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ABSTRACT 

In this paper, we demonstrate Hermes@Neo4j1, an extension of 

Neo4j graph DMBS for semantic trajectories of moving objects, 

on the so-called Spatio-Temporal-Keyword Pattern queries. For 

this purpose, our engine exploits on hybrid Spatio-Temporal-

Keyword (STK) index structures, also boosted by an appropriate 

selectivity estimation model. Hermes@Neo4j functionality is 

demonstrated over synthetic and real semantic trajectory 

datasets. 

1 INTRODUCTION 

The efficient management and analysis of the spatio-temporal 

evolution of a moving object (the so-called object’s trajectory) 

has led to the development of plenty of appropriate index 

structures and algorithms, and even extensions over DBMS 

during the last two decades [1-5]. Recently, the research 

community has turned its interest to semantic trajectories [6], 

where spatio-temporal information is enriched with related 

annotations about the what, how, and why of movement [6-8]. 

The paradigm of Location-based Social Networking (LBSN) 

services, such as Twitter, Instagram and Foursquare, is indicative 

of this shift: the management and analytics over large amounts 

of spatio-temporal-textual data may result in useful conclusions 

about the users’ behaviour. 

Our motivation in this work is to demonstrate how a 

                                                                    
1More information regarding Hermes@Oracle and Hermes@Postgres are available 
at www.datastories.org/hermes. 
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Semantic Trajectory Database (STD), built on top of an 

extensible DBMS, can efficiently support queries where 

constraints are set over the triple (spatial, temporal, textual) 

nature of semantic trajectories. In particular, we aim to 

demonstrate the functionality of our Hermes@Neo4j STD engine 

over Spatio-Temporal-Keyword Pattern (STKP) queries [9].  

According to [9], an STKP query is defined as follows: Let Ei 

be a semantic trajectory episode abstraction, which is defined as 

a partially or completely defined episode. An episode abstraction 

therefore is an episode where some of its properties – spatial, 

temporal, textual information – may be missing. An STKP query 

over a STD takes as input a sequence Q of episode abstractions 

or the * wildchar (more formally, Q := <p* | p is either an episode 

abstraction Ei or the * wildchar>) and gives as output the 

semantic trajectories in STD that are compatible with Q.  

An example of STKP query follows in Fig. 1 [9]. 

 

 

Figure 1: Graph representation of an STD consisting of 3 
trajectories along with a STKP query. 

In Fig. 1, we depict a STD consisting of 3 semantic 

trajectories; each trajectory consists of four episodes. An 

example STKP query Q is also illustrated at the bottom right 

corner. In particular, Q consists of a number of episode 

abstractions; with notation Ei* corresponding to a number of 

Demonstration
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zero or more episode abstractions of the form Ei. For clarity of 

presentation the episode abstractions in Q distinguish the 

temporal from the spatial information, which is not the case in 

reality where both are organized together in a Minimum 

Bounding Box (MBB). Actually, Q searches for trajectories 

starting with zero or more episodes of any kind (see notation (*, 

*, *)* in Q), followed by an episode in a spatial [35, 35, 50, 50] and 

temporal [t18, t20] range with keyword ‘RESTAURANT’ and 

ending with an episode in a spatial [40, 40, 55, 55] and temporal 

[t21, t23] range with keyword ‘DESSERT’. The output set includes 

semantic trajectory 1, which fulfills the above constraints. 

The practical contribution of this work is that we present a 

framework that utilizes recently introduced (a) state-of-the-art 

hybrid indexes and (b) query processing algorithms on (c) a new 

STD engine, coined Hermes@Neo4j STD engine.  

Hermes@Neo4j STD engine provides efficient and effective 

storage, indexing mechanisms and a library of utilities that 

facilitate spatio-temporal and textual operations on data, able to 

support STDs. More specifically, the merits and contributions of 

Hermes@Neo4j STD engine are summarized below:  

1. Following the successful MOD engine paradigm of 

Hermes@Oracle [7,8], we designed a new datatype 

system for the representation and management of 

Semantic Trajectories into the extensible DBMS 

architecture of Neo4j [10], an ACID-compliant 

transactional NoSQL DBMS with native graph storage 

and processing, implemented in Java. The datatype 

system is formulated in the context of the graph 

database, that provides an intuitive model in our case.  

2. Neo4j Spatial library [11], which is a library of utilities 

for Neo4j that facilitates spatial operations on data, is 

extended for processing the spatio-temporal and 

textual information of semantic trajectories.  

3. We designed efficient access methods for semantic 

trajectories, called TSR-tree and TSR-tree indexes, for 

the hybrid indexing of both the spatio-temporal and 

the textual component. The hybrid indexes combine a 

spatiotemporal and text index tightly, such that both 

types of information can be used to prune the search 

space simultaneously during the spatiotemporal 

keyword query algorithm processing in STDs.  

4. We developed efficient query processing algorithms 

upon the proposed indices in order to support a useful 

query type at the STD level, called STKP, as well as 

algorithms for efficiently importing semantic 

trajectories into STDs. 

