such,

the running time for generating Gm can be significantly reduced.

5.2 A Pruning Method for Clique Generation
In Section 4.1.2, we show how to generate qualified cliques from

the trajectory graph Gm . All the trajectory sets corresponding

to the cliques will be further checked by the jnb predicate to see

if they are really joinable subsets. Considering that Algorithm 2

is output-sensitive, it will be more efficient if we can eliminate

some worthless vertex combinations early on during the clique

generation process. We propose an optimization method named

minimum cover prefix pruning for this purpose.

Time

Minimum Cover Prefix

Figure 8: The Minimum Cover Prefix

Definition 5.2. Minimum Cover Prefix. As shown in Fig-

ure 8, given a trajectory set T = {T1,T2, · · · , Tp }, we can

merge their tracking records chronologically to get a sequence

r1 → r2 → · · · rq . Theminimum cover prefix (abbreviated asMCP)

for T is defined as the minimum prefix of this sequence that con-

tains at least one tracking record from all trajectories in T .

Theorem 5.3. The MCP condition. Given a list of trajectories
[T1,T2, · · · ,Tp ] sorted by their start times in an increasing order
(i.e., Ti .startTime ≤ Ti+1.startTime), a necessary but not suffi-
cient condition for these trajectories to compose a joinable subset is
that the location sequence for the MCP of any {T1,T2, · · · ,Tp−k }(0
≤ k < p) must be a prefix of a valid path in Gt .

According to Theorem 5.3, when generating cliques, if the

vertices are added to C in an increasing order of the start times

of their corresponding trajectories, we can prune some unneces-

sary vertex combinations according to the MCP condition. The

checking is performed with a pck predicate.

The pck predicate. Similar to the cex and jnb predicates,

given a trajectory graph Gt , the pck predicate can be applied

on one or more trajectories and evaluates to true iff the MCP

condition holds, i.e., {Tx |(pck (Tx ))} = {Tx |∃P(r1.loc → · · · →
rk .loc = pre f ix (P)), [r1, · · · , rk ] is theMCP of Tx andpre f ix (P)
is the prefix of a valid path P in Gt }. In terms of “restrictiveness”,

this predicate falls somewhere between the cex and jnb predi-

cates. Compared with cex , it further requires that the location
sequence must be a prefix of a valid path, not just a subsequence;

compared with jnb, it just ensures that the first location is an

entrance location. Due to space limitation, the detailed algorithm

for evaluating this predicate is omitted.

With the pck predicate defined, we try to modify the qualified-

clique generation algorithm by pruning worthless results and

recursions. First of all, we must ensure that the cliques are gen-

erated in the order of their trajectories’ start times. Fortunately,

Algorithm 2 iterates through the vertices with an index list L.
Thus, to keep the generation order, we just need to sort the ver-

tices in Gm . Then, each time before outputting a generated clique

to the result set, we check its corresponding trajectory set with

the pck predicate, and only if it evaluates to true , can we accept

the clique and continue adding more vertices into the result set.

The modified algorithm snippet is shown in Algorithm 4.

Algorithm 4 Clique generation with pruning

. . .

sort vertices in Gm by their corresponding trajectories’ start

times in descending order

function Cliqe(C , L)
. . .

if pck (C .trajectories ) = true then
results ← results ∪ {C}
if ¬Lnew .empty () and C .RecordNumber < θ and

|C | < ζ then
Cliqe(C , Lnew )

. . .

Example 5.4. Suppose that the vertices in Figure 5(a) are al-

ready sorted by the start times of their corresponding trajectories,

i.e., T5.startTime ≤ T4.startTime ≤ · · · ≤ T1.startTime . If the
MCP condition does not hold on {T5}, any cliques containing v5
(e.g., {v5,v4} and {v5,v4,v1}) will be pruned by the modified al-

gorithm. For the same reason, if the MCP condition does not hold

on {T5,T2}, the cliques {v5,v2} and {v5,v2,v1} will be pruned.
Obviously, the modified algorithm is more efficient thanks to the

pruning of some cliques and unnecessary calculations.

6 EXPERIMENTS
We conduct extensive experiments on both real and synthetic

datasets to thoroughly evaluate the properties of the proposed

approach and compare it to baseline methods.

6.1 Experimental Settings
All algorithms are implemented in Java and run on a desktop

PC with a 2.5GHz Intel i5 CPU and 8GB of memory. Each set

of experiments are repeated at least 30 times and the average

results are recorded.

