
MetisIDX - From Adaptive to Predictive Data Indexing
Elvis Teixeira

Federal University of Ceará
Fortaleza, Brazil

elvis.teixeira@lsbd.ufc.br

Paulo Amora
Federal University of Ceará

Fortaleza, Brazil
paulo.amora@lsbd.ufc.br

Javam C. Machado
Federal University of Ceará

Fortaleza, Brazil
javam.machado@lsbd.ufc.br

ABSTRACT
Exploratory data analysis characterized by analytic query work-
loads over large databases is now commonplace on both academia
and industry. In these scenarios, data production velocity and
unknown and drifting access patterns make the choice of access
methods a challenging task. In this context, adaptive indexing
techniques propose the use of partial indexes that are incremen-
tally built in response to the actual query sequence and as a
byproduct of query processing to optimize the access only to the
key ranges of interest. This work presents a further development
to this principle by leveraging the recent query history to predict
the next key ranges and index them in advance, so the queries
arriving in the near future find data in its final representation and
higher placed in the storage hierarchy, since data must be loaded
into main memory in order to be indexed. Adaptive merging
is used as base architecture for the data structures and merge
operations are executed in parallel with query execution instead
of being the same operation. An extreme learning machine is
used to perform key range forecasting and undergo continuous
training by the indexing thread. The experiments show up to
38% lower query response times over a 1000 queries than adap-
tive merging, therefore lower overall response times and the
decoupling of indexing operations during scan executions.

1 INTRODUCTION
Important modern database applications do not have a known
workload in terms of access patterns. Data subsets which are the
focus of query attention change over time, and ad hoc queries
should be expected. Examples of this kind of application are
found in scientific work or in exploratory analysis, which is an
increasingly common daily task in many business areas today. No
assumptions can be made about the workload, and database sys-
tems must still be able to answer the queries from these dynamic
workloads efficiently, searching through and updating suitable
data structures to speed up query processing.

To accomplish this task, adaptive indexing [7] was introduced.
By adapting the DBMS internal structures to quickly answer
queries that follow the current trends, it enables the system to
perform better according to the dynamic workload. The funda-
mental idea is that each time data is scanned to answer a user
query, an incremental step is performed to provide an index struc-
ture or refine it, which will permit subsequent scans to prune
the search space and perform better. Such operations must be
simple in order to avoid adding a prohibitive overhead to query
execution [2] while still being useful to speed up queries and
save access to slow storage devices.

Changing database physical layout in response to theworkload
can be powerful if used properly. The advantages of optimizing
access only for the records of interest is based on the fact that,

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

in most applications, a subset of the records is accessed more
often than the rest. Partial indexes recognize this fact by focusing
layout tuning in a subset of the indexed relation, but they lack
the adaptive behavior and the possibility of incremental change.
Instead of relying in periodic statistics observation, our approach
continuously tracks the workload, since the access patterns and
the set of records requested more frequently changes over time.

On the other hand, consider the situation in which, while
trying to follow the query trends, the system organizes data in
response to single queries which deviate from the underlying
workload pattern. This wastes time and compromises perfor-
mance. Additionally, the current query may not provide sufficient
information to figure out the best key range to index in order
to enable the next queries to take full advantage from the struc-
ture. More contextual information is needed. A workload model,
instead of the advice from the current request, provides better
guidance. These issues are similar to the problems of overfitting
and generalization in pattern recognition tasks.

Improvements to adaptive indexing can be achieved by index-
ing key ranges not strictly equal to those of the query responses,
possibly adding a stochastic component to the indexing process
[4]. Another possibility is using periods of time when computing
resources are not being exhaustively used to index key ranges
not yet touched [10]. The main advantage of these approaches is
the possibility of indexing a region of data that will be queried
in the near future. When this happens, the response time will be
optimal and the effort of indexing can be done independently of
query processing, thus not incurring any extra overhead to it.

