
Finding Contrast Patterns for Mixed Streaming Data
Rohan Khade

George Mason University
Fairfax, VA, USA
rkhade@gmu.edu

Jessica Lin
George Mason University

Fairfax, VA, USA
jessica@gmu.edu

Nital Patel
Intel Corporation
Chandler, AZ, USA

nital.s.patel@intel.com

ABSTRACT
Contrast set mining identifies patterns in the data that can best
distinguish between groups. Most of the existing work focuses
on categorical and batch data, and they do not scale well for
large datasets. In this work, we focus on finding contrast patterns
for mixed (quantitative and categorical) and streaming data. We
adapt a discretization methodology, Supervised Dynamic and
Adaptive Discretization, to identify meaningful bin boundaries.
We then use the discretization result to find contrast patterns
on streaming data. In order to achieve this, we identify frequent
items and then contrast them to a group of interest. To handle
potential concept drift, we propose an update strategy to keep
the frequent items relevant. In addition, our algorithm samples
feature combinations based on their "sampling" score and user
feedback to reduce the search space as well as retrieving more
interesting patterns.

1 INTRODUCTION
As the amount of data being collected during the semiconductors
manufacturing process of increases, the time required to analyze
the data and provide relevant feedback also increases. There
is a growing need to develop machine learning algorithms to
deliver fast feedback to the engineers so that adjustments in the
manufacturing line can be made in a timely manner. While the
behavior of manufacturing data is often predictable, at times there
exist anomalies such as a low yield for certain batch of products.
To find the possible cause(s) of this low yield, one approach is
to create a model and compare this batch to a normal batch. To
achieve this, an engineer needs to know what to look for (the
number of features and instances are large), and even after that
he/she needs considerable amount of time for analysis. Our intent
is to quickly and automatically learn complex patterns in the
“population” data (known normal data) and then use these learned
patterns to detect differences in the groups. We note here that our
goal is data understanding rather than prediction. In prediction
such as classification, the goal is to predict an outcome early
on in the manufacturing process to reduce costs such as testing.
The algorithm typically works like a black box where the user
may not understand why the algorithm predicted an outcome.
However, in this paper we design a feedback system in which
the goal is to identify interpretable patterns that might provide
the users helpful insights on potential causes of the differences.
Another key difference is that for a prediction algorithms, the
"classes" such as "good chips" and "bad chips" need to be known
or available in advance in order to build a model. In our proposed
work, we seek to detect patterns from a single group of data (the
“population"), which will then be compared with incoming data
to detect potential differences.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

There are several issues that need to be addressed. First, the
data may contain both categorical and continuous features, and
the features may have high order of interaction between them.
Multiple features could contribute to a contrast simultaneously.
In this work, we leverage our recently proposed binning strategy,
Supervised Dynamic and Adaptive Discretization (SDAD) [8, 9],
to address the challenge of dataset containing continuous features.
The discretization technique automatically determines the size
and number of bins needed in order to find meaningful contrast
patterns.

The second challenge we face is the massive data size. A large
amount of data is generated daily. To obtain an understanding of
the “normal” behavior of the data, we create a frequent itemset
database using historical manufacturing data that are known to
be normal. However, this data can change as recipes for different
chips change. The frequent itemset database must adaptively
learn new patterns, update existing ones and discard outdated
ones. This is necessary because the representation of the “popula-
tion” (historical) data needs to stay relevant to the current state of
the database. With the updated representation of the population,
we can quickly identify potential contrasts between that and a
group of interest. If we try to build a database with only a small
sample of the population data (e.g. data collected from one day),
the data may be biased to the specific machine settings and may
not be representative of the population. If the data is too large,
e.g. a month worth of data, the data may contain outdated infor-
mation that bias the results. Building an incremental database of
the population itemsets over time can be more efficient and can
potentially identify more meaningful patterns. Our algorithm
is also easily parallelizable. While this is out of scope for this
work, we refer interested readers to [8, 10] for various ways of
achieving parallelization to find frequent itemsets.

Moreover, as data streams are monitored, the groups to be
compared are not known in advance. Traditional contrast set
mining algorithms require the contrasting groups to be known,
and then find itemsets which differ significantly across groups.
Consider two cases. First, suppose a tester detects a large num-
ber of faulty chips on a particular day, and we want to know if
there is a difference between chips arriving at this tester and the
others. One approach, taken by traditional algorithms, would
be to make all the tester IDs as the ’group’ label and then find
patterns that strongly separate the tester of interest from the rest.
As the second scenario, if an oven gives particularly high yield,
we would like to know if we can improve the yield of the other
ovens. Keeping the oven ID as the ’group’ feature, the contrast
set algorithm finds itemsets that are different between this oven
and the rest. Since the "groups" are not known in advance, our
proposed method identifies all frequent itemsets in the popula-
tion. Once the “sample” of interest (e.g. the oven resulting in high
yield) is found, the difference in supports between the population
and sample is calculated. This led us to develop an algorithm
which identifies frequent patterns[8]. Using frequent itemsets
we can identify contrast sets between a sample (data of interest
to an engineer) and the population.

Industrial and Applications Paper

Series ISSN: 2367-2005 632 10.5441/002/edbt.2018.73

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.73

The main contributions of the proposed work are as follows:
(1) Given historic data (the “population") and a current data

sample, we propose an algorithm that can find contrast
sets between any subset of the streaming data and the
population quickly. Based on frequent itemsets mining,
our approach avoids a lot of re-computation when new
groups are identified and new contrasts are needed.

(2) The proposed algorithm leverages user feedback to cal-
culate a sampling score, which improves the patterns re-
turned and reduces computation costs.

(3) We propose an updating strategy that keeps discovered
patterns current, discards outdated ones and adds emerg-
ing new patterns.

