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ABSTRACT
Tools for visual data exploration allow users to visually browse
through and analyze datasets to possibly reveal interesting infor-
mation hidden in the data that users are a priori unaware of. Such
tools rely on both query recommendations to select data to be
visualized and visualization recommendations for these data to
best support users in their visual data exploration process.

EVLIN (exploring visually with lineage) is a system that assists
users in visually exploring relational data stored in a data ware-
house. EVLIN implements novel techniques for recommending
both queries and their result visualization in an integrated and
interactive way [3]. Recommendations rely on provenance (aka
lineage) that describes the production process of displayed data.

The demonstration of EVLIN includes an introduction to its
features and functionality through sample exploration sessions.
Conference attendees will then have the opportunity to gain hands-
on experience of provenance-based visual data exploration by
performing their own exploration sessions. These sessions will
explore real-world data from several domains. While exploration
sessions use a Web-based visual interface, the demonstration also
features a researcher console, where attendees may have a look
behind the scenes to get a more in-depth understanding of the
underlying recommendation algorithms.

1 VISUAL DATA EXPLORATION
Data exploration [8] helps users in finding interesting informa-
tion in data sets when they do not know beforehand what useful
information hides in their data. It thus supports humans in under-
standing and interpreting data in an investigative way. As manual
data exploration is tedious, time-consuming, and it is easy to over-
look interesting information, there is a need for tools supporting
data exploration. These tools typically rely on different kinds
of recommendations. Essentially, query recommendation guides
users in their investigation of a data set D by suggesting queries
as next exploration steps, given an initial query Q . Opposed to
that, visualization recommendation commonly determines suited
visualizations given a data set as input.
State-of-the-art. Most data and visualization recommendation
techniques work independently from one another, meaning that
the result of query recommendation, i.e., the data set Q ′(D) re-
turned by executing a recommended query Q ′ over D, has no
impact on the visualization recommendation process, and vice
versa. This becomes apparent in Tab. 1 that summarizes works
most closely related to ours. For each approach, it describes (i) the
expressiveness of input queries (e.g., select-project-join (SPJ)
queries, select-project-aggregate (SPA) queries, or cube queries
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corresponding to SPJA queries), (ii) the type of recommended out-
put queries, (iii) the information used to compute query recommen-
dations, (iv) the type of recommended visualization, and (v) the
information used to compute visualization recommendations. This
summary clearly shows that there is a gap between query rec-
ommendation systems such as YmalDB [5], SeeDB [12], or RE-
ACT [10] for expressive data exploration on the one hand, and
visualization recommendation systems such as Voyager [14, 15]
and Tableau’s Show Me [9] on the other hand. Indeed, whereas the
former may support the full range of typical OLAP queries, they
do not offer any visualization recommendation. Typically, there is
a one to one mapping between the result relation and a displayed
table [5, 10] or bar chart [12]. Opposed to that, visualization rec-
ommendation solutions typically offer no or very limited support
for query recommendation.
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Table 1: Summary of data exploration systems leveraging
query recommendation or visualization recommendation

Contribution. EVLIN bridges the gap between query and vi-
sualization recommendation, seamlessly integrating both query
and visualization recommendation for a streamlined, interactive
user-experience. It relies on a novel recommendation strategy that
leverages provenance to recommend queries and interactive visu-
alizations in relation to each other [3]. The underlying techniques
as well as the implementation focus on visually exploring rela-
tional data stored in a data warehouse. That is, we assume an
input data set to conform to a snowflake schema. This demonstra-
tion focuses on the usability and interactivity of EVLIN in letting
users explore these data. Through various real-world scenarios, we
showcase that provenance-based recommendations for visual data
exploration allow to effectively reveal interesting information. An
example exploration session showing the functionality of EVLIN
is available as an online video in [1].
Structure. Sec. 2 highlights the innovative aspects of EVLIN.
The audience experience is first addressed in Sec. 3 where we
discuss an exploration session in detail. On-site details such as
the intended audience, sample scenarios, and a summary of the
audience experience beyond the sample exploration session of
Sec. 3 are then covered in Sec. 4.