This work develops this analogy further by using an actual
machine learning technique to create and continuously update
a model of the query sequence. In other words, it leverages an
adaptive structure and adds a predictive behavior to the index
building operations based on a dynamic model of the workload,
using the most recent requests as training data. By indexing data
expected to be requested next, our index builder is less sensitive
to anomalies, and avoids the effort of indexing uninteresting
records. Such intelligent access structures fit naturally in the
context the emerging self-driving systems [1], which promise to
be able to handle highly dynamical and hybrid workloads while
requiring even less manual operation than traditional systems.

The benefits of performing incremental indexing detached
from query processing occurs when the forecasting succeeds and
a key range is placed in the final index form before it is queried.
In this case the access is logarithmic in the size of the indexed
data, not on the total amount of data. If the forecasting predicts
the wrong key range then the cost of the next query will be that
of a scan in the partial index structure built in the first query,
a partitioned B+ tree, as discussed in the next section. Even in
this case, the scan will not be as costly as it would be in a strictly
adaptive indexing scheme, because the scan algorithm will not
have to move data around, but only to find the qualifying records.
This scheme keeps the hypothesis that the workload is unknown,
as in previous adaptive indexes, but it recognizes that application
queries are not random, and an underlying pattern should exist.

Short Paper

 

 

Series ISSN: 2367-2005 485 10.5441/002/edbt.2018.53

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.53


2 METISIDX
MetisIDX is an indexing mechanism for relational data that tar-
gets secondary storage (HDDs, SSDs, etc) and uses the accumu-
lated knowledge from previous queries in the workload to guide
the index construction. The partitioned B+ tree, and some of the
index creation and maintenance procedures are similar to those
developed for adaptive merging [3]. A B-tree based structure
was chosen to exploit its paged data transfer, which is naturally
performed with block-addressed devices and permits meaningful
data blocks to be exchanged between the levels of a memory hier-
archy. However, differently from the adaptive merging approach,
MetisIDX indexing routine is decoupled from data scanning and
is less sensitive to workload anomalies since it leverages the in-
formation provided by multiple requests rather than the current
query alone.

The learning algorithm must be lightweight enough to be exe-
cuted in time frames that do not exceed the order of magnitude
required to answer a single query. This constraint makes it im-
practical to use many state-of-art machine learning techniques
such as massive deep neural networks, since using these meth-
ods would result in a training time long enough to make the
resulting model already outdated, in the sense that it reflects a
workload pattern that is already gone. Additionally, it must be
able to update the model using new available data, new queries
in this context, without discarding the previous model version
altogether. A suitable technique that fulfills these requirements
is the Extreme Learning Machine (ELM) [9], a class of neural
networks which always has a single hidden layer, and only the
weights of the connections between the hidden neurons and the
output neurons must be trained.

The training data used in model updates is the sequence of
key range boundaries from the last N queries processed by the
system. N is a hyper parameter that has to be chosen. The trained
network is the current model of the workload, used to forecast
index range candidates and trigger a new merging operation.
In the next training step the model is updated to keep track of
possible workload trends shift. After that, the model is used to
forecast the key range to be queried next, and a new merging
operation is triggered. The process of training and triggering
merges is carried out cyclically in a dedicated execution thread.

The first query triggers a full scan over the non-indexed data.
During this first scan execution, data is read from secondary
storage in chunks, called runs hereafter. Each run is then sorted
using an algorithm suitable for main memory resident data. The
records that belong to the query response set are then collected
and returned to the user. The sorted runs are written back to
disk as the leaves of a partitioned B+ tree and global ordering
is achieved by introducing an artificial leading attribute whose
value is the runs creation order.

The size of the runs is limited by the amount of main memory
available and should be as big as possible, since longer runs
provide fewer index partitions and thus faster access, because the
tree must be traversed from root to leaf level for each partition.
This partitioned index is already able to speed up the processing
of subsequent queries, each time a search operation is executed
the partitioned tree is traversed from the root to leaf level once per
partition. In order to achieve optimal read access, the partitions
must be merged into a single one so that the index becomes a
regular B+ tree (not partitioned). In the adaptive merging [3]
approach, partition merging and query processing are a single
operation.