The following section discusses related work. Sections 3 discusses
the background on contrast sets and the search strategy adapted
in this paper. In section 4, we describe an adaptive and dynamic
discretization algorithm for quantitative data that improves upon
existing discretization algorithms. We propose an updating strat-
egy for finding contrasts on streaming data, as well as a strategy
to use user feedback to compute the sampling probability. In
Section 5, preliminary experimental results show that using our
approach, we are able to discover the same contrasts that ex-
isting algorithms discover, but much more efficiently. Section 6
concludes the paper.

2 RELATEDWORK
We discuss related work in frequent set mining and contrast
set mining. However, due to the maturity of these areas, the
discussion is far from being comprehensive. To the best of our
knowledge, there is no other algorithm that has the exact same
end goal as ours.

Contrast-set mining has been formally defined as “conjunc-
tions of features and values that differ meaningfully in their
distribution across groups” [1]. It can be viewed as a variant
of association rule mining. While association rule mining dis-
covers rules or patterns that describe or explain the current
situation, contrast-set mining finds patterns that differentiate
groups of data by identifying features and values (or conjunc-
tions thereof) that differ meaningfully across them [1]. Knowing
the features that characterize the discrepancies across various
groups can help users understand the fundamental differences
among them, and make independent decisions on those groups
accordingly. Therefore, contrast-sets are often presented as sets
of rules. The authors in [1] provide the following classic exam-
ple: on comparing different education groups by asking "What
are the differences between people with PhD and Bachelor de-
grees?âĂİ we might find that P(occupation = sales | PhD) = 2.7
while P(occupation = sales | Bachelor) = 15.8. For manufacturing
fault analysis, we might have a query such as "Given two sets of
operation sequences: G ("good batch") and B ("bad batch"), what
are the differences between them?" The authors in [1] proposed
an algorithm, STUCCO (Searching and Testing for Understand-
able Consistent COntrasts), to find such contrast sets. STUCCO
employs efficient search through the space of contrast sets based
on another rule mining algorithm, Max-Miner [2]. To assess the
meaningfulness of the difference in support values across groups,
they use chi-square test on the null hypothesis that the support
value is independent of group membership.

Another approach, proposed by [17], discovers that existing
commercial rule-finding system, MagnumOpus [18], can success-
fully perform the contrast-set mining task. The authors conclude

that contrast-set mining is a special case of the more general rule-
discovery task. A good survey on contrast sets, emerging patterns
and subgroup discovery algorithms is provided in [13]. CIGAR
[7], apart from using the pruning criterion from STUCCO, adds
support, correlation and difference in correlation between the
parent and child contrasts. The authors claim that itemsets with
a support less than the minimum support may be uninteresting
to the analysts. We adapt this assumption for the streaming part
of our algorithm. The authors also claim that if the itemset have
low correlation, we may find spurious contrasts due to outliers.
The authors in [4] use user feedback to sample the patterns and
improve the patterns displayed to the user; however, they do not
explicitly handle continuous and streaming data.

In [13] we see that Contrast Set Mining, Emerging PatternMin-
ing and SubgroupDiscovery are compatible and hence techniques
developed in one domain can potentially be used in another.
There is considerably more work done for finding subgroups in
numerical domains. The algorithms presented in [11, 15] finds
bins for subgroups for mixed data and is implemented in an open
source tool Cortana. These techniques usually use an initial dis-
cretization method and then merge spaces based on an interest
measure. An interesting algorithm described in [6], finds bins
for continuous attributes for the problem of subgroup discovery.
The algorithm uses optimistic estimates and horizontal pruning
to prune the search space. This heavily relies on pruning based
on finding the top-k subgroups. Finding all initial split points
(exhaustive search in [6]) is expensive but if the initial partitions
are not exhaustive but rather frequency or entropy based, the
algorithm may miss interesting patterns that occur lower down
the tree due to multivariate interactions. The techniques men-
tioned above are developed for static databases, however the
pruning techniques described may be helpful if the groups are
known in advance (which does not apply for our application).
The current trend of recent algorithms tend to use sampling to
improve efficiency and quality of patterns [3–5]. We use some of
the sampling techniques explained in these papers and incorpo-
rate user feedback to enhance it. This helps improve efficiency
and potentially display more meaningful results to the user.

Although our main goal is contrast set mining, we tackle the
streaming part of our work using frequent itemsets mining. Fre-
quent itemset mining is typically the first step of association rule
mining. This is also where the main computational complexity
issues occur. Most existing work in frequent set mining focuses
on batch processing and improving the efficiency of the algo-
rithm. However, in many real world applications, new data is
continuously generated, e.g. manufacturing processes, sensors
etc. General frequent itemset mining algorithms require multi-
ple passes over the database. However, this is not possible in a
streaming scenario since data come in high volumes. If we miss
a pattern, it may not be possible to go back and check the past
data. Since speed is an important issue, some trade-offs in ac-
curacy may be needed. In addition, the space required to store
information for future runs and current knowledge may be large.

In general, many streaming algorithms adapt the window
model [14]. In landmark window, the goal is to find itemsets
between a fixed start point s and current time t . The other option
is a sliding window where we are only interested in itemsets
found in a time frame. For example, if the window width is w ,
the goal is to find itemsets in the time [t − w + 1, t]. In many
cases newer data are more important than older data, in which
case a damped window model assigns higher weights to more
recent data by defining a decay rate. Time Tilted windows are

633

used to find frequent itemsets over a set of windows. Importance
is given to newer data and hence granularity is adjusted as data
arrive. Since our goal is to find the general behavior of the data,
we use a sliding window strategy, assigning equal weights to all
the data.

There are two types of streaming algorithms to find streaming
frequent itemsets, true positive algorithms and true negative
algorithms. A true positive algorithm does not allow any frequent
itemset to be missed. The seminal work by Manku and Motwani
[12], called lossy counting, uses a user-defined parameter ϵ , and
the result contains no itemsets with a support lower than δ - ϵ .
The main disadvantage of this approach is that the number of
itemsets increases exponentially to guarantee the lower bound.
On the other hand, true negative algorithms [19] do not find false
positives, but have a higher probability of finding true frequent
itemsets. The main limitations of these algorithms are that it
is difficult to implement them in parallel; they cannot handle
continuous features; and the space requirement may be too high
if the data are very large. In this work we use a true negative
algorithm; however, as will be discussed later, we can estimate
the support of itemsets are missed in the stream of data.