Demonstration
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2 EVLIN CONTRIBUTIONS
This section briefly summarizes the scientific contributions of
EVLIN. We refer interested readers to [3] for more technical
details, which we leave out here due to space constraints.
Leveraging data and evolution provenance. EVLIN captures
two types of provenance: data provenance (more specifically
why-provenance) and evolution provenance [7]. Data provenance
records which data in the database D was used to derive the query
result Q(D) of a given query Q . In our context, evolution prove-
nance [3] captures the explored dataset history as well as user
interactions and visual encoding parameters of corresponding vi-
sualizations, thus tracking how a current visualization was derived.
Thus, our model of evolution provenance extends the query history
model used for query recommendation in REACT [10].
Provenance-based recommendation. We have developed a novel
query recommendation algorithm that takes into account data
provenance of data that has been explored and interacted with dur-
ing an exploration session via the visual front-end. For an input
SPJA SQL query, the computed recommendations follow typical
data warehouse operations such as drill-down, roll-up, or slice. To
identify adequate visualizations for the results of recommended
queries, we have further developed a recommendation strategy
that takes into account both interactions and visualizations cap-
tured as evolution provenance. While our query recommendation
is similar in spirit to REACT [10], which records query histories
from exploration sessions, our system leverages a richer prove-
nance model and recommends not only queries but also their result
visualizations.
Recommendation data space coverage and conciseness. To the
best of our knowledge, EVLIN is the first system that recom-
mends visualizations of query results for all queries typical in data
warehouse navigation. Indeed, recommendations include roll-up,
slice/dice, and drill-down queries, including drill-down queries
that navigate to dimensions not considered by previous queries.
In addition, data can be clustered by different characteristics or
measures to zoom-in to more detailed distributions. To reduce
the number of recommendations that are ultimately presented to
the user (both for efficiency and usability reasons) while avoid-
ing the loss of potentially relevant recommendations, we have
explored how to leverage integrity constraints such as functional
dependencies to prune redundant recommendations [3].
Visualization of quantified recommendation quality. Given the
high diversity and possibly large number of recommended queries
(and associated visualizations) produced by EVLIN, we propose
to support users to navigate through the exploration space by quan-
tifying the “interestingness” of recommended next exploration
steps. The computed scores are then visualized in an interactive
impact matrix, pointing users to potentially interesting data visu-
alizations for different data warehouse operations.

3 SYSTEM FUNCTIONALITY
The above contributions are implemented as part of the EVLIN
Web application that supports the exploration of multidimen-
sional relational data stored in a data warehouse D with schema
schema(D), given an initial SQL query Q . EVLIN users are ex-
pected to have initial basic knowledge about the schema and
dimensions of the data warehouse. The query Q , as well as all
queries subsequently recommended take the form

SELECTf (m),A FROM rel(Q) WHERE cond GROUP BY A

where m is a measure in the fact table, A = {a1, . . . ,an } is a
set of attributes, f is an aggregation function, rel(Q) refers to
one or more relations in schema(D), and cond is a conjunction of
predicates.

Data	and	
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Rendering	

recommendation

Data	

recommendation
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Fig. 2: The system architecture

II. PROVENANCE-BASED EXPLORATION WITH EDVIN

Fig. 2 depicts the general architecture of our system.
EDVIN is a web application that currently supports the ex-
ploration of multidimensional relational data stored in a data
warehouse D. We assume that users of our system have initial
basic knowledge about the structure of fact table and the
set of available dimensions. With this knowledge, users first
write an SQL query via a graphical web interface. The query
processor receives and executes this query Q and sends the
result Q(D) = {r1, . . . , rn} to the visualization renderer that
decides how to adequately visualize the query result. This
component leverages Vega 1 for interactive visualization. Once
the result is displayed, users can interact with it, in particular,
they may express their interest in a a sub-result ri 2 Q(D) by
clicking the corresponding part of the visualization (e.g., bar in
a bar chart). This selection triggers provenance computation.

More specifically, we compute the data provenance of
ri, denoted Lin(ri), using the Perm provenance manage-
ment system [8]. This provenance information corresponds
to all tuples in D that have contributed to producing the
result tuple ri (i.e., why-provenance [6]). This provenance
is then considered to identify attributes and attribute values
that may be of interest for data exploration. Intuitively, the
provenance-based identification of attributes and values of
interest compares the frequency of sufficiently frequent at-
tribute values in the provenance Lin(ri) to the frequency of
these values in the complete database D. If these frequencies
significantly differ, the corresponding attribute-value pair is
considered as potentially interesting. More formally, for each
attribute value v of each attribute a in Lin(ri), we com-
pute fa,v(Lin(ri)) = |{ti|ti2Lin(ri)^ti.a=v}|

|Lin(ri)| . Subsequently,
we consider only attributes that are frequent enough to have
any significance w.r.t. the users initial selection, i.e., their
frequence fa,v � ✓L should be greater or equal to a predefined
threshold ✓L. We use the same formula as above to compute
the frequency of the remaining candidate attributes in the
complete database (by replacing Lin(ri) by D). Using the
two previous frequencies, we compute the support of each
candidate attribute values in the lineage w.r.t. the whole
database, i.e., suppa,v(ri) =

fa,v(Lin(ri))
fa,v(D) . Using this support,

only candidates having suppa,v � ✓supp will ultimately be
recommended by our algorithm. However, to further reduce
the number of recommendations that users will have to choose
from, we further prune the set of candidates that may yield
redundant explorations. More specifically, we perform data