Algorithm 1: Forecast And Index Thread
Data: Predicates of last N queries
Result: Predicted query key ranges indexed continuously

1 while True do
2 if at least N new queries observed then
3 train neural network;
4 discard training data;
5 else
6 predict next key range;
7 if range is not locked by query thread then
8 acquire latch on key range;
9 merge key range to final index;

10 release latch;
11 end
12 end

In MetisIDX, two separate structures are used, one is the parti-
tioned tree resulting from the first query, and the second, another
B+ tree structure for the final index, which is composed of the re-
sults of the merging operations performed by the indexing thread.
This design was chosen to minimize the efforts of structure main-
tenance, as a result, no merges are performed on the nodes of
the partitioned tree, i. e. they are permitted to underflow and the
height of the tree is fixed. In the final index, however, overflow
checks happen and nodes are split as more data is moved from
the partitioned tree to their final position. Adaptive merging,
on the other hand, has to deal with structure maintenance for
merges and splits, because the transition from the partitioned
structure to the final index is accomplished by collecting the
records that belong to the response set of the query and merging
them into a final partition, which becomes the full index after
a number of queries. All the partitions compose a single tree
structure, including the final partition.

In order to answer a range query, such as the ones used in the
experiment, the query processing thread traverses the partitioned
tree once for each partition in the tree and collects the records of
interest, then it proceeds to scan the final index to account for
the case in which the required records have already been merged
to that location. The predictive behavior of MetisIDX minimizes
the need for the operation of scanning the partitioned tree since
the merging operations are made in anticipation and eventually
make entire partitions empty.

The decisions on which key ranges to merge and the actual
merging operations are done independently and in parallel to
query processing. Such decision process comes from the extreme
learning machine that is continuously trained in background by a
dedicated thread. That same thread is used to perform merges at
the end of each trainingmini-batch. After eachmerging operation
the indexing thread attempts to perform a new model update if
enough new queries have been observed. An important difference
between a predictive system and a strictly adaptive one is the
fact that, by indexing a key range before it is queried, the records
in the indexed range will be brought up to cache. This means
that predictive indexing is also a predictive cache prefetching.

Algorithm (1) depicts this process. The whole procedure is
executed in an infinite loop in the indexing thread, that continu-
ously tries to perform merge operations if the required resources
are not protected by a latch, and performs a training step if a
number of queries have been observed. This number must be
chosen by the user, for our setup we used 10.

486



0 200 400 600 800 1,000
102

103

104

105

Query sequence (500MB data)

Re
sp
on

se
tim

es
[m

s]
Adaptive Merging

MetisIDX

0 200 400 600 800 1,000
10−1

100

101

102

103

Query sequence (50GB data)

Re
sp
on

se
tim

es
[s
]

Adaptive Merging
MetisIDX

Figure 1: Response times

3 EXPERIMENTAL EVALUATION AND
SETUP

MetisIDX and Adaptive Merging were both implemented for
comparison in a custom storage engine named MetisDB, which
implements the usual B+ tree access operations including persis-
tence. The inclusion of adaptive merging and MetisIDX imple-
mentations in well known and complete database management
systems would be a valuable way to fully evaluate and compare
the performances and the implications for transaction processing
by making the use of standard benchmarks possible. However,
as pointed out by the authors of adaptive merging, conventional
database architectures make a clear distinction between scans
and index updates, treating the first as read-only, and the modifi-
cations needed to integrate the query-and-index strategies use
in adaptive approaches call for whole new system architectures
built with adaptive components in mind. This is the primary
motivation for the MetisDB.

Since MetisIDX is not a strictly adaptive technique, and it
adds indexing steps which are not part of query processing, it
would make sense to compare it with Holistic Indexing, which
has similar attributes. However, that technique is designed to
work in the context of main memory column stores, while our
approach targets tuple-based systems in secondary storage. For
this reason Adaptive Merging is used as a baseline, as its applica-
tion domain and data structures used are the same. The machine
in which the experiments were carried out consists of a 3.1GHz
Intel i5 processor, a 500GB, 7200RPM Seagate hard disk drive,
and a 2x4GB DDR3 memory. The software stack is composed of
a Debian GNU/Linux version 9 operating system and MetisDB
was compiled using the GNU C++ compiler version 6.3.