Employing separate indexes is weaker in comparison with 

the tightly integrated proposed state-of-the-art approach, since 

an efficient resolution of the STKP requires repetitive invocation 

of spatio-temporal-keyword matching queries. 

The paper is organized as follows: in Section 2 we provide a 

brief presentation of the system architecture, the underlying 

indexes, etc. (the interested reader is referred to [9] for more 

details). Section 3 provides more information about system 

implementation details. Finally, Section 4 outlines the flow of the 

demonstration.  

2 SYSTEM ARCHITECTURE 

In this section, we present the core information about the 

architecture of our framework, illustrated in Fig. 2.  

 

Figure 2: Hermes@Neo4j STD engine architecture. 

2.1  Hybrid indexes 

Neo4j Spatial R-tree index is extended to support spatio-

temporal and classical trajectory-based queries (3D R-Tree) and 

is also used in order to enable effective spatiotemporal-keyword 

operations on semantic trajectories. There are two alternative 

indexing structures to support efficient STKP query processing. 

The proposed hybrid indices combine tightly a spatial and a text 

index (i.e. a 3D-Rtree and inverted file, respectively), so that both 

types of information can be used simultaneously for pruning the 

search space.  

TSR-tree index. In this index, a semantic trajectory is 

considered as an individual unit for the tree construction. More 

specifically, for each semantic trajectory we compute its MBB 

and a list of tags related to the semantics of the episodes, sorted 

by time. MBB is the minimum bounding box that encloses a 

specific sub-trajectory of a moving object, along with the start 

and end times of the movement. At the end, the tags in the list 

are concatenated to a single string. Specifically, a pseudo-word 

for each semantic trajectory is created with all the concatenated 

tags of each trajectory’s episode to a single string in order to use 

it for the keyword query search criteria. The leaves of the TSR-

tree index are the above-described approximation of the whole 

semantic trajectories. For the exploitation of the graph database 

where our index resides, these leaf nodes are the starting nodes 
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of the sequence of the episodes of the approximated semantic 

trajectory. Moreover, inverted files (IFs) are created for all the 

internal nodes of the tree. 

ESR-tree index. As an alternative, we build a tree using as 

its structural unit the episodes of the semantic trajectories rather 

than the semantic trajectories themselves. In other words, ESR-

tree index takes into account as structural unit for the creation 

of the 3D-Rtree the episodes of the semantic trajectories. The 

leaves of the ESR-tree index are the base for the creation of the 

episode MBBs. Accordingly, the MBBs of the entries of the 

internal nodes represent the spatio-temporal union of the MBBs 

of the children nodes. Additionally, for each internal node there 

exists a pointer to an IF that organizes all the tags of its children 

nodes. The IFs for each internal node of the tree contain the 

keywords of the episodes of its child nodes. 

2.2  STKP query processing 

STKP queries can be processed in Hermes@Neo4j using either 

TSR-tree or ESR-tree index. In the former (latter) approach, 

STKP search algorithm takes into account that TSR-tree (ESR-

tree, respectively) is built using entire semantic trajectories 

(episodes of semantic trajectories, respectively) as building 

blocks [9]. It is noteworthy that STKP search is boosted by an 

optimization method.  

STKP query optimizer. Given a STKP query Q := <E1, …, Ek>, 

where E1, …, Ek is a sequence of spatio-temporal-textual 

constraints over episode abstractions, the STKP query optimizer 

identifies the most selective episode abstraction E* in Q, in order 

to start the execution of the ESR-tree search algorithm from 

there, thereby pruning candidate results the earliest possible. 

The cost model that the query optimizer implements decomposes 

the computation of selectivity of an episode abstraction in two 

parts, one for the spatio-temporal and another for the textual 

component of the episode abstraction [9]. 

Regardless of the query length, it turns out that the search 

based on the ESR-tree and boosted by the query optimizer, is 

considerably faster, with the penalty of the higher index creation 

time and size compared with the TSR-tree approach. 

3 SYSTEM IMPLEMENTATION 

Our framework provides a robust API with the necessary tools 

for STD creation, querying, etc. Toward the realization of the 

concepts of semantic trajectories and STDs presented in the 

previous section, we followed the object relational (OR) 

approach for the datatype system of Hermes@Neo4j STD 

engine. In detail, we follow the abstract datatype (ADT) 

paradigm and define the episodes and semantic trajectory 

datatypes that support the definitions in [9]. Upon these 

datatypes, we register a rich palette of object methods; some 

indicative examples appear in Table 1. More details are available 

at Hermes@Neo4j web page2. 

Table 1: Methods over episodes and semantic trajectories 

                                                                    
2 http://infolab.cs.unipi.gr/HermesNeo4j/ 

Object Method Definition 
Episode duration() Returns the episode 

duration. 
Semantic 
Trajectory 

num_of_ 
episodes 
(String tag, 

String distinct),  
where “tag” is a 
set of substrings 
and a boolean 

string. 