1http://vega.github.io

profiling [9] (such as identification of functional dependencies
and value correlations) to prune candidates from the final set of
recommendations, subsequently denoted R. All attribute-value
pairs in R are displayed via the interactive web interface where
users then select one of the suggested attribute-value pairs to
pursue their data exploration session. The user selection is then
passed to the query reformulation component.

Query reformulation takes into account R and outputs a
ranked list L of variations of the original query Q. Each
variation considers two basic changes w.r.t. Q: In addition to
adapting the selection conditions of Q based on R, EDVIN
also extends the query such that it allows to explore pre-
viously not considered dimensions by recommending joins.
Finally, each query Q0 2 L is executed and the result is
sent to the visualization renderer, starting the next iteration
of the exploration process. Mapping the query result to an
appropriate visualization now takes into account both the
query result and the previous visualizations users have worked
on. The visualization recommendation aims at maximizing
the visual similarity of the recommended visualization with
visualizations users have seen and interacted with previously.
The rationale is that recognizing information from previous
iterations potentially increases the usability and the efficiency
of the exploration process.

III. DEMONSTRATED FEATURES AND SCENARIOS

The demonstration of EDVIN covers all features described
above. Conference attendees will have the opportunity to ask
queries in at least three different domains and to interact with
the system to discover, by themselves, interesting facts hidden
in the data. Currently, the scenarios are from the domains
flights 2, movies 3, and e-governemt 4. As shown in the video
of EDVIN available on our website 5, we already revealed
some misconceptions of our understanding of the flights data
set using data exploration, thus being able to correct an initially
wrong query.

In addition to demonstrating the user experience, our
demonstration also includes a tour “behind the scenes” of
our system and algorithms, showing how data, interaction,
and visualization provenance effectively contribute to support
efficient data exploration.
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Figure 1: EVLIN system overview

Fig. 1 depicts the general processing EVLIN implements: (i) A
user triggers an exploration session by issuing Q . (ii) The query
processor executes the query and returns its result, denoted Q(D).
(iii) Q(D) is then input to rendering recommendation that deter-
mines an adequate visualization to render the query result. (iv) The
user can interact with the data via the graphical user interface, se-
lecting a data-subset of interest, denoted R. (v) Based on this
interaction, data recommendation identifies which attributes and
values within their domain may be of interest to the user at the
next step of his data exploration session. (vi) For each data rec-
ommendation, query reformulation determines variations Q ′ of
the query Q that correspond to different exploration queries over
a data cube in a data warehouse (slice, drill-down, roll-up, etc.).
The interestingness of these queries is quantified based on the data
underlying Q and Q ′ and the consistency of possible visualiza-
tions for Q ′(D) wrt evolution provenance. The result of this step
is a set of recommended queries and respective visualizations for
each recommended attribute of step (v) with associated interest-
ingness scores. This information is visualized as an impact matrix
to the user. The user then chooses one particular query to explore
next. Upon selection of this query Q ′, the next iteration of the
exploration process starts.

Figure 2: Initial input interface and sample query Q

In what follows, we detail functionalities, interfaces, and inter-
actions that the audience will experience, focusing on the render-
ing recommendation, data recommendation, and query reformula-
tion components. Due to space constraints, an in-depth discussion
of the underlying algorithms is out of the scope of this paper, and
we refer interested readers to [3] for details.

An initial user-specified query Q is input via a graphical user
interface, as illustrated in Fig. 2. While our current implementation
requires full-text SQL (loaded from a file or typed in a text field),
a more user-friendly interaction similar to Voyager is planned. Our
sample scenario considers a database D of domestic US flights
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(a) Example of recommended visualization for Q (D)

(b) Visualization of recommended query result Q ′(D)
Figure 3: Sample visualizations rendered using EVLIN

andQ that determines the number of short flights per airline which
arrive ahead of schedule (a possible indicator for airline quality).
Using the same scenario, a more extensive exploration session
than the one described in the following is showcased in an online
video in [1]. It includes for instance visualizations other than bar
charts and further data warehouse operations.