3 BACKGROUND
3.1 Contrast Sets
Bay [1] formally defines contrast set mining as follows. Let A =
{a1, a2, ..., al } be a set of all attribute values for the entire dataset.
Let C be a set of all combinations of A. An itemset c is a subset
of C. Let G = {g1, g2, ..., gm } be a set of groups. Each instance
belongs to only one group. If |дi | is the number of instances in
group i and ci is the itemset of interest in group i, then support
sic of an itemset c in group i is the number of instances in gi that
contain c:

sic =
count(ci)

|дi |
(1)

An itemset c is large between two groups i and j if

abs(sic − sjc) > δ (2)
and significant if

χ2i j (c) < α (3)

where α and δ are user-defined parameters.
An itemset is considered a contrast if it is large and significant.

Three pruning strategies are used to reduce the search space.
(1) An itemset is pruned if it does not have a support over δ in
any group (minimum deviation size pruning). (2) If its expected
occurrence is less than 5 since statistical tests are not significant
at that level. (3) By calculating the upper bound value of χ for
the itemset’s children. To reduce the number of false positives,
the value of α is adjusted according to Bonferroni’s adjustment
explained in [1]. We note here that the pruning strategies used
by STUCCO cannot be used in our application since we do not
know the groups in advance. However, as will be seen later, we
only find itemsets with support greater than δ for the streaming
data, and if the group of interest has a support greater than δ ,
we estimate its support from the population sample.

3.2 Search Strategy
To find combinations of attributes, we need a search strategy. To
this end, we adapt the OPUS [16] search tree for our algorithm.
However, some modifications are needed since the original tree is
designed for categorical attributes. Figure 1 shows the modified

Figure 1: OPUS Search Tree for Mixed Data

OPUS tree so that it is compatible with continuous attributes
and attribute-value pairs instead of directly handling itemsets.
Consider an example with one categorical attribute Attr1 having
possible values a and b, and two continuous attributes Attr2 and
Attr3 having values u1, u2 ... un and v1, v2 ... vn respectively
where n is the number of instances. The order in which the nodes
are traversed is indicated by the number in each node. In this
example, node 2 with itemset {a} is first explored. If it can be
asserted that node 2 can be pruned, then we do not need to
explore nodes 5, 8 and 11. It should be noted that the traversal
order is the reverse of depth-first search. The reason that we use
this approach instead of a depth-first approach is to maximize
pruning. Although breadth-first search can also be used, we opt
for OPUS since the storage overhead is less at each level.

3.3 Streaming Frequent Itemsets / Patterns
Frequent Itemsets (FI’s) are itemsets which are present in the
dataset with a frequency greater than a user-defined threshold.
The formal definition follows closely to that of contrast sets but
notice the subtle differences. Using the definition of c from the
earlier paragraph, let T be a dataset of transactions. If |T | is the
number of rows in the dataset then support s of an itemset c is
the number of times c occurs in T :

sc =
count(c)

|T | (4)

A streaming dataset τ is a sequence of indefinite number of
datasets of transactions {T1, T2, T3, ...}. Let Tk,l = {Tk , Tk+1,... Tl }
where k < l . The support s of an itemset c in a time window [k, l]
is:

sc[k,l] =
count(c[k,l])

|Tk,l |
(5)

4 STREAMING CONTRAST SETS

Figure 2: Sliding window for Data Streams

634

Figure 3: Data flow

We start our discussion by explaining some of the basic termi-
nology used in this section. As shown in Figure 2, data continu-
ously arrive in a data stream. Each block of data is called a pane,
and a group of panes that are relevant is called a window. In
Figure 2, suppose a pane represents a day’s worth of data, then
the window size, λ=3, represents 3 days. Itemsets that are no
longer frequent in this window can be discarded.

Figure 3 provides a high-level view of our proposed algorithm.
In the next few subsections we discuss what is computed in each
block and what information is communicated by each arrow.
Simply stated, we pre-compute the frequent itemsets for the
current window pane from the population data. This is a time-
consuming task, given the massive size of the database. The
frequent itemsets discovered from the population data will be
saved in a Frequent Itemset Database (FID from here on). We
note here that this database is not static; it is updated with the
arrival of new data as shown in the figure. A data structure
such as a prefix tree (like Figure 1) can store this information.
When a new window pane arrives, frequent itemsets from the
current pane will be computed, using techniques explained in a
later section. These frequent itemsets are then compared with
the population frequent itemsets computed previously to obtain
potential Contrast Patterns. If the new pane does not conform
to the patterns found in the previous panes, the engineers can be
notified in a timely manner.

The user can also provide a sample dataset that he or she
wishes to compare against the population data, or generate the
sample from the archived data on the fly as seen in the User
Sample block in Figure 3. The frequent itemsets from the sample
data are extracted and they will be compared against the itemsets
retrieved from the FID for the population data to find Contrast
Patterns.

Sometimes a pattern that is found in the Current Window
Pane or the User Sample may not be in the FID since its support
in the population may be below the threshold. To overcome this,
we keep a Population Sample if the algorithm encounters such
a situation. The supports of the population are then estimated
from this sample.

The intuition behind our algorithm is that the patterns for the
population data represent the "normal" behavior of the popula-
tion, and comparing the set of patterns from sample data against
this "normal prototype" would reveal any differences between the

two datasets. Such discovery could potentially identify anomalies
in the current or sample data, and shed some light on the causes
of the anomalies (by examining the rule differences).

After finding the frequent itemsets for the current pane, the
algorithm updates the FID with the new frequent itemsets found
using our Updating Policy. As new data come in, the distribu-
tion and relationships may change among the features. To keep
the FID relevant, we need to remove patterns that are no longer
relevant and add emerging patterns. If the algorithm finds a new
pattern, we delay adding it to the database until we keep finding
the same pattern in multiple iterations and if an existing pattern
is no longer significant, it is phased out. The user can keep track
of these changes in a timely manner.