The MetisDB storage engine contains a buffer manager that
uses an LRU cache replacement policy on 8KB pages, LRU was
chosen to favor recently loaded pages to remain in memory, as
this is the case for recently indexed key ranges. Response times
are used as a performance metric for the purpose of comparison.
We use this metric instead of the usual I/O operations count used
in disk-based access method evaluation because this quantity
is not as directly linked to response times in MetisIDX as it is
in other access methods. The reason is that, as we index data
before query processing occurs and the indexing process must
bring data up to the main memory cache, the select operator is
expected to find its response set in the buffer pool. In other words,
it does not matter how many disk accesses were performed if the
data is in cache by the time one needs it.

The synthetic data used in the experiments consists of tuples
with a 64bit integer used as the index key, and a 48B random
string added to increase volume. Two tables were created, one
containing 500MB and 7,106,208 tuples with the format described
above, hereafter called T1, and another containing 50GB and
727,483,873 tuples, called T 2. Two different data sizes were used
to assess the effects of the domain size for the neural network
predictions and cache invalidation, since the 500MB data can be
entirely accommodated on cache while the larger one can not.

The query workload consists of 1000 range queries of the form
SELECT COUNT(*) ... WHERE A => QLOW AND A <= QHI ;
where the key range limits, QLOW and QHI , are generated from
a function Q that maps each query to a point in the search key
space. Let the domain of the key be [0,M) and j be the order of a
query, then the Q used is

Q(j) = M · (j/C)2 (1)
where M is the maximum value of the search key and C is the

order of the last query, 1000 in the given setup. In this form Q
will distribute the queries over the entire key range. From this
function (1) QLOW and QHI are derived by

QLOW (j) = Q(j) − R1

QHI (j) = Q(j) + R2
(2)

where R1 and R2 in (2) are random positive values generated
by a normal distribution with standard deviation equal to 1%
of the key range. This parameter determines the selectivity of
the queries and additional executions with different values were
performed with similar results. These are the functions the neural
networks learn. A quadratic function was chosen to define the
access pattern as it is a simple non-linear function, and the goal is
not to test the ELM forecasting capabilities for complex functions
as it is done elsewhere [5]. This quadratic function, even though
non-linear, is a sequential access, the worst case for adaptive
indexes since, as a key range is never queried more than once,
each one faces the non-indexed part of the data.

Two ELMs were used, one learns QLOW and the other learns
QHI , both as functions of j. Each network has one neuron in
the input and output layers, since the target function is one-
dimensional, and four neurons in the hidden layer. A test with
4 neurons was carried out and yielded the same results, since 4
is enough for such simple function. In a real application where
the access pattern may be more complicated, the use of more
neurons in the hidden layer is advisable.

487



0 200 400 600 800 1,000

2

4

6
·105

Query sequence (500MB data)

A
cc
um

ul
at
ed

tim
es

[m
s] Adaptive Merging

MetisIDX

0 200 400 600 800 1,000

0.8

1

1.2

·106

Query sequence (50GB data)

A
cc
um

ul
at
ed

tim
es

[s
] Adaptive Merging

MetisIDX

Figure 2: Accumulated response times

Figure (1) shows the response times of MetisIDX and adaptive
merging for the two data sizes. For both experiments the fact
that the first query has a cost much higher than the ones that
follow is visible, this result is compatible with the related work
in adaptive indexing in general. The queries over the 500MB data
have a noisy behavior likely due to the CPU usage of the training
thread and other processes running in parallel, since the data is
small enough to be all in memory after the first query. On the
other hand, the queries over 50GB data have a more consistent
behaviour and the advantage of decoupling indexing from query
processing becomes clear. The soft increase seen along the query
sequence is due to the the growing number of cached pages,
which increases the addressing costs.