3.1 Rendering recommendation
The rendering recommendation component takes as input a query
result Qi (D) and evolution provenance Pe to determine a suited
visualization of Qi (D). As described in [3], evolution provenance
encompasses information about (i) past queries, (ii) the set of
visualization resources used to render results of these queries,
and (iii) information of past user interactions such as the selected
data regions or specific sub-results. Essentially, this information
are collected for each exploration step of an exploration session,
where steps are delimited by transitioning from visualizing a query
Q to visualizing a query Q ′. This results in evolution provenance
being a directed graph where nodes represent individual explo-
ration steps and edges represent transitions from one step to the
next. For a given Qi (D), its corresponding evolution provenance
Pe includes all meta-data associated to graph nodes on the path
from the initial query Q to the node representing the query Qi .

Using this input, rendering recommendation aims at maximiz-
ing the visual similarity of a recommended visualization with
those seen and interacted with previously for similar queries (intu-
itively, such that users easily recognize the same information as
seen previously and thus understand the meaning of visualizations
faster). This first requires determining similar queries among those
in Pe . We quantify this similarity using a token-based similarity
function betweenQi and a queryQp ∈ Pe , weighted by the inverse
of the shortest distance from Qi to the previously seen Qp on the
path defining Pe . Among all queries of Pe with a similarity to Qi
above a predefined threshold θV , we now take the most frequent
encoding parameters used to visualize information that is also
selected by Qi . These define a preliminary skeleton for the rec-
ommended visualization of Qi (D). In case no prior visualizations
can be used, we resort to the effectiveness metrics adopted by
Voyager [14, 15] to construct the visualization. Finally, the visual-
ization skeleton is possibly updated based on the set of constraints
defined in [11], that reduce conflict between visualizations.

As an example, Fig. 3a displays the recommended bar-chart
visualization for our sample query Q that counts short flights

arriving ahead of schedule for each airline. For this initial ren-
dering, Pe = ∅, thus, the recommendation is solely based on the
effectiveness metrics.

The user can inspect (by mouse hovering) the data and select
a region R of interest by clicking to pursue the exploration. In
Fig. 3a, the user has selected the highest bar that designates the
overly punctual flights of the airline with code WN. The selected
region is highlighted in a different color. At this point, Pe is
updated to include the initial query Q in its query history, the
user interaction event (selection of bar with code=WN) as well as
visual encoding parameters of the displayed chart.

Recommending the visualization of Fig. 3b (explained later)
relies on the updated Pe to generate a similar visualization of same
features, e.g., same axis scale for the y-axis, same order of airline
codes on the x-axis, or choice of a stacked bar chart to maintain
same heights as seen previously (e.g., in the bar-chart of Fig. 3a).

3.2 Data recommendation

Figure 4: Impact matrix for running example

Selecting a particular sub-result R ⊆ Q(D) of the data via the
graphical user interface triggers the data recommendation compo-
nent. It takes as input R, D, and Q to determine a set of attribute-
value pairs P = {(a1,v1), . . . , (an ,vn )}. Before passing these to
query reformulation, the attribute-value pairs in P are grouped by
attribute, resulting in the final output G = {(a1,V1), . . . , (ak ,Vk )}.
Essentially, data recommendation determines which data to ex-
plore next while query reformulation determines how these data
will be explored.

To compute P , we leverage the data provenance of R, denoted
Pd (R), using the Perm provenance management system [6]. This
provenance corresponds to all tuples in D that have contributed
to producing R (i.e., why-provenance [4]). An attribute-value
pair is then recommended if it satisfies one of the two follow-
ing conditions: (i) it is widely present in Pd (R) and more mas-
sively present in the database D or (ii) it is widely present in
Pd (R) but rarely present in D. We verify these conditions by
first requiring a minimum frequency fa,v for an attribute-value
pair in Pd (R), i.e., fa,v (Pd (R)) ≥ θL , where θL is a predefined
threshold. We then compare this frequency to the frequency of
the same attribute-value pair in the whole database D using the
support measure defined by supporta,v (R) =

���loge (
fa,v (Pd (R))
fa,v (D)

)���.
Finally, only those attribute-value pairs with a lineage-based sup-
port above a given threshold θsupp are retained for recommen-
dation. In our prototype, threshold values of θL and θsupp have
been set to 0.1 and 0.7 respectively, which proved to be practi-
cal for the use cases we considered. However, setting these in
general is an interesting avenue for future research. Using the
method described above, it is possible that two distinct entries
in P , i.e., (a,v) and (a′,v ′) yield redundant query reformulations.
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This is for instance the case when functional dependencies ex-
ist between attributes. To avoid redundant recommendations, we
employ data profiling algorithms to determine functional depen-
dencies [2] of the form a → a′ and prune a′. The row labels of
Fig. 4 show the set G, including for instance (cancelled, {1}) or
(dest , {LAS,MDW , PHX }) that result from relevant attribute pairs
(cancelled, 1) and {(dest ,LAS), (dest ,MDW ), (dest , PHX )} ⊆ P ,
respectively.