The User Feedback block lets the user decide if a pattern
is subjectively interesting. This in turn is fed to the Sampling
Features block which improves the efficiency and displays more
interesting patterns.

In addition to offering the ability to compute the contrast-set
in real-time given the sample data, another advantage that our
approach offers is that the contrasting patterns are not restricted
to having only the values of a feature representing group mem-
bership. We will provide more detail on the algorithm in the next
section.

4.1 Finding Frequent Itemsets for Current
Window Pane

While traversing the OPUS search tree explained in the previous
section, if we reach a node with only categorical features, finding
frequent itemsets for the current window pane for categorical
variables is straightforward, i.e., we just need the support count
of the itemsets in the current pane. Therefore, we will concentrate
on itemsets that contain continuous features. To this end, we use
Supervised Dynamic and Adaptive Discretization for frequent
itemsets (SDAD-FI) [8]. We note that any frequent itemset mining
algorithm that can handle mixed attributes can be applied here;
however, we opt for SDAD-FI since it can handle datasets with
mixed attributes and is parallelizable. We also show in [8, 9]
that SDAD is able to find better quality bins for frequent itemset
mining and association rule mining in a reasonable amount of
time compared to other state of the art binning and rule mining
algorithms. As opposed to standard discretization techniques
such as equi-width or equi-frequency, SDAD-FI does not need to

635

(a) (b)

(c) (d)

Figure 4: (a) Simulated dataset with 3 features (b) After first partition between feature 1, 2 and 3 (c) After second partition
between feature 1, 2 and 3 (d) After merging

know the number of bins to partition in advance, nor the sizes
of the bins. It tries to find the "best" bins with respect to the
distribution and relationships between features.

The main idea of SDAD-FI is to first employ a top-down ap-
proach where the algorithm iteratively partitions the space be-
tween features and calculates an interest measure with the goal
to obtain regions that satisfy a user-defined homogeneous thresh-
old. We use the interest measure purity as defined in [8]. The
intuition behind purity is to find the most homogeneous space
of the current set of features. We will describe the algorithm
with an example. Consider Figure 4a. This dataset contains three
features: Attributes 1, 2 and 3. Attributes 1 and 2 are continuous
and Attribute 3 is categorical with 2 values indicated by the color
and shape of the markers in the scatter plot. In Figure 4b, SDAD-
FI divides the continuous features into 4 spaces. Space 1 and
4 (numbers shown in figure) are homogeneous, i.e. it contains
only one categorical feature value. However, space 2 and 3 are
not. SDAD-FI again divides those spaces as shown in Figure 4c
and now finds pure spaces. Since dividing pure spaces do not
find "better" bins, the algorithm stops, and this concludes the
top-down process.

The next step is to merge contiguous and similar spaces in a
bottom-up fashion. Similar spaces are those that are not signifi-
cantly different according to the χ -squared test. SDAD-FI starts
with the smallest contiguous spaces in terms of n-volume (area
in this case). It first merges space 21 and 23, then 31 and 33, and
then 32 and 34. It further merges the combined space of 21 and
23 into space 1, and 32 and 34 into space 4. The final bins are
shown in Figure 4d.

Obviously, the example shown is an ideal case. In real world
datasets, we usually do not find such clear cut boundaries. How-
ever, this example illustrates the flow of the algorithm. In general,
SDAD-FI is a greedy algorithm and continuous features are split
until splitting does not result in statistically significant differ-
ences between the spaces (instead of looking for pure bins). The

example discusses a case in which categorical and continuous fea-
tures co-exist in the itemset. However, SDAD-FI also works when
there are only continuous features in the itemset. In this case, the
splitting and merging operations are as explained above, with
the modification that the interest measure is now the correlation
between the continuous features. See [8] for more details.

4.2 Updating Policy and FID
If an itemset contains only categorical values, the Frequent Item-
set Database (FID) is updated if a difference in the supports of a
Frequent Itemset (FI) is detected between the current pane and
the FID using the following update policy. Consider the example
in Figure 2. Let the minimum support be δ . If the size of the
window is λ, then in Figure 2 we have used λ=3. Now suppose
there is an FI in the FID with support sF ID , and the same FI is
found in the current pane with support scurrent , we calculate
the approximate support of the itemset sexpired in the expired
pane from the population sample (explained later). The support
of the FI in the FID can then be updated using a simple weighted
average technique.

snew = sF ID +
scurrent

λ
−
sexpired

λ
(6)

If a new FI is found in the current pane with a support greater
than δ , but it is not in the FID, then applying the updating strategy
explained above would not work since (λ-1)*sF ID /λ would be
zero and scurrent /λ may not be big enough to be greater than
δ to be added to the FID. For example, suppose δ = 0.1. If in the
current pane we find an itemset with support of 0.9, and if λ = 10,
then snew would be 0.09. As a result, the FI would not be able to
enter the FID even if it is found consistently after a certain point.
To overcome this, we approximate the support (sF ID in the above
formula) from the population sample and keep a temporary
database of new FI’s.

The itemset is stored in a temporary database until the itemset
attains a support greater than the minimum support. After this

636

point, we say the itemset is indeed frequent and add it to the
FID, as well as deleting it from the temporary database. There
is a possibility that the current itemset is an anomaly and is not
truly frequent. In this case, the itemset needs to be purged from
the temporary database. Let the number of panes, starting from
the first pane the itemset was found to be frequent, be n. The
algorithm keeps track of the actual support (sact_supp) as soon
as the itemset was discovered as frequent, and it is calculated by

sact_supp =
(n − 1) ∗ sact_supp

n
+
scurrent

n
(7)

As long as sact supp is above the minimum support threshold,
the algorithm keeps the itemset in the temporary database.