A real dataset and a series of synthetic datasets with different

characteristics are used in the experiments. According to Sec-

tion 2.3, the repair approach we proposed in this paper is in the

interest of local regions. For such small regions, the transition

graphs may seem simple. However, note that even for such seem-

ingly simple graphs, the repair problem is still quite challenging,

as revealed in Section 3.

6.1.1 Datasets. Real Dataset. The real dataset is obtained
from a real traffic surveillance system in a provincial capital

in China. We choose a specific region of this city and extract

699 trajectories of vehicles which contain 2,045 tracking records

between 8:00 a.m. and 9:00 a.m. on a particular day. Figure 9(a)

illustrates the road network and the distribution of surveillance
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(a) The Road Network

C DA B

(b) The Transition Graph

Figure 9: Road Network and Transition Graph
cameras in this region. The license plate numbers of the vehicles

are captured by cameras located at A, B,C , and D whenever they

pass by these sites. Figure 9(b) is the corresponding transition

graph we derived. Due to OCR errors and other issues, some of

the license plates in the dataset were misidentified. We manually

label the plate numbers by examining the original photos taken
by the cameras, which serves as the ground truth. In this way, we

obtain a labeled dataset that contains both the raw and the true

values. The default values of θ , η, ζ and λ for the real dataset are

empirically set to 4, 600 seconds, 4, and 0.5, respectively, unless

otherwise specified.

Synthetic Datasets. To generate a synthetic trajectory set

for ID repair, we first choose a transition graph, based on either

the real dataset or a sample of the California road network [21].

Then we repeatedly sample random valid paths and generate

corresponding trajectories until we have obtained the desired

number of trajectories. Without loss of generality, we assume

that an ID consists of 7 to 9 lower-case letters only, which are

independently and identically generated following a uniform

distribution. The time span is sampled from the empirical dis-

tribution of travel time between the corresponding locations in

the real dataset. After that, using the edit distance distribution

for erroneous IDs in the real dataset as a ballpark, we randomly

inject ID errors to the tracking records with a specified error rate,

and eventually get a synthetic dataset. The default error rate is

set to 20%, unless otherwise specified.

6.1.2 Metrics. Weuse elapsed time as themetric for efficiency,

and adopt precision, recall and f-measure as the general metrics

for effectiveness. Using Te to represent all the trajectories with

ID errors, Tr to represent those trajectories with ID rewritten by

applying candidate repairs, and Tc to represent all the trajectories

whose IDs are correctly repaired, we define recall = |Tc |/|Te |,

precision = |Tc |/|Tr |, and f-measure =
2·(precision·recall)
(precision+recall) . There

are also some specialized metrics used in certain groups of ex-

periments, which will be introduced later.

6.2 Effects of Parameters
We first evaluate the effects of different parameters through a

group of experiments on the real dataset.

The effects of θ , ζ , and η. Figures 10(a), 10(b) and 10(c) show
the f-measure and running time with varying values of θ , ζ , and
η, respectively, with all other parameter values fixed at their

default values. We observe that for each of these parameters, the

running time grows with increasing parameter values. For the

f-measure, it initially increases as well, but eventually flattens

out. This verifies our earlier observation that for a particular

dataset, there exist bounds on these parameters, beyond which

no further gains in repair effectiveness can be achieved. Thus, by

carefully choosing the bounds, we can reduce the running time

of the repair process significantly.

The effect of λ. Figure 10(d) shows the effect of λ in Equa-

tion (3). With λ varying from 0.1 to 0.9, the running time remains

stable, and the f-measure first increases and then decreases after

3

1 2 3 4 5

f
-
m
e
a
s
u
r
e

0

0.5

1

r
u
n
n
i
n
g
 
t
i
m
e
 
(
s
)

0

2

4
f-measure
running time

(a) Results with Varying θ

1

1 2 3 4 5

f
-
m
e
a
s
u
r
e

0

0.2

0.4

0.6

0.8

1

r
u
n
n
i
n
g
 
t
i
m
e
 
(
s
)

1

1.5

2

2.5

3

3.5

f-measure
running time

(b) Results with Varying ζ

2

0 200 400 600 800

f
-
m
e
a
s
u
r
e

0

0.5

1

r
u
n
n
i
n
g
 
t
i
m
e
 
(
s
)

0

2

4

f-measure
running time

(c) Results with Varying η

6

0.1 0.3 0.5 0.7 0.9

f
-
m
e
a
s
u
r
e

0.5

0.6

0.7

0.8

0.9

1

r
u
n
n
i
n
g
 
t
i
m
e
 
(
s
)

1

2

3

f-measure
running time

(d) Results with Varying λ
Figure 10: Results with Different Bounds on the Real
Dataset
λ = 0.5. The results imply that (1) there exists an optimal λ value

with which the best results can be produced, and (2) the repair

results are not sensitive to changes in λ.