Figure 2 Shows the accumulated query processing time, that
is, the time spent to perform the first N queries as a function
of N . The behavior of the curves show that as more queries are
processed the gain in overall performance increases so that long
running applications benefit the most from the technique. This
also points a common trait of adaptive indexes, that is, as more
queries are processed, the system gains knowledge of the data
stored and of the workload.

In a few queries, the response times of MetisIDX jumps to
the level of adaptive indexing. This happens when a key range
starts being indexed and then is requested by a query before
the indexing action finishes. It is the only situation in which the
query processing thread waits. Since the observation window
used is 10 queries and the indexing action for the next immediate
query happens after each observation window, this is expected
to be the periodicity of these peaks.

4 CONCLUSIONS AND FUTUREWORK
MetisIDX is able to speed up access by range queries by decou-
pling index building efforts from query processing while main-
taining the workload oriented behavior of adaptive indexes. In
this technique not only the current query is treated as a hint on
how to physically organize the data but the entire query sequence
is taken to be a sample of the underlying workload patterns. The
workload is still assumed to be unknown, only the existence of
an underlying pattern is required.

It shares the concurrency concerns of other adaptive tech-
niques in terms of application access. Additionally, indexing oc-
curs in parallel to query processing when the key ranges do not
overlap. These considerations call for a latch free alternative to
data structure access in order to alleviate latch contention, or

even make the two actions race free, and increase throughput.
An option to address these challenges is the adaptation of the
approach presented here to the context a latch-free B-tree based
structure, such as the Bw-tree [8] and a multiversion strategy
to distinguish the data accessed by the current query and that
being indexed may also be an option.

An in-depth analysis of the overall concurrency issues would
be valuable not only for this particular technique but for any
machine learning and pattern recognition based access methods.
These are interesting issues for big data exploration as building
full indexes upfront is an increasingly less attractive option [6]
as data volumes grow. Learning from the data not only about the
information it carries but also about the best ways to access it is
a reasonable and, as far as we know, open research problem.

Acknowledgements
This research was partially supported by FUNCAP/CE-Brazil and
LSBD/UFC.

REFERENCES
[1] J. Arulraj, A. Pavlo, and P. Menon. Bridging the archipelago between row-

stores and column-stores for hybrid workloads. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, pages 583–598, 2016.

[2] M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica, S. Idreos, A. Ailamaki, and
M. Callaghan. Designing access methods: The RUM conjecture. In Proceedings
of the 19th International Conference on Extending Database Technology, EDBT
2016, Bordeaux, France, March 15-16, 2016, Bordeaux, France, March 15-16, 2016.,
pages 461–466, 2016.

[3] G. Graefe and H. A. Kuno. Self-selecting, self-tuning, incrementally optimized
indexes. In EDBT 2010, 13th International Conference on Extending Database
Technology, Lausanne, Switzerland, March 22-26, 2010, Proceedings, pages 371–
381, 2010.

[4] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochastic database cracking:
Towards robust adaptive indexing in main-memory column-stores. PVLDB,
5(6):502–513, 2012.

[5] G. Huang, Q. Zhu, and C. K. Siew. Extreme learning machine: Theory and
applications. Neurocomputing, 70(1-3):489–501, 2006.

[6] S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe. Merging what’s cracked,
cracking what’s merged: Adaptive indexing in main-memory column-stores.
PVLDB, 4(9):585–597, 2011.

[7] M. L. Kersten and S. Manegold. Cracking the database store. In CIDR, pages
213–224, 2005.

[8] J. J. Levandoski and S. Sengupta. The bw-tree: A latch-free b-tree for log-
structured flash storage. IEEE Data Eng. Bull., 36(2):56–62, 2013.

[9] N. Liang, G. Huang, P. Saratchandran, and N. Sundararajan. A fast and accurate
online sequential learning algorithm for feedforward networks. IEEE Trans.
Neural Networks, 17(6):1411–1423, 2006.

[10] E. Petraki, S. Idreos, and S. Manegold. Holistic indexing in main-memory
column-stores. In Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015, pages 1153–1166, 2015.

488


	MetisIDX - From Adaptive to Predictive Data IndexingElvis Teixeira, Paulo Amora, Javam Machado