We use this approach to add or purge itemsets because our
goal is to maintain a consistent FID which is representative of the
population. For example, if an FI is in only one pane, it may be
an outlier and not representative of the population. However, if
an itemset appears regularly in multiple panes, but is absent for
some reason for a short period of time, the algorithm should not
purge it out. We note here that keeping the population sample to
estimate the support of unknown itemsets reduces the number
of frequent patterns needed to be stored like in [11, 19], resulting
in less computation. Although the storage overhead is higher to
keep the population sample, it serves another purpose. It also
helps when the user wants to find contrast patterns on the fly,
and the itemset is not present in the FID.

Figure 5: Bin movement

The method explained can be used for frequent itemsets con-
taining only categorical features. Updating FI’s with continuous
features needs a different approach. Binning is an expensive op-
eration and, for each pane, it is unlikely to have exactly the same
bin boundaries even if the distributions are statistically the same
because of noise in the data. Instead of calling SDAD-FI at ev-
ery pane, first, the continuous variables of the current pane are
binned by re-using the bin boundaries of the current FID. If the
supports between the FID and current pane are not significantly
different using the χ -squared test, the bins in the FID are kept
unchanged. However, if that is not the case, we discretize the
itemset in the current pane by running SDAD-FI. At this stage,
we check if there is a slight concept drift or if a completely new
relationship is learned between the features. The algorithm con-
ducts a test to check if the new bin boundaries overlap with the
current boundaries, and if so, by how much. To do this, there has
to be an overlap in every axis. For example, suppose the current
itemset has 2 continuous features (the bin boundaries in this case
form rectangles, see Figure 5), x1 and x2 are the vectors of the x
coordinates, and y1 and y2 vectors of the y coordinates of the 2
rectangles, then there is an overlap between the rectangles

if (((min_x1 ≤ min_x2 &&min_x2 ≤ max_x1) | | (min_x2 ≤
min_x1 &&min_x1 ≤ max_x2)) &&

((min_y1 ≤ min_y2 && min_y2 ≤ max_y1) | | (min_y2 ≤
min_y1 &&min_y1 ≤ max_y2))

In general, to decide if there is significant overlap, the ratio
of the n-volume of the overlapping space to the minimum n-
volume of the original space and the new space is calculated.
This is a user-defined value (we use 0.8 in our experiments). If
there is significant overlap, the algorithm moves the current
boundaries towards the new boundaries as shown in Figure 5.
The figure shows the distribution of the data points in the FID
and the current pane represented by the blue and red points
respectively. The bold rectangles represent the bin boundaries
of the FID, and the dotted lines are the new bins boundaries
found. The arrows indicate the directions of movement of the
boundaries of the new bins. The movement is again calculated by
using a weighted average method, with the weight determined
by the number of days the original pattern was in the FID. For
example, if the number of days the pattern was in the database
is n and the perpendicular distance to the new hyperplane is x,
then the actual distance the current hyperplane moves is x/n.
We note here that each plane (in this case line segment) moves
independently of each other. The number of days in the FID is
then incremented by 1, and the support is approximated using
Equation 6 by calculating the supports of the new bins. More
specifically, we add the support of the current pane and subtract
the support of the expired pane calculated from the population
sample.

If the new boundaries of the current pane are significantly
different from the original boundaries, the new itemsets with the
new bins are stored in the temporary database. In the next panes,
the algorithm checks if the data conforms to these new bins or if
this behavior was just an anomaly. This procedure is similar for
itemsets containing just categorical features.

4.3 Sampling Patterns and User Feedback
During the manufacturing process, the interaction between fea-
tures are not expected to change drastically. We can exploit this
predictability by using a sampling method to decide which item-
set should be checked in each pane. Sampling helps reduce the
search space for each run (and potentially display more inter-
esting contrasts to the user). This is achieved by calculating a
“sampling" score for each itemset in the database. We identified
three factors that should contribute to this score.

(1) Number of days in database
(2) Change in support
(3) User feedback

4.3.1 Number of days in database. In the manufacture of semi-
conductors, we do not expect the interaction between the features
to change drastically on a daily basis once the recipe for a chip is
fixed. However, concept drift is possible due to aging of machines
or inherent properties of the process. This is potentially interest-
ing for our algorithm. Patterns that have been found consistently
tend to be stable and show very little variability on the daily ba-
sis and hence it is less useful to calculate its interest measure in
every pane. Patterns that are newly discovered (i.e. the patterns
in the temporary database) tend to have more variability and
need to be sampled at a higher rate. If n is the number of days
since a pattern is found, and λ is the window size, the scorend is
calculated by

scorend = 1 − n

λ
(8)

637

This linear equation produces results ranging from 0 to 1. The
score is inversely proportional to the number of days the pattern
is present in the database.

4.3.2 Change in support. If a pattern is newly discovered, not
found any more or has a high difference in support from what
was found previously, the algorithm should sample this pattern
at a higher rate. We calculate the scores as

scores =
abs(sF ID − scurrent)
max(sF ID , scurrent)

(9)

This score also ranges from 0 to 1, with 1 meaning that the
pattern is new or is not found in the current window. It is also
proportional to the change in support.

4.3.3 User feedback. Pattern mining algorithms tend to find
spurious patterns due to the bias of the interest measures or due
to the domain knowledge of the user (some patterns may be
obvious or inherently not interesting). To overcome this bias, the
proposed algorithm lets the user up vote or down vote a pattern
displayed. Doing so allows the algorithm to learn more impor-
tant combinations of features over time. With the user voting
information, the algorithm will sample these interesting combi-
nations at a higher rate so as to be less likely to miss changes of
these features. Let vmax be the maximum number of up votes
a pattern can receive, vmin be the maximum number of down
votes a pattern can receive, and vup and vdown be the numbers
of up and down votes a pattern actually receives from the users,
respectively, then

scoreu =
vmin + (vup −vdown)

vmax +vmin
(10)

Different users may have different preferences on the types
of patterns that are interesting. Hence, we cannot remove the
pattern from the FID when a user down votes a pattern. Rather,
the algorithm needs to keep track of the votes and not display
such pattern again to the same user.