6.3 Effects of Data Characteristics
We next conduct a set of experiments using synthetic datasets

to investigate the impact of different data characteristics. All the

datasets used in this set of experiments are produced based on 500

original trajectories (before injecting errors). The actual number

of trajectories in a dataset is affected by different parameters

(e.g., error rate and record missing rate), and will be shown for

different groups of experiments. The default values of θ , η, ζ and

λ for the synthetic datasets used here are set to 8, 600 seconds, 4,

and 0.5, respectively.

6.3.1 Size and Density of the Transition Graph. The first data
characteristics we explore are the size (number of vertices) and

density (number of edges) of the transition graph. The experi-

ments are conducted on synthetic trajectory sets generated from

transition graphs with different sizes and different densities. We

vary the density of a transition graph with 8 vertices Gt =

(V,E, I,O), where V = {loc1, loc2, · · · , loc8}, E = {(loc1, loc2),
(loc2, loc3), · · · , (loc7, loc8)}, I = {loc1}, and O = {loc8}, by ran-

domly adding a specific number of edges (without duplicate) to

it.
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Figure 11: Effect of the Size and Density of Transition
Graphs

The effect of graph size. Figure 11(a) shows the results

on varying transition graph sizes. It is evident that both the

f-measure and the running time decrease with the number of

vertices increasing. That is because a transition graph with more

vertices tends to have longer valid paths, and the longer the valid

paths are, the harder it is to form candidate repairs that could

“reassemble" the original trajectory;

The effect of graph density. The results for adding varying
number of edges to a given transition graph are shown in 11(b).
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The f-measure decreases while the running time increases with

more edges added, due to the following reasons: (1) adding edges

to the transition graph will increase the number of valid paths

and thus there will be more candidate repairs; (2) with the number

of candidate repairs growing, there may be more false positive

repairs (vertices) being selected and that will cause the f-measure

to deteriorate; and (3) having more candidate repairs also leads

to longer candidate generation and selection time, resulting in

an increase in the total running time.

The results above imply that our ID repair approach is more

suitable for sparse transition graphs with limited number of ver-

tices, which is actually the case in many, if not most, application

scenarios. This is also consistent with our assumptions and anal-

ysis made in Section 2.3.

6.3.2 ID Error Rate. To evaluate the effect of the ID error rate,

we create a cohort of synthetic datasets by randomly injecting

ID errors, each time with a different error rate, into an identical

original trajectory set.
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Figure 12: Effect of ID Error Rate

The experiment results are reported in Figures 12(a) and 12(b),

from which we can observe that with the error rate increasing,

(1) the number of trajectories for the input dataset increases

linearly; (2) both the number of candidate repairs and the running

time increase polynomially; and (3) the f-measure drops near

linearly. The reason is as follows. Since ID errors can cause a

trajectory to break into multiple pieces, the input number of

trajectories grows linearly with respect to the error rate. Both the

number of candidate repairs and the running time also increase

accordingly. The f-measure drops mainly because intuitively it is

more difficult to “reassemble" the original trajectory with more

IDs misidentified. Also, recall that our repair approach assumes

that all the correct IDs exist in the dataset, which may no longer

hold if the error rate gets high. In summary, the lower the ID

error rate is, the better our repair approach works.

6.3.3 Record Missing Rate. As mentioned in Section 1, in this

work we only consider errors caused by ID misidentification,

ignoring the effect of missing records. In practice, however, there

may be a slight chance of recordmissing from the dataset.We thus

conduct experiments to evaluate whether this has a significant

impact on the effectiveness of the proposed approach. To this end,

we first generate a synthetic dataset and then randomly remove

records from it with varying record missing rates.
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Figure 13: Effect of Record Missing

As illustrated in Figures 13(a) and 13(b), with the missing rate

increasing from 0% to 20%, all the metrics decrease. The reason

is that (1) record missing will make some joinable subsets in-

complete and thus cannot compose the corresponding candidate

repairs (this is verified by the decrease of candidate repairs shown

in Figure 13(a)); (2) trajectories belonging to different entities

may be joined due to the absence of some trajectories; and (3)

records containing the true ID for an entity may have all been

removed, which makes some errors irreparable.