Returns the number 
of episodes (distinct 
or not, depending 
on distinct string) 
that includes tags 
LIKE the given ones 
(pattern-matching 
per input tag). 

LayerST 
(object with 
the episodes 

and 
semantic 
trajectories 
of an STD) 

confined_in 
(LayerST layer, 
MBB envelope, 
String tag), 
where tag is a 
concatenated 

set of 
substrings. 

Returns semantic 
trajectories, whose 

episodes are 
overlapping 

spatiotemporally 
with the MBB and 
textually with the 
“tag” parameter. 

 

STD creation. STD construction includes two phases (3D R-

tree and IFs), along with segmental options for creating a graph 

database in steps (separate 3D R-tree and IFs creation routines) 

in case of size and memory concerns. 

Semantic Trajectory Synthesizer. In case of trajectory 

datasets lacking textual annotations, our synthesizer is able to 

augment raw trajectories with textual annotations using a 

customized text generator that chooses terms from a lexicon of V 

keywords. The number of keywords for each episode follows a 

Zipfian distribution, in order to simulate the skewness present in 

real-life textual datasets. 

STD search. Several functions are available for a wide range 

of queries like intersection, overlapping or union, with the 

emphasis, of course, in STKP queries (details for the appropriate 

search methods appear in Table 2). 

Table 2: STKP query methods 

Method Parameters Index 
SpatialTemporalKeyword 

TrajectoryQuery 
LayerST,  
list of 
MBBs, 

TSR-tree 
index 

SpatialTemporalKeyword 
TrajectoryEpisodesQuery 

list of String 
tags 

ESR-tree 
index 

 

Hermes@Neo4j STD engine utilizes Apache Lucene [12] 

indexes that use inverted indexes for search and retrieval from 

text collections. For the implementation of interactive 

visualizations of the semantic trajectories over a 3D model of the 

globe and different types of 2D maps, the NASA WorldWind API 

[13] is utilized. The library has been extended in order to display 

the spatio-temporal and textual information of a semantic 

trajectory. Visual representation of search results is performed 

through different 3D / 2D map services, such as Open Street 

Map, Bing, MS Virtual Earth, NASA Blue Marble and i-cubed 

Landsat (Fig. 3). 

The interface has the required parameters for spatio-temporal 
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and textual constraints that are used as query arguments. The 

interface also includes necessary options for importing a dataset 

to a new STD. Apart from setting spatio-temporal and textual 

constraints, in order to perform a STKP query over the selected 

STD, the user decides the index and search algorithm of his/her 

choice. The semantic trajectories that are the results of the STKP 

query are displayed through a proper animation zoom at the 

selected map service and reference system by displaying the 

geographical area that covers the specific semantic trajectories. 

Correspondingly, information about the search results and the 

number of trajectories that meet the search criteria are displayed 

in a relevant result box. 

4 ABOUT THE DEMONSTRATION 

Throughout the demonstration, Hermes@Neo4j users will be 

able to test the system by using the real “Foursquare New York” 

dataset [14] and the synthetic “Hermes Attica” dataset 3 

generated by the Hermoupolis generator [15]. The real dataset 

includes long-term (about 10 months - from Apr.12, 2012 to 

Feb.16, 2013) check-in data (227,428 check-ins) in New York City 

collected from Foursquare social network and the synthetic 

dataset consists of a total of 1,450,738 records that represent 

semantic trajectories.  

 

 

Figure 3: Interactive visual exploration of a semantic 
trajectory that is the result of an STKP query through a 2D 
map representation. 

The demonstration captures the following phases: (i) 

preparatory phase, where users have the opportunity to 

comprehend the internals of our framework, and (ii) our 

Hermes@Neo4j engine in action, where users experience various 

scenarios of STKP search. In particular: 

Preparatory phase (background knowledge). During this 

phase, we show off the different datatypes and operands that can 

be utilized in the Hermes@Neo4j engine. In addition, we 

demonstrate how the user can use our framework to run legacy 

operands, and even more interestingly, focus on the two STKP 

query indexing and searching approaches. 

Hermes@Neo4j engine in action. Having gained the 

necessary background knowledge, the user experiences a 

scenario of STKP search and index creation, based on the TSR-

tree search algorithm. For instance, Fig. 3 present an example of 

                                                                    
3 http://chorochronos.datastories.org/?q=content/hermes-attica 

an STKP query result, which is a semantic trajectory from the 

“Hermes Attica” dataset. The user can display the results with a 

selected 3D/2D map representation and reference system of 

his/her choice. In addition, the user can interactively switch on 

and off the visibility of the results. In turn, we present a scenario 

of STKP search and index creation, based on the ESR-tree search 

algorithm. The goal of this scenario is to effectively demonstrate 

that the STKP search based on the ESR-tree, is more efficient in 

comparison with the STKP search based on the TSR-tree index, 

with the penalty of the higher index creation time and size 

compared with the TSR-index. 

For a deeper comprehension of the demonstrated 

functionality, a related video is available at Hermes@Neo4j web 

page4. 
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