If w and score are the vectors representing the weight for
each score and score calculated, then

scoretotal = w · score (11)
Once the score is calculated, we use a logistic function to

calculate the probability ϕ of sampling the itemset

ϕ = A +
K −A

1 + escoretotal−mean(score) (12)

where A and K are the lower and upper bound of the proba-
bility of sampling. The expected number of panes after which a
pattern’s interest measures are calculated is 1/ϕ

4.4 Finding Contrast Patterns and Population
Sample

Given a sample, we wish to compare against the population. To
this end, we explore the search space of the sample using OPUS
search. At each node, the algorithm checks the FID to see if it is an
itemset that has been previously found. If it is, and the itemset has
only categorical values, then comparing them is straightforward.
Let λ be the window size and σ be the average number of tuples
present in each pane, then the total number of itemsets (needed
for χ -squared calculation) is given by:

N = λ ∗ σ (13)

Furthermore, let sc be the support of itemset c in the database,
the number of times c is present in the database is:

Nc = sc ∗ N (14)

After finding the counts of an itemset, the algorithm can pro-
ceed to check whether the itemset is large and significant as
explained earlier in the background section. Notice here that
we are only interested in itemsets that are more frequent in the
sample than the population.

If the itemset is present in FID and contains at least one con-
tinuous feature, the algorithm discretizes the continuous features
using the bin boundaries previously found and recorded in the
FID for these same features. Once discretized, the algorithm can
treat the features as categorical features, and can continue as
explained above. If the itemset is not large and significant, this
suggests that the distribution and relationship between features
is not different in the sample.

A problem arises if the distribution or relationship between
features change, or if the itemset is not frequent in the population
but found in the sample (since that information is potentially
lost). To overcome this, we keep a population sample d that fits in
memory. At each window pane, the algorithm randomly samples
k instances of the current transactions. If the algorithm has not
finished running for at least (λ) panes, k instances are added
to the end of d. Otherwise, when a new window pane arrives,
the algorithm removes the first k instances and adds the current
sample to the end. Therefore, the maximum number of tuples
in d is k ∗ λ. Now, if an itemset which is frequent in the current
window pane is not found in the FID, the algorithm can go to
d and calculate the approximate support. Again, if the itemset
contains only categorical features, this is straightforward. If the
itemset contains continuous features, the algorithm discretizes
the samples itemset using SDAD-FI, and uses the bin boundaries
to calculate the support of those bins from d.

5 EXPERIMENTAL EVALUATION
Experimental Setup: For all the experiments, we keep min pr
difference 0.1 (for merge step in SDAD-FI), λ =5, α = 0.05 and δ
= 0.1 (same as [1]). The datasets used to quantitatively compare
the performance of the algorithms are shown in Table 1. Each
dataset is divided into 5 random partitions. The parameters A
and K are set to 0.2 and 0.8 respectively, which means that each
itemset has a minimum of 0.2 and maximum of 0.8 probability to
be tested in each pane. For user feedback, we randomly up vote
or down vote an itemset with probability 0.1. The population
sample is capped at 10% of each partition. A minimum support
of 0.05 is used for experiments in Table 3.

5.1 Public Datasets
These are static datasets. By creating random partitions, we
should find similar distributions of the features in each parti-
tion. We are not aware of any algorithm that works similarly to
ours, or finds contrast patterns for mixed and streaming data.
Hence, the goal of these experiments is to verify that the pro-
posed approach is able to find contrast patterns comparable to the
actual contrasts found if the entire static dataset were used. We
compare our algorithmwith STUCCO on the entire dataset (since
it is a batch algorithm), by binning the continuous attributes us-
ing the bins found by SDAD-FI, and then running STUCCO on
the discretized data.

638

Table 1: Public Datasets

Dataset Sample No. of instance
Dataset/ Sample

No. of Features/ Contin-
uous Features

Adult Doctorate 48842/594 13/5
Spambase Spam 4601/1813 57/57
Shuttle High 54489/8903 9/9
Credit Card Yes 29998/6635 24/23
Census Income Above 50K 199523/12382 39/11

Table 2: Average Time in seconds to find Frequent Patterns in each Pane for Public Datasets

Dataset Support=0.05 Support=0.1 Support =0.2 Support=0.3
Adult 17.36 16.49 10.37 10.69
Spambase 27.18 23.88 24.11 26.09
Shuttle 9.13 11.02 7.68 11.03
Credit Card 29.41 28.08 23.7 32.56
Census Income 232.25 189.77 154.98 157.08

Table 3: Quantitative Analysis of Contrast Sets for Public Datasets

Dataset Time to find
Contrast us-
ing SDAD FI
(seconds)

Time to find
Contrast on
entire dataset
(seconds)

True Positive False Positive False Nega-
tive

Adult 3.09 65.02 40 14 26
Spambase 121.59 952.87 27 2 2
Shuttle 4.25 62.33 9 0 0
Credit Card 45.25 482.74 8 0 0
Census Income 148.72 1654.85 228 0 24

The 5 partitions are fed into the algorithm sequentially and
the FID is updated. Finally, the "User Sample" (shown in the table
as sample of interest) is compared to the FID.

In Table 2, we report the average time it takes to find frequent
patterns for each pane for different minimum supports. The re-
sults indicate that not only the minimum support affects the
running time, but the number of items needed to be updated in
the FID also matters. We notice that for some datasets, even in-
creasing the minimum support increases the running time, which
is counter intuitive. We can compare the first column (Support =
0.05) of this table with running SDAD-FI on the entire dataset in
Table 3. The total running time is actually greater (average time
multiplied by 5) because of the time require for updating and com-
putation, however, we see that once the algorithm pre-computes
the frequent itemsets, it can find contrast patterns quickly (see
first 2 columns of Table 3). We also compare the difference be-
tween the contrasts found using the windowing procedure and
the actual difference in support by showing the true positives,
false positives and false negatives.