According to the experiment result, although having missing

records has a notable impact on the effectiveness of the proposed

ID repair approach, it is still applicable for datasets with relatively

low record missing rates.

6.4 Effectiveness of the Optimization
Methods

The main purpose of the next group of experiments is to explore

the performance improvements brought by the Length-Indexed

Grids (in Section 5.1), as well as the pruning method (in Sec-

tion 5.2).

We conduct the experiments on synthetic datasets with the

number of trajectories varying from 2,000 to 6,000 and the corre-

sponding number of records varying from 5,189 to 15,795. All the

datasets are generated using the same transition graph as that

for the real dataset.
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Figure 14: Effectiveness of Optimization Methods

Figure 14(a) shows the running time of the trajectory graph

construction process with different number of trajectories. From

this figure we can observe that without indexing, the construc-

tion time of Gm grows superlinearly with the number of tra-

jectories, whereas the trend becomes almost linear with the

Length-Indexed Grids. This observation indicates that the Length-

Indexed Grids can help eliminate a large number of unnecessary

trajectory comparisons.

Figure 14(b) reports the running time of the whole repair

process with the number of trajectories varying from 2,000 to

6,000. We can see that the time increases polynomially with the

number of trajectories. Besides, compared with the basic clique

generation algorithm, algorithm with the pruning method can

reduce about 30% running time.

6.5 Comparison with Competing Approaches
To evaluate the effectiveness of our proposed method, we com-

pare it with other approaches that use different repair selection

algorithms or exploit different constraints.

6.5.1 Alternative Repair Selection Algorithms. In this set of

experiments, we aim to investigate the performance of different

algorithms for the repair selection phase. In addition to EMAX

and the exact algorithms introduced in Section 4.2, we also imple-

ment three other algorithms for comparison. The first algorithm,
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named optimal selection, is an oracle machine based algorithm

that always selects and applies correct candidate repairs regard-

less of their ω values. Theoretically, this algorithm can achieve

the highest quality improvement. The second and the third algo-

rithms are minimum degree first (DMIN) and maximum degree

first (DMAX). As their names suggest, they select the vertex with

the minimum/maximum degree from Gr in each step and discard

adjacent vertices until there is no vertex left.

As the exact algorithm for weighted-independent set is time

consuming, the experiments are conducted on 5 small synthetic

datasets whose sizes do not exceed 100. Even so, the average

running time for the exact algorithm is still thousands times

longer than the other algorithms. Thus we only report on their

effectiveness rather than the performance.

To measure the real quality of a dataset, we employ the metric

trajectory accuracy, which is defined as the ratio of trajectories

with correct IDs. Thereby, the real quality improvement after

repairing can be measured by the increment in this metric. As

trajectory merging can change the data size, we will only per-

form ID rewritings. Using ∆E (∆A) and ∆Emax (∆Aopt ) to repre-

sent the selected Ω value (trajectory accuracy improvement) and

the maximum selected Ω value (maximum trajectory accuracy

improvement), the approximation ratio for maximum Ω value

selection and data quality improvement can be calculated by

∆E/∆Emax and ∆A/∆Aopt .
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Figure 15: Approximation Ratios for Different Selection
Algorithms on Synthetic Datasets

Figures 15(a) and 15(b) report the experiment results of max-

imum Ω value selection and data quality improvement, from

which we can observe that (1) the selected Ω value can reflect the

data quality improvement well, (2) the total selected Ω value for

the optimal selection algorithm is randomly distributed around,

rather than always coincides with, the maximum value, and (3)

remarkably, the proposed EMAX algorithm can achieve an av-

erage approximation ratio of more than 0.95 and 0.85 for repair

selection and real data quality improvement respectively, which

significantly beats the other two heuristic algorithms. In sum-

mary, as the optimal selection algorithm is evasive in practice

and the exact algorithm is time-consuming, the proposed EMAX

algorithm seems highly promising.