3.3 Query reformulation
The data recommendations are input to the query reformulation
component that produces, for each (a,V ) ∈ G, a set of queries
corresponding to variations of the original queryQ . Each variation
reflects an operation typical when querying data warehouses. Our
system supports variations implementing slice (and dice), drill-
down, including the navigation to dimensions not considered in
the initial query Q (which we call extension afterward), roll-up,
and grouping or clustering the original results of Q by further
attributes (zoom-in). The variations are systematically constructed
based on Q , (a,V ), and the specific data warehouse operation. For
instance, the query reformulation for slice will add conditions of
the form AND a = v1 OR . . . OR a = vn to the initial WHERE
clause of Q , where {v1, . . . ,vn } = V , whereas a roll-up, drill-
down changes the attribute set A in the SELECT and GROUP BY
clauses of Q to a higher or lower granularity.

To assist users in choosing the next query for the next explo-
ration step, we assign a utility score s to each query variation.
Developing and evaluating suited scoring functions to quantify the
interestingness of query variations based on their result data and
candidate visualization properties is currently actively researched.
As a proof-of-concept for our visual data exploration, we have
currently implemented Kullback-Leibler divergence function [13]
as a utility function. It quantifies the divergence of a’s value distri-
bution in Q ′(D) from its distribution in D.

The mapping of (a,V )-pairs to sets of scored recommended
queries is visualized as an impact matrix. Fig. 4 shows the impact
matrix that results from the query and interaction depicted in Fig. 2
and Fig. 3a. Each line of the matrix corresponds to an (a,V )-pair
and each column corresponds to a type of query variation. The
cell colors encode the divergence score. From this example, we
see for instance that the zoom-in query for (airtime, 0) obtains a
high interestingness score. Upon clicking this interesting cell, the
corresponding query variation is set to be the new query Q , which
is then executed before its result is visualized as recommended by
the rendering recommendation component (see Fig. 3b).

The visualization of Fig. 3b shows that a significant number of
flights satisfying the initially intended quality criteria for airlines,
i.e., arrival ahead of schedule, has a flight duration equal to zero.
Based on this insight, users may decide to revise or refine the
airline quality criteria.

4 SCENARIOS AND USER EXPERIENCE
The demonstration will rely on scenarios from different domains.
The domains are chosen so that some basic knowledge about data-
base schemas and attributes can be assumed. Possible supported
scenarios could leverage for instance the following datasets.
Flights. The first dataset describes US domestic flights1. It con-
tains information about two million flights done by more than
1500 airline companies between 2007 and 2008. It includes fur-
ther information about 3300 airports and almost 4500 plane types

1https://stat-computing.org/dataexpo/2009/

used for the covered flights. The facts recorded for each flight
include various numerical attributes such delays, cancellation,
arrival and departure time etc.
Movies. The second dataset describes one million ratings made
by 6000 users of the MovieLens platform2 on 4000 movies. This
database stores various information about users and movies.
Soccer. The third dataset is the European soccer league database3.
It contains detailed information about more than 25,000 fixtures
between 2008 and 2016 in 11 European championships.

We expect the demonstration to attract a broad audience, gen-
erally interested in interactive data analysis or visual data explo-
ration. Having some proficiency in SQL is crucial to be able to
follow and express SQL queries that trigger an exploration session.

The audience experience will be similar to the sample scenario
used throughout Sec. 3. However, wheres the example limits to
one exploration step, attendees will have the opportunity to run
exploration sessions spanning multiple exploration steps similarly
to the user experience shown in [1].

In addition to experiencing the system’s main functionality,
the demonstration provides a tour “behind the scenes”. This in-
cludes seeing how user interaction translates to a provenance
query, which scores are computed for data recommendation, which
attribute-values are pruned along the way, and which queries (with
associated scores) are recommended. Ultimately, after hands-on
data exploration experience using EVLIN, the audience will have
gained a better understanding of the explored data set and possibly
even discovered new insights on the underlying data set.
Acknowledgments. We thank the German Research Foundation
(DFG) for supporting projects A03 and D03 of SFB-TRR 161.
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