The results show that our approach finds contrasts comparable
to contrasts found when using the entire dataset. It also shows
that the time it takes to find the contrasts is much faster at run
time than using the entire dataset.

5.2 Simulated Dataset
We simulated a dataset which is a simple but typical scenario
in our application, semiconductor manufacturing. This dataset
gives an overall idea of what we are trying to achieve. The dataset
contains 4 features: the date, the oven id, temperature and a

Figure 6: Simulated dataset temperature data distribution

Table 4: Frequent-1 Items found in Population by SDAD-FI
for Simulated Streaming Dateset

Frequent Item Support

Response0 0.93
Response1 0.07
Temperature <= 150.08 0.5
Temperature > 150.08 0.5
Oven2 0.33
Oven1 0.33
Oven3 0.33

Response which indicates a pass or fail for a particular test. Each
instance represents a chip and has a unique id. In the simulated
data, we have 3 oven ids, and for each oven the temperature is
controlled individually and follows a normal distribution. We
simulate this for 10 batches, each having 600 instances, 200 for
each oven. The probability distribution of the data is shown in

639

Table 5: Contrast Sets for Simulated Streaming Dataset

Serial Number Contrast Set Support for
Population

Support for
Sample

1 Temperature <= 150.08 0.5 0.31
2 Temperature > 150.08 0.5 0.69
3 Temperature <= 150.08 0.5 0
4 Temperature > 150.08 0.5 1
5 Oven3 0.33 0.58
6 Oven1 0.33 0.11
7 Temperature <= 150.08 0.5 0.45
8 Temperature > 150.08 0.5 0.55
9 Response 1 0.07 0.11
10 Response 0 0.93 0.89

Table 6: Contrast Sets for Semiconductor Manufacturing Streaming Dataset

Serial Number Contrast Set Support for
Sample

Support for
Population

1 Tester − KAWM 0.51 0.27
2 Tester − KAWM and Burn in Flaд − 80 0.51 0.25
3 Unit Location at CAM − JV FT and Entity at De f lux −VAKM 0.55 0.33
4 CAM Location − 70 0.50 0.33
5 10.6435 <= CAM PEAK TEMP STD <= In f 0.55 0.42
6 91.5456 <= CAM DIE T IME ABOVE AVG <= In f and PRODUCT − YBDF 0.47 0.33

Figure 6. Ovens with IDs 1, 2 and 3 have mean temperatures 145,
150 and 155 respectively, and each has a standard deviation of
10. Instances that failed the test have Response = 1, while those
that passed have Response = 0. The probability of failure follows
a sigmoid distribution where the mean of the sigmoid is 165, as
shown in Figure 6. The minimum probability of failure is 0.05, and
maximum is 0.9. Hence the probability of failure for an instance
is given by

ϕ = 0.05 +
0.9 − 0.05

1 + etemperature−165 (15)

Using this scenario, we try to answer 3 questions: (1)We notice
that the oven with OvenID = 1 yields a high number of chips
that passed the test. What is the difference between the daily runs
of OvenID = 1 and the population? (2) On similar grounds as
(1) but globally, given a sample of chips that have failed the test,
can we find meaningful differences? (3) If, on a particular day,
we change the temperature, can we provide a timely feedback on
how it is affecting the Response? We note here that to answer the
questions above, a traditional contrast set algorithm needs to be
run thrice on the entire data, which is time consuming since the
data is large in a real world scenario. Table 4 shows the Frequent
1-Items found.

For the first scenario, we took a sample that contains only
OvenID = 1. In Table 5, the first 2 contrasts are the ones that
are significant at level = 1. As the contrasts show, OvenID=1 is
operating at a lower temperature.

In the second scenario, looking at contrasts 3 to 6 we notice
that the bad samples are baking at a higher temperature, and
Oven3 is failing much more than average. Looking at the con-
trasts, the analyst can recommend operating the oven at a lower
temperature.

In the third scenario, we increased the mean of each oven by 2,
keeping the standard deviation at 10 for a particular batch. When
the algorithm runs daily, it finds that this batch has a higher

rate of failure than usual and can notify the analyst as soon as
something goes wrong. From the contrast, we see again that the
increase in temperature might be the cause of the high rate of
failure.

All the contrasts shown find very simple contrasts but pro-
vide useful feedback to the analyst. Some of the frequent 2-
itemsets found are Temperature <= 165.02 and Response = 1 ,
Temperature > 165.02 and Response = 0. In a real life scenario,
contrasts can be more complex, and bin boundaries can be fuzzy.
The frequent itemset mining algorithm is capable of finding these
rules [8]. In initial runs, the date feature was listed as strong con-
trasts. This was down voted by the user and soon the algorithm
learned it was not an important feature, hence reducing its sample
rate to the minimum.

5.3 Semiconductor Manufacturing Dataset
We conducted experiments on real production data of a certain
product group. Note that the data was cleaned and modified to
remove any proprietary information, although relationships be-
tween attributes remain unchanged. The goal of this experiment
is to see whether one can quickly identify the root cause of why
parts are failing a specific test. The dataset consists of 15 daysâĂŹ
worth of data. Each day consists of 3,000 to 20,000 instances of
individual units, and each instance has 174 features. We built an
FID, and we then contrasted the failing units to this database.
The contrasts found are shown in Table 6.

The contrasts found shed some light on the potential causes
of the problems. In Table 6 contrasts 1 and 2 show that most of
the failed parts are routed through the same tester and had been
flagged for burn in. Contrasts 3 and 4 show there was a higher
likelihood a particular chip attach tool was used (CAM Location)
and location of the unit in the tray (towards the back of the oven)
was used. This may explain contrasts 4 and 5 which state that the
chip attach reflow temperatures were on the higher end of the

640

spectrum. So in summary, this situation exhibits a marginality
between the chip attach process, the presence of burn-in and
potential marginality at that specific test equipment. With this
information, engineers can make changes at these particular
stages of the manufacturing line, which may in turn improve the
process yield.