6.5.2 Comparison with Other Repair Approaches. To evalu-

ate our proposed ID repair approach, we implement a baseline

approach based on ID similarity = 3, i.e., trajectories with ID

similarity ≤ 3 are considered to come from the same entity and

thus will be merged. Also, we implement another greedy heuris-

tic method based on neighborhood constraints proposed in [27].

We take the transition graph Gt as the constraint graph and the

trajectory graph Gm as the instance graph. The cost function is

set to be the edit distance of two ID strings. To make sure the

algorithm terminates, we add a variation to the approach that

edges are allowed to be removed from Gm during relabeling.

The repair results of the three approaches are shown in Fig-

ure 16, from which we can observe that (1) while the precision

of the other competing approaches is somewhat close to our

proposed approach, their recall is significantly lower; and (2)

the neighborhood constraint based method performs even worse

than the baseline method for our problem. The recall of the ID

similarity based approach is better than that of the neighborhood

constraint based approach because it supports “partial recovery"

of the original trajectories. Actually, both the ID similarity based

approach and the neighborhood constraint based approach are

binary constraints that only consider the relationship between

trajectories pairs. In contrast, our transition graph based ap-

proach considers the relationships between multiple trajectories,

which is why it can cover more correct repairs.

7 RELATEDWORK
There has been a sizable body of work in the areas of data repair

and data matching that can be considered related to our work,

which we summarize below.

7.1 Data Repair
Most previous work on data repair has focused on relational data

by exploiting the different types of dependencies [1], e.g., match-

ing dependencies [12],differential dependencies [26], and order

dependencies [28]. Fan et al. extend the functional and inclusion

dependencies with conditions [6, 13] and also extend their data

inconsistency detection method to distributed environments [14].

Although highly successful, most of the work has not considered

spatial and temporal factors.

Moreover, sequential dependencies [18] are developed to con-

strain attributes’ transitions. Song et al. use neighborhood con-

straints to repair vertex labels in graphs [27]. Wang et al. employ

the Petri Net to repair the names of event logs [29]. Similar to

our study that focuses on repairing the IDs, Song et al. propose

a method for cleaning timestamps facilitated by temporal con-

straints [25].

For unified approaches, Ilyas et al. propose a novel holistic

repairing algorithm [8], as well as a general system [11] that puts

multiple constraints into consideration and repairs them all at

once. Similarly, Geerts et al. develop a uniform data-cleaning

framework with a cell group and partial order based cleaning se-

mantics [17]. However, thosemethods cannot be trivially adopted,

since it is difficult to transform the constraints posed by transi-

tion graphs in our setting into the denial constraints or equality-

generating dependencies required by those methods.

7.2 Data Matching
In the field of data matching, Yakout et al. try to identify the same

entity in different transactions by detecting regularity patterns

from merged behavior logs [32]. Similarly, Zhu et al. perform

heterogeneous event matching by finding an optimal mapping

that can maximize the frequency similarity of patterns [33].

When patterns are not explicitly given, Li et al. propose a

temporal model, as well as an algorithm to perform temporal
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Figure 16: Comparisons with Other Repair Approaches

records clustering [22]. They utilize both the usual similarity

metrics and the temporal model with collected evidences to make

the decision. Chiang et al. extend their work and develop a two-

phase method called “static first, dynamic second” to reduce the

complexity of the temporal model [7]. Also, they use signatures

to improve the computing efficiency. Note that both their work

and ours are to identify entities by exploring their transitions.

The main difference is that while their work mainly focuses on

when the state attributes of entities should change, we focus on

how (through which paths) the entities pass through the area of

interest.

8 CONCLUSIONS AND FUTUREWORK
We have studied a novel problem of repairing erroneous IDs in

spatio-temporal trajectories with transition graphs. A two-phase

repair paradigm, which includes candidate repair generation and

compatible repair selection, is proposed to address this problem.

Since both phases are intractable in general, we exploit the lo-

cality and sparsity properties of trajectories and present efficient

solutions in restricted but practical scenarios. For the candidate

repair generation phase, we propose a backtracking algorithm,

as well as a pruning method to speed it up. For the candidate

repair selection phase, we present a practical greedy algorithm.

Extensive experiments are conducted on both real and synthetic

data to study the effects of various parameters and data character-

istics. In addition, we compare our proposed approach with some

baseline methods and the results have confirmed its effectiveness.

One possible direction for future work would be to deploy our

algorithms on some distributed repair systems with UDF support

[20]. It would also be interesting to study solutions that could

perform ID repair as the tracking records stream in.
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