As mentioned earlier, we do not expect the distribution and
relationships between the features to change a lot on daily basis,
and hence the sampling procedure will help improve the run-
ning time. The first pane of the algorithm is run without any
sampling. Since the FID is empty, all bin boundaries have to be
calculated. The average time for the first run is 2456 seconds.
After the first pane, the average time for a pane to update the
FID with the sampling procedure explained earlier is 182 seconds,
and without sampling it is 515 seconds. This improvement in
the running time is significant, but the contrasts found do not
differ significantly. We calculated the difference in supports be-
tween the population and sample for the top 25 contrasts in the
experiment without sampling. The corresponding contrasts from
the experiment with sampling were extracted. As expected, the
continuous attribute bins were slightly shifted when compared
between the 2 experiments. The absolute average difference of
differences of supports for population and sample between the
2 experiments is 0.017 with a standard deviation of 0.041. Their
distributions are not significantly different at α = 0.05 according
to the Wilcoxon signed rank test.

6 CONCLUSION
In this paper, we propose a method to find Contrast sets in mixed
and streaming data by extending a well-studied approach. Using
a binning strategy that automatically finds the size and number
of bins for the continuous features, we are able to find mean-
ingful contrasts even when higher order interactions occur. An
updating strategy was discussed to keep patterns relevant. To
find contrast patterns, we first find the frequent patterns for the
population, which is then contrasted to the sample of interest.
This algorithm does not need the group information in advance.
The main motivation to find these types of contrast patterns in
streaming data is to provide timely feedback to analyst during
the semiconductor manufacturing process. The next step for our
work is to improve the parallelization capacity for our algorithm
to run on even larger datasets. To achieve this, we plan to distrib-
ute the work evenly among the cluster, based on the estimates
we calculate from previous iterations.

REFERENCES
[1] Stephen D Bay and Michael J Pazzani. 2001. Detecting group differences:

Mining contrast sets. Data mining and knowledge discovery 5, 3 (2001), 213–
246.

[2] Roberto J Bayardo Jr. 1998. Efficiently mining long patterns from databases.
ACM Sigmod Record 27, 2 (1998), 85–93.

[3] Guillaume Bosc, Chedy Raïssy, Jean-François Boulicaut, and Mehdi Kaytoue.
2016. Any-time diverse subgroup discovery with monte carlo tree search.
arXiv preprint arXiv:1609.08827 (2016).

[4] Vladimir Dzyuba and Matthijs van Leeuwen. 2017. Learning what matters–
Sampling interesting patterns. In Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining. Springer, 534–546.

[5] Vladimir Dzyuba, Matthijs van Leeuwen, and Luc De Raedt. 2017. Flexible
constrained sampling with guarantees for pattern mining. Data Mining and
Knowledge Discovery 31, 5 (2017), 1266–1293.

[6] Henrik Grosskreutz and Stefan Rüping. 2009. On subgroup discovery in
numerical domains. Data mining and knowledge discovery 19, 2 (2009), 210–
226.

[7] Robert J Hilderman and Terry Peckham. 2005. A statistically sound alternative
approach to mining contrast sets. In Proceedings of the 4th Australia Data
Mining Conference (AusDM-05). 157–172.

[8] Rohan Khade, Jessica Lin, and Nital Patel. 2015. Frequent Set Mining for
Streaming Mixed and Large Data. In Machine Learning and Applications
(ICMLA), 2015 IEEE 14th International Conference on. IEEE, 1130–1135.

[9] Rohan Khade, Nital Patel, and Jessica Lin. 2015. Supervised Dynamic and
Adaptive Discretization for Rule Mining. In SDM Workshop on Big Data and
Stream Analytics.

[10] Ming-Yen Lin, Pei-Yu Lee, and Sue-Chen Hsueh. 2012. Apriori-based frequent
itemset mining algorithms on MapReduce. In Proceedings of the 6th interna-
tional conference on ubiquitous information management and communication.
ACM, 76.

[11] Michael Mampaey, Siegfried Nijssen, Ad Feelders, and Arno Knobbe. 2012.
Efficient algorithms for finding richer subgroup descriptions in numeric and
nominal data. In Data Mining (ICDM), 2012 IEEE 12th International Conference
on. IEEE, 499–508.

[12] Gurmeet Singh Manku and Rajeev Motwani. 2002. Approximate frequency
counts over data streams. In Proceedings of the 28th international conference
on Very Large Data Bases. VLDB Endowment, 346–357.

[13] Petra Kralj Novak, Nada Lavrač, and Geoffrey I Webb. 2009. Supervised
descriptive rule discovery: A unifying survey of contrast set, emerging pattern
and subgroup mining. Journal of Machine Learning Research 10, Feb (2009),
377–403.

[14] Kostas Patroumpas and Timos Sellis. 2006. Window specification over
data streams. In International Conference on Extending Database Technology.
Springer, 445–464.

[15] Matthijs van Leeuwen and Arno Knobbe. 2012. Diverse subgroup set discovery.
Data Mining and Knowledge Discovery 25, 2 (2012), 208–242.

[16] Geoffrey I Webb. 1995. OPUS: An efficient admissible algorithm for unordered
search. Journal of Artificial Intelligence Research 3 (1995), 431–465.

[17] Geoffrey I Webb, Shane Butler, and Douglas Newlands. 2003. On detecting
differences between groups. In Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM, 256–265.

[18] Geoffrey I Webb and Songmao Zhang. 2005. K-optimal rule discovery. Data
Mining and Knowledge Discovery 10, 1 (2005), 39–79.

[19] Jeffery Xu Yu, Zhihong Chong, Hongjun Lu, and Aoying Zhou. 2004. False
positive or false negative: mining frequent itemsets from high speed transac-
tional data streams. In Proceedings of the Thirtieth international conference on
Very large data bases-Volume 30. VLDB Endowment, 204–215.

641

	Finding Contrast Patterns for Mixed Streaming Data (Application track)Rohan Khade, Jessica Lin, Nital Patel

